首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effectiveness of caloric restriction (CR) as a treatment for obesity varies considerably between individuals. Reasons for this interindividual variation in weight loss in response to CR may lie in pre-existing individual differences and/or individual differences in compensatory responses. Here we studied the responses of 127 MF1 mice to 30% CR over four weeks, and investigated whether pre-existing differences or compensatory changes in body temperature, resting metabolic rate (RMR) and behavior explained the variation observed in body mass (BM) and fat mass (FM) changes. Mice showed considerable variation in BM loss (36-1%), and in the type of tissue lost (FM or fat free mass, FFM). About 50% of the variation in BM and FM loss could be predicted by pre-existing differences in food intake, RMR, and general activity, where BM loss was greater when food intake was lower and activity and RMR were higher. Compensatory changes in activity and body temperature together explained ~50% of the variation in BM and FM loss in both sexes. In models incorporating baseline variables and compensatory changes, food intake, and activity were the strongest predictors of weight loss in both sexes; i.e., lower baseline food intake and increased changes in activity resulted in greater BM and FM loss. Interestingly, increased baseline activity was a significant predictor of weight loss independent of compensatory changes in activity. Identifying factors involved in individual variability in weight loss may give insights into the mechanisms that underlie this variability, and is important to develop individually tailored weight-management strategies.  相似文献   

2.
In nature, animals must successfully respond to many simultaneous demands from their environment in order to survive and reproduce. We examined physiological and morphological responses of mice given three demands: intestinal parasite infection with Heligmosomoides polygyrus followed by caloric restriction (70% of ad libitum food intake versus ad libitum for 10 days) and/or cold exposure (5°C vs. 23°C for 10 days). We found significant interactions between these demands as well as independent effects. Small intestine structure and function changed with demands in both independent and interactive ways. Body mass decreased during caloric restriction and this decrease was greater for cold-exposed than warm-exposed mice. In ad libitum fed mice, body mass did not change with either cold exposure or parasite infection but body composition (fat versus lean mass of whole body or organs) changed with both demands. Generally, organ masses decreased with caloric restriction (even after accounting for body mass effects) and increased with cold exposure and parasite infection whereas fat mass decreased with both caloric restriction and parasite infection. Mass adjusted resting metabolic rate (RMR) increased with cold exposure, decreased with caloric restriction but, unlike previous studies with laboratory mice, did not change with parasite infection. Our results demonstrate that the ability of mice to respond to a demand is influenced by other concurrent demands and that mice show phenotypic plasticity of morphological and physiological features ranging from the tissue level to the level of the whole organism when given three simultaneous demands.  相似文献   

3.
分别测定了随机限食和重喂食驯化的雌性KM小鼠的体重、摄食量、基础代谢率(BMR)、行为活动、身体脂肪和性腺重量.随机限食使摄食量增加、BMR和活动行为降低,生长发育迟缓,但对身体脂肪无显著影响.重喂食后上述指标均恢复到对照组水平,表现出显著的可塑性变化.结果表明,动物通过能量摄入和支出的权衡策略适应难以预测的食物资源变化,能量代谢和活动行为的可塑性调节在能量代谢的权衡策略中发挥重要作用.  相似文献   

4.
Body, adrenal, brain, heart, liver, kidney, spleen and testis masses were determined for agouti and non-agouti deer mice (Peromyscus maniculatus gracilis) of both sexes. Body mass was highest for non-agouti females and lowest for agouti females; and sex differences in body mass were significant for agouti, but not non-agouti, deer mice. Adrenal, brain and liver masses were similar between color morphs; heart mass was greater in agouti males; and kidney, spleen and testis masses were all significantly greater for non-agouti deer mice. Splenomegaly in non-agouti deer mice was prominent, as spleens of non-agouti deer mice were 50% larger than those of agouti animals. Sex differences varied across organs and color morphs. For both color morphs, males had heavier adrenals and brains, whereas females had heavier livers and spleens. Kidney and heart mass was greater for female non-agouti deer mice, but for agouti animals, heart mass was greater in males and kidney mass differed little between the sexes. For both color morphs, testes and spleen mass was altered by photoperiod in 72 deer mice housed under short- or long-day conditions and the effect was stronger in non-agouti animals. This is the first report of splenomegaly and sex-specific body mass differences associated with the non-agouti allele.  相似文献   

5.
Diurnal and nocturnal resting metabolic rates of winter- and summer-acclimatized adult male wood mice Apodemus sylvaticus from two adjacent populations, 15 km apart, were measured. One population lived in deciduous woodland, and experienced a narrower daily range of temperatures than the second population, which inhabited maritime sand-dunes. Ambient temperature and body mass had significant effects on the resting metabolism of mice, excluding winter-acclimatized sand-dune animals where only temperature explained significant amounts of the observed variation. Only in this latter group could a thermoneutral zone be determined, with a lower critical temperature of ca. 25 °C and resting metabolism of 0.155 W. Nocturnal resting metabolic rates were significantly greater than diurnal levels. Winter acclimatization was associated with reductions in thermal conductance and resting metabolism, thus minimizing energy expenditure at rest. Site differences in thermoregulatory strategies were only found in winter, thermal conductances remained similar but mice from the sand-dunes had significantly lower metabolic rates than those from the woodland. Winter acclimatization in wood mice was influenced by factors in addition to photoperiod. Intra-specific and individual variations in resting metabolism, as shown in this study, potentially have a pronounced effect on the daily energy expenditure of a free-living animal. Accepted: 6 September 1996  相似文献   

6.
The Afrotropical pouched mouse Saccostomus campestris displays sexual disparity in the use of daily torpor; males reluctantly enter torpor. We tested the hypothesis that males may compensate for a limited heterothermic capacity with lower basal and resting metabolic rates relative to females. We also investigated the association between gonadal activity (testosterone) and the propensity for daily torpor. Body temperature and oxygen consumption were measured at various ambient temperatures and were compared between sexes under ad libitum and restricted-diet treatments. Whereas no significant sex differences were observed in body temperature and oxygen consumption under ad libitum treatment, there were pronounced differences in heterothermic responses under food restriction. Females employed torpor more frequently and also had lower minimum torpor body temperatures (ca. 25 degrees C) than males (ca. 29 degrees C). Testosterone inhibited torpor in males, whereas the majority of saline-treated animals employed torpor under both ad libitum and restricted-diet treatments. This study demonstrated that the limited capacity of male S. campestris to enter torpor is a consequence of reproductive activity and that opportunistic breeding and the absence of seasonal testes regression compromises the capacity to conserve energy through daily torpor.  相似文献   

7.
We conducted an experiment to examine the effects of sex and food intake on growth, mass gain, and attainment of sexual maturity in Western Diamond-backed Rattlesnakes (Crotalus atrox). We also measured testosterone levels to determine whether testosterone might be involved in the male-biased sexual size dimorphism observed in this species. We collected neonate rattlesnakes and raised them in the laboratory for 2 years on either a high-intake diet (fed one mouse per week) or a low-intake diet (fed one mouse every 3 weeks). High-intake snakes grew and gained mass more rapidly than low-intake snakes, but males did not grow or gain mass more rapidly than females in either treatment group. High-intake snakes attained reproductive maturity earlier than low-intake snakes, indicating that size, not age, is the critical determinant of reproductive maturity. Males had higher levels of testosterone than females but did not grow more quickly, suggesting that testosterone may not affect growth in this species and may therefore not be the proximate determinant of sexual size dimorphism.  相似文献   

8.
It is often assumed that social models influence people’s eating behavior by providing a norm of appropriate food intake, but this hypothesis has not been directly tested. In three experiments, female participants were exposed to a low-intake model, a high-intake model, or no model (control condition). Experiments 1 and 2 used a remote-confederate manipulation and were conducted in the context of a cookie taste test. Experiment 3 used a live confederate and was conducted in the context of a task during which participants were given incidental access to food. Participants also rated the extent to which their food intake was influenced by a variety of factors (e.g., hunger, taste, how much others ate). In all three experiments, participants in the low-intake conditions ate less than did participants in the high-intake conditions, and also reported a lower perceived norm of appropriate intake. Furthermore, perceived norms of appropriate intake mediated the effects of the social model on participants’ food intake. Despite the observed effects of the social models, participants were much more likely to indicate that their food intake was influenced by taste and hunger than by the behavior of the social models. Thus, social models appear to influence food intake by providing a norm of appropriate eating behavior, but people may be unaware of the influence of a social model on their behavior.  相似文献   

9.
The metabolic and body weight changes in two non-pregnant beef cows were studied during prolonged exposure to warm (20 +/- 3 degrees C, relative humidity 50-70%) and cold (-10 +/- 2 or -25 +/- 4 degrees C) temperatures. Other factors including daily food intake were held constant throughout each 8-week exposure. During cold exposures, metabolic rate, blood hematocrit, and plasma concentrations of glucose and free fatty acid were elevated and respiratory frequencies and skin temperatures decreased. Resting metabolic rates measured at 20 degrees C, i.e., without the direct influence of cold, were 83.4-95.3 litres 02 per hour when the cows were cold acclimated, at either -10 or -25 degrees C, and 30-40% greater than when the cows were warm acclimated. The resting metabolic response and the concomitant reduction in intensity of shivering is indicative of metabolic acclimation to cold in these animals of greater than 500 kg body weight. As well as the expected changes in body weight with changes in energy metabolism there were losses in weight (13-24 kg) during the first 3 days of each cold exposure. Weight gains occurred when the cold stress was abruptly removed. These short term weight changes were associated with changes in water intake and apparent shifts in body fluid content.  相似文献   

10.
Heritable variation in metabolic traits is likely to affect fitness. In this study, white-footed mice from wild-derived photoresponsive [R, infertile in short day length (SD)] and non-photoresponsive (NR, fertile in SD) selection lines were maintained under short-day (SD 8Light:16Dark), sub-thermoneutral conditions (22 or 12 °C). Mice had significantly higher levels of food intake and resting metabolic rates (RMR) at low temperature. RMR differed significantly between lines (greater in NR mice). In contrast to previous work under thermoneutral conditions, there was no significant difference in overall activity or average daily metabolic rates (ADMR) of mice from the two lines. Reduced activity may reflect behavioral changes under cooler conditions (e.g., nest building) reducing the overall energetic cost of fertility (for NR mice). There was no significant difference in maximal rate of oxygen consumption ( $\dot V \text{O}_{\text {2max}} $ ) between lines. R mice had significantly greater brown adipose tissue and white abdominal fat mass due to both line and temperature. Reaction norms for intake, resting metabolism (RMR/BMR) and level of activity from current (12 and 22 °C) and previously published data (28 °C) demonstrate independent effects of genetics (line) and environment (temperature) for resting metabolism, but a clear interaction between these for activity. The results suggest that fertility under winter conditions imposes metabolic costs that are related to the level of reproductive development. Under the coldest conditions tested, however, mice that remained fertile in SD reduced activity, ADMR and food requirements, decreasing the differential between selection lines. Heritable variation in reaction norms suggests a genetic by environment effect that could be subject to selection.  相似文献   

11.
Objective: Mice divergently selected for high or low food intake (FI) at constant body mass differ in their resting metabolic rates (RMRs). Low‐intake individuals (ML) have significantly lower RMR (by 30%) compared with those from the high‐intake line (MH). We hypothesized that MLs might, therefore, be more likely to increase their body and fat mass when exposed to a high‐fat diet (HFD). Research Methods and Procedures: We exposed both lines to a diet with 44.9% calories from fat for 3 weeks while measuring FI, fecal production, and body mass and then returned the mice to standard chow. Results: When exposed to the HFD, both lines significantly decreased their FI (MH, 40% to 45%; ML, 31% to 35%). This decrease occurred simultaneously with a significant increase in apparent energy absorption efficiency (AEAE). When returned to chow, FI and AEAE returned to the levels observed prior to HFD exposure. Because of the adjustments in FI, the absorbed energy was maintained in the MLs and, thus, body mass remained constant. The MH individuals overcompensated for the elevated energy content and AEAE on the HFD and, therefore, absorbed lower energy than when feeding on chow. These mice also did not significantly change their body mass when on the HFD and must have made adjustments in their energy expenditures. Both lines and both sexes increased in fat content on the HFD, but these effects were not different between lines or sexes. Discussion: We found no support for the hypothesis that mice with low RMRs were more susceptible to weight gain when fed the HFD.  相似文献   

12.
Overeating and increases in body and fat mass are the most common responses to day-to-day stress in humans, whereas stressed laboratory rats and mice respond oppositely. Group housing of Syrian hamsters increases body mass, adiposity, and food intake, perhaps due to social confrontation-induced stress. In experiment 1 we asked, Does repeated social defeat increase food intake, body mass, and white adipose tissue (WAT) mass in Syrian hamsters? Male hamsters subjected to the resident-intruder social interaction model and defeated intermittently 15 times over 34 days for 7-min sessions significantly increased their food intake, body mass, and most WAT masses compared with nondefeated controls. Defeat significantly increased terminal adrenal norepinephrine, but not epinephrine, content. In experiment 2 we asked, Are 15 intermittent resident-intruder interactions necessary to increase body mass and food intake? Body mass and food intake of subordinate hamsters defeated only once were similar to those of nondefeated controls, but four or eight defeats similarly and significantly increased these responses. In experiment 3 we asked, Do intermittent defeats increase adiposity and food intake more than consecutive defeats? Four intermittent or consecutive defeats similarly and significantly increased food intake and body mass compared with nondefeated controls, but only intermittent defeats significantly increased all WAT masses. Consecutive defeats significantly increased mesenteric and inguinal WAT masses. Plasma leptin, but not insulin, concentrations were similarly and significantly increased compared with nondefeated controls. Collectively, social defeat, a natural stressor, significantly increased food intake, body mass, and adiposity in Syrian hamsters and may prove useful in determining mechanisms underlying human stress-induced obesity.  相似文献   

13.
This study compared torpor as a response to food deprivation and low ambient temperature for the introduced house mouse (Mus musculus) and the Australian endemic sandy inland mouse (Pseudomys hermannsburgensis). The house mouse (mass 13.0+/-0.48 g) had a normothermic body temperature of 34.0+/-0.20 degrees C at ambient temperatures from 5 degrees C to 30 degrees C and a basal metabolic rate at 30 degrees C of 2.29+/-0.07 mL O2 g(-1) h(-1). It used torpor with spontaneous arousal at low ambient temperatures; body temperature during torpor was 20.5+/-3.30 degrees C at 15 degrees C. The sandy inland mouse (mass 11.7+/-0.16 g) had a normothermic T(b) of 33.0+/-0.38 degrees C between T(a) of 5 degrees C to 30 degrees C, and a BMR of 1.45+/-0.26 mL O2 g(-1) h(-1) at 30 degrees C. They became hypothermic at low T(a) (T(b) about 17.3 degrees C at T(a)=15 degrees C), but did not spontaneously arouse. They did, however, survive and become normothermic if returned to room temperature (23 degrees C). We conclude that this is hypothermia, not torpor. Consequently, house mice (Subfamily Murinae) appear to use torpor as an energy conservation strategy whereas sandy inland mice (Subfamily Conilurinae) do not, but can survive hypothermia. This may reflect a general phylogenetic pattern of metabolic reduction in rodents. On the other hand, this may be related to differences in the social structure of house mice (solitary) and sandy inland mice (communal).  相似文献   

14.
对采自青岛和芜湖两地的萼花臂尾轮虫在3种温度(20 ℃、25 ℃和30 ℃)和2种藻类食物浓度(1.0×106和5.0×106 cells·ml-1)下所产休眠卵的长径、短径和体积等形态特征进行了显微测量、计算和分析.结果表明,2种食物浓度下,培养温度以及培养温度和品系间的交互作用均对轮虫休眠卵的长径、短径和体积具有显著影响.当食物浓度分别为1.0×106和5.0×106 cells·ml-1时,轮虫在20 ℃下所产休眠卵的长径、短径和体积均最大;在25 ℃和30 ℃下所产休眠卵的短径和体积均最小.品系对轮虫休眠卵长径、短径和体积的影响也取决于食物浓度.当食物浓度为1.0×106 cells·ml-1时,芜湖品系轮虫的休眠卵长径、短径和体积(156.00 μm、99.95 μm和12 269.11 μm3)均显著大于青岛品系轮虫的休眠卵(145.13 μm、91.97 μm和10 498.19 μm3);而当食物浓度为5.0×106 cells·ml-1时,芜湖品系轮虫的休眠卵长径、短径和体积(155.68 μm、100.85 μm和12 348.59 μm3)均与青岛品系轮虫的休眠卵(156.63 μm、98.04 μm和12 054.20 μm3)之间无显著差异.两品系中,仅芜湖品系轮虫休眠卵的长径、短径和体积分别与温度呈曲线相关.同一温度下,两品系轮虫的休眠卵体积均随着食物浓度升高而增大;但30 ℃下芜湖品系轮虫所产休眠卵体积却随着食物浓度的升高而减小.  相似文献   

15.
The influence of the steroid hormones testosterone and corticosterone on energy metabolism and activity of birds is largely enigmatic. We measured resting metabolic rate during night and day in 12 long-term castrated and 12 intact male white-crowned sparrows (Zonotrichia leucophrys gambelii) under short-day (8:16 SD), long-day (20:4 LD), LD+testosterone implant and LD−testosterone implant conditions. Each male was sequentially measured under all four conditions. Photostimulation increased testosterone, resting metabolic rate, food intake, hopping activity and body mass in castrates and intact males. Surprisingly, testosterone levels and metabolic rates did not differ between intact and castrated males. Testosterone implantation increased activity and food intake, but decreased body mass and resting metabolic rate in both groups. Removing testosterone implants reversed the effects on resting metabolic rate, activity and food intake. Corticosterone levels, measured immediately at the end of metabolism measurements, showed birds were not stressed. Corticosterone had no apparent relationship with resting metabolic rate and there was no interaction between corticosterone and testosterone. Overall, positive changes in testosterone levels resulted in a decrease of resting metabolic rate. We speculate that testosterone increases activity, and birds compensate for increased activity metabolism by reducing resting metabolic rate. Accepted: 18 July 1999  相似文献   

16.
This study investigated the effects of mild calorie restriction (CR) (5%) on body weight, body composition, energy expenditure, feeding behavior, and locomotor activity in female C57BL/6J mice. Mice were subjected to a 5% reduction of food intake relative to baseline intake of ad libitum (AL) mice for 3 or 4 weeks. In experiment 1, body weight was monitored weekly and body composition (fat and lean mass) was determined at weeks 0, 2, and 4 by dual energy X‐ray absorptiometry. In experiment 2, body weight was measured every 3 days and body composition was determined by quantitative magnetic resonance weekly, and energy expenditure, feeding behavior, and locomotor activity were determined over 3 weeks in a metabolic chamber. At the end of both experiments, CR mice had greater fat mass (P < 0.01) and less lean mass (P < 0.01) compared with AL mice. Total energy expenditure (P < 0.05) and resting energy expenditure (P < 0.05) were significantly decreased in CR mice compared with AL mice over 3 weeks. CR mice ate significantly more food than AL mice immediately following daily food provisioning at 1600 hours (P < 0.01). These findings showed that mild CR caused increased fat mass, decreased lean mass and energy expenditure, and altered feeding behavior in female C57BL/6J mice. Locomotor activity or brown adipose tissue (BAT) thermogenic capacity did not appear to contribute to the decrease in energy expenditure. The increase in fat mass and decrease in lean mass may be a stress response to the uncertainty of food availability.  相似文献   

17.
The arctic climate places high demands on the energy metabolism of its inhabitants. We measured resting (RMR) and basal metabolic rates (BMR), body temperatures, and dry and wet thermal conductances in summer morphs of the lemmings Dicrostonyx groenlandicus and Lemmus trimucronatus in arctic Canada, and the BMR of D. torquatus, D. groenlandicus, L. sibiricus, L. bungei and L. trimucronatus in Siberia. In contrast to previous studies the data were collected on animals that had spent only a limited time in captivity. All parameters were analysed in relation to the variations in body mass (20-90 g). Body temperature and BMR were lower in D. groenlandicus than L. trimucronatus, which coincides with greater longevity in the former species. Wet and dry thermal conductances of both species were similar and comparable with those of other Myomorpha (mouse-type rodents), indicating no evidence for a previously claimed lower thermal conductance in lemmings. BMR in lemmings appeared to be higher than in other Arvicolidae (voles, lemmings and muskrats), which could relate to their typically high-latitude distribution. However, the more southerly living Lemmus species had higher BMR than the more northerly living Dicrostonyx species, which may be explained by the former having a relatively low-quality diet.  相似文献   

18.
Summary Genetic and environmental components of adaptation to cold inMus musculus were assessed in a study of the effects of selective breeding for behavioral temperature regulation (indexed by high and low levels of nest-building), rearing mice from birth in the cold, and cold acclimation of adult animals, on thermoregulatory traits. Mice from the eleventh selected generation of a high-nesting line maintained higher resting metabolic rates and body temperatures, while at the same time consuming less food when compared with mice from the low-nesting line (Table 1). High-nesting mice were also more discriminating in their temperature preference when placed on a thermal gradient. Thus, common genetic loci must influence a variety of energy conservation measures important for survival in the cold, including insulative nest-building, metabolic efficiency, and optimum microhabitat selection.Rearing mice at 5°C from birth until 70 days of age resulted in permanent increases in nonshivering thermogenesis, weight of interscapular brown adipose tissue, and core body temperature when compared to mice raised at 22°C (Table 1). These greater heat production capacities were accompanied by consumption of more food. Cold acclimation of adults at 5°C for 3 weeks similarly increased measures of thermogenic capacity (nonshivering thermogenesis and interscapular brown adipose tissue) as well as food consumption, when compared to the effects of warm acclimation, but differed from the effects of cold-rearing in that while resting metabolic rates were elevated, no significant differences in body temperature were found (Table 1).Sex differences were also noted for most of the thermoregulatory measures, with the lighter females scoring higher on thermal preference, resting metabolic rate, nonshivering thermogenesis, brown fat, and food consumption.In general, these results suggest that a more precise partitioning of the genetic and environmental factors which influence thermoregulatory traits in mammals could eventually result in a better understanding of the differences which exist between acclimated and acclimatized animals.  相似文献   

19.
When small animals are faced with an unpredictable food supply,they can adapt by altering different components of their energy budget such as energy intake,metabolic rate,rate of non-shivering thermogenesis(NST)or behaviour.The present study examined the effect of stochastic food deprivation(FD)on body mass,food intake,resting metabolic rate(RMR),NST and behaviour in male Swiss mice.During a period of 4 weeks' FD,animals were fed ad libitum for a randomly assigned 4 days each week,but were deprived of food ...  相似文献   

20.
1. An investigation of the influence of previous thermal and nutritional experience on body temperatures and metabolic rate has been carried out with growing piglets. Littermates were kept, from shortly after birth, at either 10 or 35 degrees C and fed either a high (H) or a low (L) energy intake. At 8 weeks of age the animals were exposed to a series of environmental temperatures of 10, 20, 27 and 35 degrees C for 1.5 hr and their rates of oxygen consumption were determined over the last 45 min. At the end of the session body temperatures were measured. 2. Rectal temperatures measured 24 hr after the start of the last meal were higher at each test temperature in piglets which had been living at 35 degrees C than in those at 10 degrees C. Also, rectal temperatures were higher in those on the H intake for animals which had been living in either the hot or the cold environment. 3. Skin temperature on the back was similar in all groups at any given test temperature although there was a tendency for those on an H intake to have the higher temperatures. Skin temperatures of the legs and ears were higher in the 10H and 10L groups than in the 35H or 35L groups at all the test environmental temperatures; energy intake had little effect. 4. Metabolic rate was greater for the animals on the H than the L intake, for those which had been living at either 10 or 35 degrees C at all the test environmental temperatures. The analysis did not reveal any significant difference related to the overall effect of living temperature, which was independent of energy intake. 5. At thermal neutrality (27 degrees C) there was a significant interaction, between energy intake and normal living temperature, on metabolic rate. Living temperature was found to modify the effect of intake: the difference between the two intakes was greater in those from the cold environment than from the hot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号