首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Extracts of Escherichia coli grown in defined medium contain somatostatin-related material (1-10 pg/g wet weight of cells). Preconditioned medium had no immunoactive somatostatin whereas, conditioned medium had 110-150 pg/l. Following purification of the extracted material on Sep-pak C18, Bio-Gel P-6 and HPLC, multiple molecular weight forms of somatostatin- (SRIF-) related material were identified. The material in one peak reacted in both the N-terminal and C-terminal SRIF immunoassay and coeluted on HPLC with SRIF-28, whereas that in a second peak eluted near SRIF-14 and was reactive only in the C-terminal SRIF assay. The two peaks are thus similar to SRIF-28 and SRIF-14 of vertebrates. These findings add support to the suggestion that vertebrate-type peptide hormones and neuropeptides have early evolutionary origins.  相似文献   

5.
6.
7.
8.
9.
10.
J Turnbull  J F Morrison 《Biochemistry》1990,29(44):10255-10261
The inhibition of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase by substrate analogues, by the end product, tyrosine, and by the protein modifying agent iodoacetate has been investigated. The purpose of the investigations was to determine if the two reactions catalyzed by the enzyme occur at a single active site or at two separate active sites. Evidence in support of the conclusion that the mutase and dehydrogenase reactions are catalyzed at two similar but distinct active sites comes from the following results: (1) A substrate analogue (endo-oxabicyclic diacid) that inhibits competitively the mutase reaction has no effect on the dehydrogenase reaction. (2) Malonic acid and several of its derivatives act as inhibitory analogues of chorismate in the mutase reaction and of prephenate in the dehydrogenase reaction. However, different dissociation constants for their interaction with the free enzyme are obtained from studies on the mutase and dehydrogenase reactions. (3) The kinetics of the inhibition by tyrosine of the mutase reaction in the presence of NAD differ from those of the dehydrogenase reaction. The results confirm that carboxymethylation with iodoacetate of one cysteine residue per subunit eliminates both mutase and dehydrogenase activities and show that the inactivation of the enzyme activities is due to iodoacetate functioning as an active site directed inhibitor.  相似文献   

11.
12.
13.
Evidence for multiple K+ export systems in Escherichia coli.   总被引:8,自引:10,他引:8       下载免费PDF全文
The role of the K+ transport systems encoded by the kefB (formerly trkB) and kefC (formerly trkC) genes of Escherichia coli in K+ efflux has been investigated. The rate of efflux produced by N-ethylmaleimide (NEM), increased turgor pressure, alkalinization of the cytoplasm, or 2,4-dinitrophenol in a mutant with null mutations in both kef genes was compared with the rate of efflux in a wild-type strain for kef. The results show that these two genes encode the major paths for NEM-stimulated efflux. However, neither efflux system appears to be a significant path of K+ efflux produced by high turgor pressure, by alkalinization of the cytoplasm, or by addition of high concentrations of 2,4-dinitrophenol. Therefore, this species must have at least one other system, besides those encoded by kefB and kefC, capable of mediating a high rate of K+ efflux. The high, spontaneous rate of K+ efflux characteristic of the kefC121 mutation increases further when the strain is treated with NEM. Therefore, the mutational defect that leads to spontaneous efflux in this strain does not abolish the site(s) responsible for the action of NEM.  相似文献   

14.
The time dependence of the fluorescence of tryptophanyl and flavin residues in lipoamide dehydrogenase has been investigated with single-photon decay spectroscopy. When the two FAD molecules in the enzyme were directly excited the decay could only be analyzed in a sum of two exponentials with equal amplitudes. This phenomenon was observed at 4 degrees C (tau-1 = 0.8 ns, tau-2 = 4.7 ns) and at 20 degrees C (tau-1 = 0.8 ns, tau-2 = 3.4 ns) irrespective of the emission and excitation wavelengths. This result reveals a difference in the nature of the two FAD centers. By excitation at 290 nm the fluorescence decay curves of tryptophan and FAD were obtained. The decays are analyzed in terms of energy transfer from tryptophanyl to flavin residues. The results, which are in good agreement with those obtained previously with static fluorescence methods, show that one of the two tryptophanyl residues within the subunit transfers its excitation energy to the flavin located at a distance of 1.5 nm.  相似文献   

15.
The proposal that the lipoate acetyltransferase component (E2) of the pyruvate dehydrogenase multienzyme (PD) complex from Escherichia coli contains three covalently bound lipoyl residues, one of which acts to pass reducing equivalents to lipoamide dehydrogenase (E3), has been tested. The PD complex was incubated with pyruvate and N-ethylmaleimide, to yield an inactive PD complex containing lipoyl groups on E2 with the S6 acetylated and the S8H irreversibly alkylated with N-ethylmaleimide. This chemically modified form would be expected to exist only on two of the three proposed lipoyl groups. The third nonacetylatable lipoyl group, which is proposed to interact with E3, would remain in its oxidized form. Reaction of the N-ethylmaleimide-modified PD complex with excess NADH should generate the reduced form of the proposed third nonacetylatable lipoyl group and thereby make it susceptible to cyclic dithioarsinite formation with bifunctional arsenicals (BrCH2CONHPhAsCl2; BrCH2[14C]CONHPhAsO). Once "anchored" to the reduced third lipoyl group via the--AsO moiety, these reagents would be delivered into the active site of E3 by the normal catalytic process of the PD complex where the BrCH2CONH--group inactivates E3. Whereas the E3 component of native PD complex is inactivated by the bifunctional reagents in the presence of excess NADH (owing to the above delivery process), the E3 component of the PD complex modified with N-ethylmaleimide in the presence of pyruvate is not inhibited. The results indicate that acetylatable lipoyl residues interact directly with E3 and do not support a functional role for a proposed third lipoyl residue.  相似文献   

16.
17.
A procedure was developed for the purification of shikimate dehydrogenase from Escherichia coli. Homogeneous enzyme with specific activity 1100 units/mg of protein was obtained in 21% overall yield. The subunit Mr estimated by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate was 32 000. The native Mr, estimated by gel-permeation chromatography on a TSK G2000SW column, was also 32 000. E. coli shikimate dehydrogenase is therefore a monomeric NADP-linked dehydrogenase.  相似文献   

18.
Succinate dehydrogenase and fumarate reductase from Escherichia coli.   总被引:2,自引:0,他引:2  
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron-sulfur subunit which contains three distinct iron-sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.  相似文献   

19.
Pyruvate dehydrogenase multienzyme complex (PD complex) in the presence of pyruvate, thiamine pyrophosphate, coenzyme A, and Mg2+ (or NADH) was irreversibly inhibited with the radiolabelled bifunctional aresenoxide p-[(bromoacetyl)amino]phenyl arsenoxide (BrCH2 14CONHPhAsO). The initial reaction of the reagent was with a reduced lipoyl group of the lipoamide acetyltransferase component to form a dithioarsinite complex. Following the normal catalytic reactions, the anchored reagent was delivered into the active site of the lipoamide dehydrogenase (E3) component where an irreversible alkylation ensued via the bromoacetamidyl moiety. Treatment with 2,3-dithiopropanol (to break dithioarsinite bonds) caused the radiolabelled reagent to reside with E3. E3 was isolated from the inhibited PD complex and CNBr cleavage of the inhibited enzyme yielded a single radiolabelled peptide that was purified on a cyanopropyl silica column using high performance liquid chromatography. The radiolabelled amino acid was identified (after acid hydrolysis) as N3-[14C]carboxymethyl histidine in agreement with earlier studies. The radiolabel was located in residue 14 of the peptide for which the sequence was determined as GCDAEDIALTIHAHPTL-EIVGLAAEVFEG. This sequence agrees with the amino acid sequence determined from the gene sequence of E3. The histidine alkylated in the E3 component of the PD complex by BrCH2 14CONHPhAsO is residue-444 and further establishes its active site role.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号