首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is a...  相似文献   

2.
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1 in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer.  相似文献   

3.
Cytokinesis is the last step of the M (mitosis) phase,yet it is crucial for the faithful division of one cell into two.Cytokinesis failure is often associated with cancer.Cytokinesis can be morphologically divided into four steps:cleavage furrow initiation,cleavage furrow ingression,midbody formation and abscission.Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis.At the same time,Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis,including cytokinesis.Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks.More specifically,Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1,thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains.Ect2 itself can be phosphorylated by Plk1 in vitro.Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity.Once activated,RhoA-GTP will activate downstream effectors,including ROCK1 and ROCK2.ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen,and Plk1 can phosphorylate ROCK2 in vitro.We review current understandings of the interplay between Plk1,RhoA proteins and other proteins (e.g.,NudC,MKLP2,PRC1,CEP55) involved in cytokinesis,with partitular emphasis of its clinical implications in cancer.  相似文献   

4.
Cytokinesis is the final step of cell division and leads to the physical separation of the daughter cells. After the ingression of a cleavage membrane furrow that pinches the mother cell, future daughter cells spend much of the cytokinesis phase connected by an intercellular bridge. Rab proteins are major regulators of intracellular transport in eukaryotes, and here, we report an essential role for human Rab35 in both the stability of the bridge and its final abscission. We find that Rab35, whose function in membrane traffic was unknown, is localized to the plasma membrane and endocytic compartments and controls a fast endocytic recycling pathway. Consistent with a key requirement for Rab35-regulated recycling during cell division, inhibition of Rab35 function leads to the accumulation of endocytic markers on numerous cytoplasmic vacuoles in cells that failed cytokinesis. Moreover, Rab35 is involved in the intercellular bridge localization of two molecules essential for the postfurrowing steps of cytokinesis: the phosphatidylinositol 4,5-bis phosphate (PIP2) lipid and the septin SEPT2. We propose that the Rab35-regulated pathway plays an essential role during the terminal steps of cytokinesis by controlling septin and PIP2 subcellular distribution during cell division.  相似文献   

5.
Cellular myosin II is the principal motor responsible for cytokinesis. In higher eukaryotes, phosphorylation of the regulatory light chain (MLC) of myosin II is a primary means of activating myosin II and is known to be crucial for the execution of cell division. Because signals transmitted by the mitotic spindle coordinate key spatial and temporal aspects of cytokinesis, such signals should ultimately function to activate myosin II. Thus, it follows that identification of regulatory factors involved in MLC phosphorylation should elucidate the nature of spindle-derived regulatory signals and lead to a model for how they control cytokinesis. However, the identity of these upstream molecules remains elusive. This review (which is part of the Cytokinesis series) summarizes current views of the regulatory pathway controlling MLC phosphorylation and features four candidate molecules that are likely immediate upstream myosin regulators. I discuss proposed functions for MLCK, ROCK, citron kinase and myosin phosphatase during cytokinesis and consider the possibility of a link between these molecules and the signals transmitted by the mitotic spindle.  相似文献   

6.
Cytokinesis is crucial for integrating genome inheritance and cell functions. In multicellular organisms, Rho-guanine nucleotide exchange factors (GEFs) and Rho GTPases are key regulators of division-plane specification and contractile-ring formation during cytokinesis, but how they regulate early steps of cytokinesis in fission yeast remains largely unknown. Here we show that putative Rho-GEF Gef2 and Polo kinase Plo1 coordinate to control the medial cortical localization and function of anillin-related protein Mid1. The division-site positioning defects of gef2Δ plo1-ts18 double mutant can be partially rescued by increasing Mid1 levels. We find that Gef2 physically interacts with the Mid1 N-terminus and modulates Mid1 cortical binding. Gef2 localization to cortical nodes and the contractile ring depends on its last 145 residues, and the DBL-homology domain is important for its function in cytokinesis. Our data suggest the interaction between Rho-GEFs and anillins is an important step in the signaling pathways during cytokinesis. In addition, Gef2 also regulates contractile-ring function late in cytokinesis and may negatively regulate the septation initiation network. Collectively, we propose that Gef2 facilitates and stabilizes Mid1 binding to the medial cortex, where the localized Mid1 specifies the division site and induces contractile-ring assembly.  相似文献   

7.
Cytokinesis is the last step of the cell-division cycle, which requires precise spatial and temporal regulation to ensure genetic stability. Rho guanine nucleotide exchange factors (Rho GEFs) and Rho GTPases are among the key regulators of cytokinesis. We previously found that putative Rho-GEF Gef2 coordinates with Polo kinase Plo1 to control the medial cortical localization of anillin-like protein Mid1 in fission yeast. Here we show that an adaptor protein, Nod1, colocalizes with Gef2 in the contractile ring and its precursor cortical nodes. Like gef2∆, nod1∆ has strong genetic interactions with various cytokinesis mutants involved in division-site positioning, suggesting a role of Nod1 in early cytokinesis. We find that Nod1 and Gef2 interact through the C-termini, which is important for their localization. The contractile-ring localization of Nod1 and Gef2 also depends on the interaction between Nod1 and the F-BAR protein Cdc15, where the Nod1/Gef2 complex plays a role in contractile-ring maintenance and affects the septation initiation network. Moreover, Gef2 binds to purified GTPases Rho1, Rho4, and Rho5 in vitro. Taken together, our data indicate that Nod1 and Gef2 function cooperatively in a protein complex to regulate fission yeast cytokinesis.  相似文献   

8.
Cytokinesis: welcome to the Rho zone   总被引:13,自引:0,他引:13  
Cytokinesis follows nuclear division and generates two distinct daughter cells, each replete with a full complement of the genome and cytoplasmic organelles. Members of the Rho family of GTPases are crucial regulators of this process in a wide variety of species. In many cell types, cytokinesis is mediated by a discretely localized contractile ring that is rich in actin and myosin. In this article (which is part of the Cytokinesis series), we review recent studies in animal cells that have shown that local assembly of the contractile ring is mediated by a discrete pool of GTP-bound, active RhoA. Advances in detecting the active pool of RhoA have allowed insights into the mechanisms and the molecules that promote the accumulation of active RhoA at the correct time and place in the cell.  相似文献   

9.
Members of the Aurora/Ipl1p family of mitotically regulated serine/threonine kinases are emerging as key regulators of chromosome segregation and cytokinesis. Proper chromosome segregation and cytokinesis ensure that each daughter cell receives the full complement of genetic material. Defects in these processes can lead to aneuploidy and the propagation of genetic abnormalities. This review discusses the Aurora/Ipl1p kinases in terms of their protein structure and proposed function in mitotic cells and also the potential role of aurora2 in human cancer.  相似文献   

10.
Cytokinesis in the early divergent protozoan Trypanosoma brucei occurs from the anterior cell tip of the new-flagellum daughter toward the nascent posterior end of the old-flagellum daughter of a dividing biflagellated cell. The cleavage furrow ingresses unidirectionally along the preformed cell division fold and is regulated by an orphan kinesin named kinesin localized to the ingressing furrow (KLIF) that localizes to the leading edge of the ingressing furrow. Little is known about how furrow ingression is controlled by KLIF and whether KLIF interacts with and cooperates with other cytokinesis regulatory proteins to promote furrow ingression. Here, we investigated the roles of KLIF in cleavage furrow ingression and identified a cohort of KLIF-associated cytoskeletal proteins as essential cytokinesis regulators. By genetic complementation, we demonstrated the requirement of the kinesin motor activity, but not the putative tropomyosin domain, of KLIF in promoting furrow ingression. We further showed that depletion of KLIF impaired the resolution of the nascent posterior of the old-flagellar daughter cell, thereby stalking cleavage furrow ingression at late stages of cytokinesis. Through proximity biotinylation, we identified a subset of cytoskeleton-associated proteins (CAPs) as KLIF-proximal proteins, and functional characterization of these cytoskeletal proteins revealed the essential roles of CAP46 and CAP52 in positioning the cleavage furrow and the crucial roles of CAP42 and CAP50 in promoting cleavage furrow ingression. Together, these results identified multiple cytoskeletal proteins as cytokinesis regulators and uncovered their essential and distinct roles in cytokinesis.  相似文献   

11.
Cytokinesis is the ultimate step of a cell cycle resulting in the generation of two progeny. Failure of correct cell division may be lethal for both, mother and daughter cells, and thus such a process must be tightly regulated with other events of the cell cycle. Differing solutions to the same problem have been developed in bacteria and plants while cytokinesis in animal and fungal cells is highly similar and requires a contractile ring containing actomyosin. Cytokinesis in fungi can be viewed as a three-stage process: (i) selection of a division site, (ii) orderly assembly of protein complexes, and finally (iii) dynamic events that lead to a constriction of the contractile ring and septum construction. Elaborate mechanisms known as the Mitotic Exit Network (MEN) and the Septation Initiation Network (SIN) have evolved to link these events, particularly the final steps of cytokinesis, with nuclear division. The purpose of this review was to discuss the latest developments in the fungal field and to describe the central known players required for key steps on the road to cell division. Differences in the cytokinesis of yeast-like fungi that result in complete cell separation in contrast to septation which leads to the compartmentalization of fungal hyphae are highlighted.  相似文献   

12.
Fusion and fission: membrane trafficking in animal cytokinesis   总被引:5,自引:0,他引:5  
Finger FP  White JG 《Cell》2002,108(6):727-730
Cytokinesis is the physical act of separating daughter cells, allowing them to become separate entities. Recent studies have revealed that membrane insertion for furrowing and scission of the residual bridge is a key aspect of animal cytokinesis.  相似文献   

13.
Cytokinesis involves two phases: 1) membrane ingression followed by 2) membrane abscission. The ingression phase generates a cleavage furrow and this requires co-operative function of the actin-myosin II contractile ring and septin filaments. We demonstrate that the actin-binding protein, EPLIN, locates to the cleavage furrow during cytokinesis and this is possibly via association with the contractile ring components, myosin II, and the septin, Sept2. Depletion of EPLIN results in formation of multinucleated cells and this is associated with inefficient accumulation of active myosin II (MRLCS19) and Sept2 and their regulatory small GTPases, RhoA and Cdc42, respectively, to the cleavage furrow during the final stages of cytokinesis. We suggest that EPLIN may function during cytokinesis to maintain local accumulation of key cytokinesis proteins at the furrow.  相似文献   

14.
Cytokinesis is the final step of cell division whereby the dividing cells separate physically. Failure of this process has been proposed to cause tumourigenesis. Several specific lipids are essential for cytokinesis, and recent evidence has revealed that phosphatidylinositol 3-phosphate (PtdIns3P) - a well-known regulator of endosomal trafficking, receptor signaling, nutrient sensing and autophagy - plays an evolutionarily conserved role during cytokinesis. The emerging picture is that PtdIns3P and its regulators and effectors constitute a novel regulatory mechanism for cytokinesis. Elucidating the role of PtdIns3P in cytokinesis might contribute to insight into mechanisms of tumour development and suppression.  相似文献   

15.
Cytokinesis requires the spatio-temporal coordination of cell-cycle control and cytoskeletal reorganization. Members of the Rho-family of GTPases are crucial regulators of this process and assembly of the contractile ring depends on local activation of Rho signalling. Here, we show that the armadillo protein p0071, unlike its relative p120(ctn), is localized at the midbody during cytokinesis and is essential for cell division. Both knockdown and overexpression of p0071 interfered with normal cell growth and survival due to cytokinesis defects with formation of multinucleated cells and induction of apoptosis. This failure of cytokinesis seemingly correlated with the deregulation of Rho activity in response to altered p0071 expression. The function of p0071 in regulating Rho activity occurred through an association of p0071 with RhoA, as well as the physical and functional interaction of p0071 with Ect2, the one Rho guanine-nucleotide exchange factor (GEF) essential for cytokinesis. These findings support an essential role for p0071 in spatially regulating restricted Rho signalling during cytokinesis.  相似文献   

16.
Similar to higher animal cells, ameba cells of the cellular slime mold Dictyostelium discoideum form contractile rings containing filaments of myosin II during mitosis, and it is generally believed that contraction of these rings bisects the cells both on substrates and in suspension. In suspension, mutant cells lacking the single myosin II heavy chain gene cannot carry out cytokinesis, become large and multinucleate, and eventually lyze, supporting the idea that myosin II plays critical roles in cytokinesis. These mutant cells are however viable on substrates. Detailed analyses of these mutant cells on substrates revealed that, in addition to "classic" cytokinesis which depends on myosin II ("cytokinesis A"), Dictyostelium has two distinct, novel methods of cytokinesis, 1) attachment-assisted mitotic cleavage employed by myosin II null cells on substrates ("cytokinesis B"), and 2) cytofission, a cell cycle-independent division of adherent cells ("cytokinesis C"). Cytokinesis A, B, and C lose their function and demand fewer protein factors in this order. Cytokinesis B is of particular importance for future studies. Similar to cytokinesis A, cytokinesis B involves formation of a cleavage furrow in the equatorial region, and it may be a primitive but basic mechanism of efficiently bisecting a cell in a cell cycle-coupled manner. Analysis of large, multinucleate myosin II null cells suggested that interactions between astral microtubules and cortices positively induce polar protrusive activities in telophase. A model is proposed to explain how such polar activities drive cytokinesis B, and how cytokinesis B is coordinated with cytokinesis A in wild type cells.  相似文献   

17.
Megakaryocytes (MK) undergo polyploidization through endomitosis, a mitotic process that ends prematurely due to aborted cytokinesis. To better understand this and other events associated with MK differentiation, we performed long-term and large-field live cell imaging of human MKs derived in cord blood (CB) and bone marrow (BM) CD34+ cell cultures. Polyploid level of imaged cells was evaluated using three complementary approaches; cell history, cell size and ploidy correlation and nuclei staining. This system and strategy enabled the direct observation of the development of a large number of MKs (n=4865) and to quantify their fates. The most significant finding of this study is that a considerable proportion of polyploid MKs could complete cytokinesis. This unexpected process gave rise to polyploid daughter cell(s) with normal fates and contributed significantly to the expansion of polyploid MKs. Further analyses revealed that the proliferation rate amongst polyploid MKs was inversely correlated to their ploidy level, and that this phenomenon was much more frequent in CB- than BM-derived MKs. Accordingly, endomitosis was identified as the dominant fate of polyploid BM-MKs, while this was less accentuated for polyploid CB-MKs. These findings explain partially why CB-derived MKs remain in lower ploidy class. In conclusion, this study demonstrates that the development of polyploid MK results from the failure and/or success of cytokinesis and brings a new paradigm to the field of megakaryopoiesis.  相似文献   

18.
Cytokinesis in plant cells in accomplished when a membranous cell plate is guided to a pre-established division site. The orientation of the new wall establishes the starting position of a cell in a growing tissue, but the impact of this position on future development varies. Recently, proteins have been identified that participate in forming, stabilizing and guiding the cell plate to the correct division site. Mutations that affect cytokinesis with varying impacts on plant development are providing information about the mechanics of cytokinesis and also about how the division site is selected.  相似文献   

19.
Mathur J 《Current biology : CB》2004,14(7):R287-R289
Cytokinesis in plants has unique features concerned with defining and maintaining the line of cell division. Recent studies have identified key cytoskeletal components and events that help to ensure the fidelity of cytokinesis in higher plants.  相似文献   

20.
At the end of the cell cycle a cell physically divides into two daughter cells in a process called cytokinesis. Cytokinesis consists of at least four steps: 1. The position of the presumptive cytokinesis furrow is specified. 2. A contractile ring is formed. 3. The contractile ring contracts, resulting in furrow ingression. 4. Cytokinesis completes with sealing of the membranes. The mitotic spindle positions the cytokinesis furrow at the cell cortex midway along the longitudinal axis of the spindle, which is both the mid-point between the two asters and the location of the spindle midzone. The mitotic spindle emits two consecutive signals that position the furrow: Microtubule asters provide a first signal; the spindle midzone provides a second signal. Our results support the view that the spindle midzone is dispensable for completion of cytokinesis. However, the spindle midzone can negatively affect aster-positioned cytokinesis, possibly because the aster- and midzone-positioned furrows compete for contractile elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号