首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynein arms that power ciliary motility are normally permanently attached by one end exclusively to subfiber A of each axonemal doublet (N) while the other (head) end transiently attaches to the subfiber B of the adjacent doublet (N + 1) to produce sliding of the doublets. In Tetrahymena axonemes, sliding of contiguous groups of doublets is induced by ATP suggesting that, in the absence of exogenous protease, there may be sets of potentially active and potentially inactive or refractory arms in a single axoneme. In the presence of a non-hydrolyzable analog of ATP, beta,gamma-methylene adenosine 5'-triphosphate (AMP-PCP), about half the doublets in an axonemal preparation retain all arms bound to subfiber A, but half the doublets show long regions where some arms are pulled away from subfiber A of doublet N and attached to subfiber B of doublet N + 1 by their head ends. In AMP-PCP-induced splaying, positional information regarding arm state is retained. Analysis reveals that throughout regions where B subfiber attachment is found, small groups of about four subfiber B attached arms alternate with groups of about four arms that remain attached to subfiber A. This unique pattern of attachment suggests that arms function co-operatively in groups of four. Further, the repetition of the pattern is reminiscent of metachronal activity seen at higher levels of biological organization. This suggests that in these regions we have instantaneously preserved groups of arms capable of attaching to and detaching from doublet N + 1 in rapid succession. This appearance could be used to delineate the potentially active sets of arm, primed for mechanochemical activity, within an axoneme.  相似文献   

2.
The dynein arms of ciliary doublet microtubules cause adjacent axonemal doublets to slide apart with fixed polarity. This suggests that there is a unique mechanochemistry to the dynein arm with unidirectional force generation in all active arms and also that not all arms are active at once during a ciliary beat. Negative stain and thin-section images of arms in axonemes treated with beta, gamma methylene adenosine triphosphate (AMP-PCP) show a consistent subunit construction where the globular head of the arm interacts with subfiber B of doublet N+1. This interpretation differs from that provided by freeze etch and STEM interpretations of in situ arm construction and has implications for the mechanochemical cycle of the arm. A computer model of the arms in relation to other axonemal structures has been constructed to test these interpretations. Attachment of the head of the arm subfiber B is directly demonstrable in splayed axonemes in AMP-PCP. About half of the doublets in an axoneme show such attachments, while half do not. This might imply that about half the doublets in an axoneme are active at any given instant and can be identified as such. This information may be useful in probing questions of how active arms differ biochemically from inactive arms and of how microtubule translocators in general become active.  相似文献   

3.
The sliding tubule model of ciliary motion requires that active sliding of microtubules occur by cyclic cross-bridging of the dynein arms. When isolated, demembranated Tetrahymena cilia are allowed to spontaneously disintegrate in the presence of ATP, the structural conformation of the dynein arms can be clearly resolved by negative contrast electron microscopy. The arms consist of three structural subunits that occur in two basic conformations with respect to the adjacent B subfiber. The inactive conformation occurs in the absence of ATP and is characterized by a uniform, 32 degrees base-directed polarity of the arms. Inactive arms are not attached to the B subfiber of adjacent doublets. The bridged conformation occurs strictly in the presence of ATP and is characterized by arms having the same polarity as inactive arms, but the terminal subunit of the arms has become attached to the B subfiber. In most instances the bridged conformation is accompanied by substantial tip-directed sliding displacement of the bridged doublets. Because the base-directed polarity of the bridged arms is opposite to the direction required for force generation in these cilia and because the bridges occur in the presence of ATP, it is suggested that the bridged conformation may represent the initial attachment phase of the dynein cross-bridge cycle. The force-generating phase of the cycle would then require a tip-directed deflection of the arm subunit attached to the B subfiber.  相似文献   

4.
Tetrahymena 30S dynein was extracted with 0.5 M KCl and tested for retention of several functional properties associated wtih its in situ force-generating capacity. The dynein fraction will rebind to extracted outer doublets in the presence of Mg2+ to restore dynein arms. The arms attach at one end to the A subfiber and form bridges at the other end to the B subfiber of an adjacent doublet. Recombined arms retain an ATPase activity that remains coupled to potential generation of interdoublet sliding forces. To examine important aspects of the dynein- tubulin interaction that we presume are directly related to the dynein force-generating cross-bridge cycle, a simple and quantitative spectrophotometric assay was devised for monitoring the associations between isolated 30S dynein and the B subfiber. Utilizing this assay, the binding of dynein to B subfibers was found to be dependent upon divalent cations, saturating at 3 mM Mg2+. Micromolar concentrations of MgATP2- cause the release of dynein from the B subfiber; however, not all of the dynein bound under these conditions is released by ATP. ATP- insensitive dynein binding results from dynein interactions with non-B- tubule sites on outer-doublet and central-pair microtubules and from ATP-insensitive binding to sites on the B subfiber. Vanadate over a wide concentration range (10(-6)-10(-3) M) has no effect on the Mg2+- induced binding of dynein or its release by MgATP2-, and was used to inhibit secondary doublet disintegration in the suspensions. In the presence of 10 microM vanadate, dynein is maximally dissociated by MgATP2- concentrations greater than or equal to 1 microM with half- maximal release at 0.2 microM. These binding properties of isolated dynein arms closely resemble the cross-bridging behavior of in situ dynein arms reported previously, suggesting that quantitative studies such as those presented here may yield reliable information concerning the mechanism of force generation in dynein-microtubule motile systems. The results also suggest that vanadate may interact with an enzyme- product complex that has a low affinity for tubulin.  相似文献   

5.
As seen in transverse section, doublet elements of the axial unit of spermatozoa of Haematolocchus medioplexus, a frog lung-fluke, possess walls made up of protofibrillar subunits 50–60 Å in diameter. The partition between A and B members of a doublet element often show extra protofibrils which may partially occlude the “lumen” of the A tubule. Each A tubule possesses outer and inner lateral arms which repeat at longitudinal intervals of about 215 Å and which appear to be structurally dissimilar; the outer arm is expanded at its free end and the inner arm often connects to the B tubule of the adjacent doublet element. Regularly-spaced radial links connect the central sheath of an inner core complex to the A tubules of the peripheral doublet elements. Tests for magnesium-activated ATPase activity provide evidence that the enzyme is associated with the surfaces of doublet elements and the surface of the central sheath. Finally, study of an axial unit which developed in an abnormal manner suggests that normal differentiation of an axial unit may depend on the elaboration of a core complex and radial links.  相似文献   

6.
Cation-induced attachment of ciliary dynein cross-bridges   总被引:4,自引:4,他引:0  
Isolated, demembranated Unio gill cilia that have been activated and fixed for thin-section electron microscopy in the presence of 2 mM MgSO4 have 87% of their outer dynein arms attached to an adjacent B subfiber. The distribution of attached arms is uniform with respect to doublet position in the cilium. When both 0.1 mM ATP and Mg++ are added to the activation and fixation solutions, the frequency of bridged arms is reduced to 48%. At the same time, the distribution of the attached arms appears to have been systematically modified with respect to doublet position and the active bend plane. Those doublet pairs positioned in the bend plane where interdoublet sliding is minimal retain a greater number of bridged arms than those doublet pairs positioned outside the bend plane where sliding is maximal. These observations imply a functional coupling of the Mg++-induced bridging of the dynein arms and the subsequent binding and hydrolysis of ATP that results in a force-generating cross-bridge cycle.  相似文献   

7.
The flagellar complex of the unusual motile spermatozoon of the fungus gnat, Rhynchosciara sp, does not conform to the usual "9 + 2" filament pattern but rather consists of over 350 pairs of filaments (doublet microtubules) distributed in a spiral array. Experiments were designed to disrupt and extract flagellar microtubular components from spermatozoa of the fungus gnat. Pepsin, chymotrypsin, potassium iodide, urea, and heat were used to extract specific portions of microtubule walls Such experiments provide information on the composition of the wall and the existence of wall sites selectively sensitive to various treatments Results obtained include: (a) doublet microtubules are comprised at least in part of protein, and all subunits are probably not identical; (b) a portion of the B subfiber is apparently more sensitive to disruption than other portions of the doublet microtubule; and (c) the ac cessory singlet microtubules may be chemically different from the doublet microtubules  相似文献   

8.
The outer dynein arms of Chlamydomonas flagella are attached to a precise site on the outer doublet microtubules and repeat at a regular interval of 24 nm. This binding is mediated by the outer dynein arm docking complex (ODA-DC), which is composed of three protein subunits. In this study, antibodies against the 83- and 62-kD subunits (DC83 and DC62) of the ODA-DC were used to analyze its state of association with outer arm components within the cytoplasm, and its localization in the axonemes of oda mutants. Immunoprecipitation indicates that DC83 and DC62 are preassembled within the cytoplasm, but that they are not associated with outer arm dynein. Both proteins are lost or greatly diminished in oda1 and oda3, mutants in the structural genes of DC62 and DC83, respectively, demonstrating that their association is necessary for their stable presence in the cytoplasm. Immunoelectron microscopy indicates that DC83 repeats at 24-nm intervals along the length of the doublet microtubules of oda6, which lacks outer arms; thus, outer arm periodicity may be determined by the ODA-DC. Flagellar regeneration and temporary dikaryon experiments indicate that the ODA-DC can be rapidly transported into the flagellum and assembled on the doublet microtubules independently of the outer arms and independently of flagellar growth. Unexpectedly, the intensity of ODA-DC labeling decreased toward the distal ends of axonemes of oda6 but not wild-type cells, suggesting that the outer arms reciprocally contribute to the assembly/stability of the ODA-DC.  相似文献   

9.
Using the quick-freeze deep-etch technique, we describe the structure of outer-arm dynein proteins from Chlamydomonas and Tetrahymena after adsorption to a mica surface, after high-salt dissociation, and after glutaraldehyde fixation, and compare these images to the configuration of outer arms bound to microtubules. After adsorption to mica, the extracted dyneins from both organisms look like three-headed “bouquets”, as reported for Tetrahymena by Johnson & Wall (1983b). High magnification images demonstrate that each head carries a slender “stalk” and a long “stem”, and that small subunits decorate the stems and create a “flowerpot” domain at the base of the bouquet. Exposure to high salt induces this trimer to dissociate into a two-headed species and a single-headed species; it also stimulates the decorative elements to dissociate from the stems. Dynein is thus constructed on the same general plan as myosin, with large globular heads, narrow stems and additional small subunits that associate with the stems. The splayed-out image of the bouquet appears to be a distortion arising during adsorption to mica since, after brief glutaraldehyde fixation, the three heads remain closely associated as vertices of a triangular unit. In situ, the three heads also adopt this trigonal configuration. Two of the three are visible from the exterior of the axoneme and constitute the bilobed rigor head we described previously (Goodenough & Heuser, 1982). The third head faces the interior of the axoneme where, we propose, it forms the “hook” of the outer arm as seen in thin section. We further propose that the decorative elements associated with the stem coalesce to form the two outer-arm “feet” seen in situ, and that at least one of the in vitro stalks is equivalent to the in situ stalk, which extends from the head to the B microtubule. Deep-etch images of stretched axonemes, partially extracted axonemes, and dynein-decorated brain microtubules indicate that each outer arm, as traditionally viewed, is a hybrid of two dynein molecules: its two feet derive from one molecule, whereas its trigonal head derives from the molecule located distally. The resultant overlapping configuration creates the diagonal “linkers” seen in situ, which correspond to the in vitro stems. Thus, a row of dynein arms is essentially a dynein polymer that extends from the tip to the base of a doublet microtubule, each head riding on its neighbor's feet like a row of circus elephants. Such dynein-dynein interactions may account for the co-operativity of dynein-microtubule binding, and may play an important role in generating ciliary motility.  相似文献   

10.
The sliding microtubule model of ciliary motility predicts that cumulative local displacement (Δl) of doublet microtubules relative to one another occurs only in bent regions of the axoneme. We have now tested this prediction by using the radial spokes which join the A subfiber of each doublet to the central sheath as markers of microtubule alignment to measure sliding displacements directly. Gill cilia from the mussel Elliptio complanatus have radial spokes lying in groups of three which repeat at 860 Å along the A subfiber. The spokes are aligned with the two rows of projections along each of the central microtubules that form the central sheath. The projections repeat at 143 Å and form a vernier with the radial spokes in the precise ratio of 6 projection repeats to 1 spoke group repeat. In straight regions of the axoneme, either proximal or distal to a bend, the relative position of spoke groups between any two doublets remains constant for the length of that region. However, in bent regions, the position of spoke groups changes systematically so that Δl (doublet 1 vs. 5) can be seen to accumulate at a maximum of 122 Å per successive 860-Å spoke repeat. Local contraction of microtubules is absent. In straight regions of the axoneme, the radial spokes lie in either of two basic configurations: (a) the parallel configuration where spokes 1–3 of each group are normal (90°) to subfiber A, and (b) the tilted spoke 3 configuration where spoke 3 forms an angle (θ) of 9–20°. Since considerable sliding of doublets relative to the central sheath (~650 Å) has usually occurred in these regions, the spokes must be considered, functionally, as detached from the sheath projections. In bent regions of the axoneme, two additional spoke configurations occur where all three spokes of each group are tilted to a maximum of ± 33° from normal. Since the spoke angles do not lie on radii through the center of bend curvature, and Δl accumulates in the bend, the spokes must be considered as attached to the sheath when bending occurs. The observed radial spoke configurations strongly imply that there is a precise cycle of spoke detachment-reattachment to the central sheath which we conclude forms the main part of the mechanism converting active interdoublet sliding into local bending.  相似文献   

11.
The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD''s affinity for the doublet microtubule.  相似文献   

12.
Binding of 21 S dynein ATPase isolated from Tetrahymena cilia to B subfibers of microtubule doublets was used as a model system to study dynein-tubulin interactions and their relationship to the microtubule-based sliding filament mechanism. Binding of 21 S dynein to both A and B microtubule subfibers is supported by monovalent as well as divalent ions. Monovalent cation chlorides support dynein binding to B subfibers with the specificity Li greater than Na congruent to K congruent to Rb congruent to Cs congruent to choline. The corresponding sodium or potassium halides follow the order F greater than Cl greater than Br greater than I. However, an optimal binding concentration of 40 mM KCl supports only 55% of the protein binding which takes place in 3 mM MgSO4 and does not stabilize dynein cross-bridges when whole axonemes are fixed for electron microscopy. Divalent metal ion chlorides (MgCl2, CaCl2, SrCl2, and BaCl2) have nearly equivalent effects at a concentration of 6 mM; all support about 140% of the binding observed in 6 mM MgSO4. The binding data suggest negative cooperativity or the presence of more than one class of dynein binding sites on the microtubule lattice. Low concentrations of MgATP2- induce dissociation of dynein bound to B subfibers in either 6 mM MgSO4 or 40 mM KCl. ADP, Pi, PPi, and AMP-PCH2P are unable to induce dynein dissociation, while AMP-PNHP and ATP4- both cause dynein release from B subfiber sites. The half-maximal sensitivities of the tubulin-dynein complex to MgATP2-, ATP4-, and adenylyl-imidodiphosphate (AMP.PNP) are 1.3 X 10(-8) M, 3.6 X 10(-5) M, and 4.7 X 10(-4) M respectively. Incubation of doublets or 21 S dynein in N-ethylmaleimide (NEM), which can inhibit active sliding, has no effect on either association of dynein with the B subfiber or on dissociation of the resulting dynein-B subfiber complex by MgATP2-.  相似文献   

13.
Substructure of the outer dynein arm   总被引:17,自引:11,他引:6  
The substructure of the outer dynein arm has been analyzed in quick-frozen deep-etch replicas of Tetrahymena and Chlamydomonas axonemes. Each arm is found to be composed of five morphologically discrete components: an elliptical head; two spherical feet; a slender stalk; and an interdynein linker. The feet make contact with the A microtubule of each doublet; the stalk contacts the B microtubule; the head lies between the feet and stalk; and the linker associates each arm with its neighbor. The spatial relationships between these five components are found to be distinctly different in rigor (ATP-depleted) versus relaxed (ATP- or vanadate plus ATP-treated) axonemes, and the stalk appears to alter its affinity for the B microtubule in the relaxed state. Images of living cilia attached to Tetrahymena cells show that the relaxed configuration is adopted in vivo. We relate our observations to morphological and experimental studies reported by others and propose several models that suggest how this newly described dynein morphology may relate to dynein function.  相似文献   

14.
Tails of Tetrahymena   总被引:6,自引:0,他引:6  
SYNOPSIS. The source of force generation of beating cilia and flagella is an interaction between the doublet microtubules mediated by the dynein-1 arms which cause the doublets to slide relative to one another. Previously, we demonstrated direct sliding of Tetrahymena ciliary axonemes by dark field light microscopy. In this paper, the results of such an experiment have been captured on a polylysine-coated grid surface for whole-mount electron microscopy. Images in which sliding between doublets has taken place can be identified. We conclude that doublets slide relative to one another with a constant polarity. To produce the observed displacement, the direction of the dynein-1 arm force generation must be from base to tip, so that the doublet (n), to which the arms are attached, pushes the next doublet (n+ 1) toward the tip. In addition to the functional polarity, the dynein-1 arms are found to have a structural polarity: they tilt toward the base when viewed along the edges of the A-subfiber. A scheme is presented which reconciles the finding of a single polarity of active sliding with the geometry of microtubule tip displacement of bent cilia.  相似文献   

15.
L Wilson  K M Creswell  D Chin 《Biochemistry》1975,14(26):5586-5592
Tritium-labeled viblastine, specific activity 107 Ci/mol, was prepared by acetylation of desacetylvinblastine with [3H]acetic anhydride, and has been employed in a study of vinblastine binding to tubulin. There are two high affinity vinblastine-binding sites per mole of embryonic chick brain tubulin (KA = 3-5 X 10(5) l./mol). Binding to these sites was rapid, and relatively independent of temperature between 37 and 0degreeC. Vincristin sulfate and desacetylvinblastine sulfate, two other active vinca alkaloid derivatives, competitively inhibited the binding of vinblastine. The inhibition constant for vincristine was 1.7 X 10(-5) M; and for desacetylvinblastine, 2 X 10(-5) M. The vinblastine binding activity of tubulin decayed upon aging, but this property was not studied in detail. Vinblastine did not depolymerize stable sea urchin sperm tail outer doublet microtubules, nor did it bind to these microtubules. However, tubulin solubilized from the B subfiber of the outer doublet microtubules possessed the two high affinity binding sites (KA = 1-3 X 105 l./mol). These data suggest that vinblastine destroys microtubules in cells primarily by inhibition of microtubule polymerization, and does not directly destroy preformed microtubules.  相似文献   

16.
Dynein light chain 1 (LC1/DNAL1) is one of the most highly conserved components of ciliary axonemal outer arm dyneins, and it associates with both a heavy chain motor unit and tubulin located within the A-tubule of the axonemal outer doublet microtubules. In a variety of model systems, lack of LC1 or expression of mutant forms leads to profound defects in ciliary motility, including the failure of the hydrodynamic coupling needed for ciliary metachronal synchrony, random stalling during the power/recovery stroke transition, an aberrant response to imposed viscous load, and in some cases partial failure of motor assembly. These phenotypes have led to the proposal that LC1 acts as part of a mechanical switch to control motor function in response to alterations in axonemal curvature. Here we have used NMR chemical shift mapping to define the regions perturbed by a series of mutations in the C-terminal domain that yield a range of phenotypic effects on motility. In addition, we have identified the subdomain of LC1 involved in binding microtubules and characterized the consequences of an Asn → Ser alteration within the terminal leucine-rich repeat that in humans causes primary ciliary dyskinesia. Together, these data define a series of functional subdomains within LC1 and allow us to propose a structural model for the organization of the dynein heavy chain-LC1-microtubule ternary complex that is required for the coordinated activity of dynein motors in cilia.  相似文献   

17.
Electron micrographs of both negatively contrasted and thin-sectioned lamellibranch gill cilia reveal several new features of ciliary fine structure, particularly in regard to those structures forming intermittent or permanent crossbridges between microtubules. Negative-contrasting reveals the presence of a 14-5-nm repeating bridge between the central microtubules. Frontal views of negatively contrasted dynein arm rows along subfibre A show that the arms (23-nm repeat) in the outer row are displaced in a left-handed manner by 3-4nm with respect to those in the inner row. This displacement is probably a direct reflexion of the helical tubulin subunit lattice of the subfibre. Interdoublet (nexin) links are seen connecting adjacent A and B subfibres at intervals of 86 nm along the doublet. Negative-contrasting shows thin, highly elastic connexions holding the doublets together. When seen in longitudinal thin sections, the interdoublet links are often tilted to considerable angles, indicating they may have an elastic response to interdoublet sliding.  相似文献   

18.
The core structure of motile cilia and flagella, the axoneme, is built from a stable population of doublet microtubules. This unique stability is brought about, at least in part, by a network of microtubule inner proteins (MIPs) that are bound to the luminal side of the microtubule walls. Rib72A and Rib72B were identified as MIPs in the motile cilia of the protist Tetrahymena thermophila. Loss of these proteins leads to ciliary defects and loss of additional MIPs. We performed mass spectrometry coupled with proteomic analysis and bioinformatics to identify the MIPs lost in RIB72A/B knockout Tetrahymena axonemes. We identified a number of candidate MIPs and pursued one, Fap115, for functional characterization. We find that loss of Fap115 results in disrupted cell swimming and aberrant ciliary beating. Cryo-electron tomography reveals that Fap115 localizes to MIP6a in the A-tubule of the doublet microtubules. Overall, our results highlight the complex relationship between MIPs, ciliary structure, and ciliary function.  相似文献   

19.
The inner row of dynein arms contains three dynein subforms. Each is distinct in composition and location in flagellar axonemes. To begin investigating the specificity of inner dynein arm assembly, we assessed the capability of isolated inner arm dynein subforms to rebind to their appropriate positions on axonemal doublet microtubules by recombining them with either mutant or extracted axonemes missing some or all dyneins. Densitometry of Coomassie blue-stained polyacrylamide gels revealed that for each inner dynein arm subform, binding to axonemes was saturable and stoichiometric. Using structural markers of position and polarity, electron microscopy confirmed that subforms bound to the correct inner arm position. Inner arms did not bind to outer arm or inappropriate inner arm positions despite the availability of sites. These and previous observations implicate specialized tubulin isoforms or nontubulin proteins in designation of specific inner dynein arm binding sites. Further, microtubule sliding velocities were restored to dynein-depleted axonemes upon rebinding of the missing inner arm subtypes as evaluated by an ATP-induced microtubule sliding disintegration assay. Therefore, not only were the inner arm dynein subforms able to identify and bind to the correct location on doublet microtubules but they bound in a functionally active conformation.  相似文献   

20.
It is well established that the basis for flagellar and ciliary movements is ATP-dependent sliding between adjacent doublet microtubules. However, the mechanism for converting microtubule sliding into flagellar and ciliary movements has long remained unresolved. The author has developed new sperm models that use bull spermatozoa divested of their plasma membrane and midpiece mitochondrial sheath by Triton X-100 and dithiothreitol. These models enable the observation of both the oscillatory sliding movement of activated doublet microtubules and flagellar bend formation in the presence of ATP. A long fiber of doublet microtubules extruded by synchronous sliding of the sperm flagella and a short fiber of doublet microtubules extruded by metachronal sliding exhibited spontaneous oscillatory movements and constructed a one beat cycle of flagellar bending by alternately actuating. The small sliding displacement generated by metachronal sliding formed helical bends, whereas the large displacement by synchronous sliding formed planar bends. Therefore, the resultant waveform is a half-funnel shape, which is similar to ciliary movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号