首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jerusalem artichoke extract or powder was used for astaxanthin production using Phaffia rhodozyma without acidic or enzymatic inulin hydrolysis. The culture medium containing Jerusalem artichoke as carbon source was optimized, and feeding strategies, including constant, exponential, pH-stat, and substrate feedback fed-batch fermentations, were also compared for enhancing the cell biomass and astaxanthin synthesis by P. rhodozyma. Substrate-feedback fed-batch fermentation resulted in the highest dry cell weight of 83.60 g/L, with a carotenoid concentration and yield of 982.50 mg/L and 13.30 mg/g, respectively, under optimized medium components using Jerusalem artichoke extract as carbon source in a 3-L stirred-tank bioreactor. Moreover, 482.50 mg/L of carotenoids and 253.10 mg/L of astaxanthin were obtained by continuous feeding of Jerusalem artichoke powder, which was used as carbon source. Astaxanthin essence with high DPPH-scavenging activity was obtained from the extracted astaxanthin, and the DPPH free radical scavenging rate of 40 ppm astaxanthin essence reached 76.29%. When stored at 4 °C, astaxanthin essence showed the highest stability, with a minimum k value of 0.0099 week−1 and maximum half-life (t1/2) value of 70 weeks.  相似文献   

2.
The extensive prospects of violacein in the pharmaceutical industry have attracted increasing interest. However, the fermentation levels of violacein are currently inadequate to meet the demands of industrial production. This study was undertaken to develop an efficient process for the production of violacein by recombinant Citrobacter freundii. The effects of dissolved oxygen (DO) and pH on cell growth and violacein production in batch cultures were investigated first. When the DO and pH of the medium were controlled at around 25% and 7.0, respectively, the biomass and concentration of violacein were maximized. Based on the consumption of nutrients in the medium observed during batch culture, a fed-batch fermentation strategy with controlled DO and pH was implemented. By continuously feeding glycerol, NH4Cl, and l-tryptophan at a constant feeding rate of 16 mL h−1, the final concentration of violacein reached 4.13 g L−1, which was 4.09-fold higher than the corresponding batch culture, and the maximal dry cell weight (DCW) and average violacein productivity obtained for the fed-batch culture were 3.34 g DCW L−1 and 82.6 mg L−1 h−1, respectively. To date, this is the first report on the efficient production of violacein by genetically engineered strains in a fermentor.  相似文献   

3.
《Harmful algae》2009,8(1):54-59
Red tides (high biomass phytoplankton blooms) have frequently occurred in Hong Kong waters, but most red tides occurred in waters which are not very eutrophic. For example, Port Shelter, a semi-enclosed bay in the northeast of Hong Kong, is one of hot spots for red tides. Concentrations of ambient inorganic nutrients (e.g. N, P), are not high enough to form the high biomass of chlorophyll a (chl a) in a red tide when chl a is converted to its particulate organic nutrient (N) (which should equal the inorganic nutrient, N). When a red tide of the dinoflagellate Scrippsiella trochoidea occurred in the bay, we found that the red tide patch along the shore had a high cell density of 15,000 cells ml−1, and high chl a (56 μg l−1), and pH reached 8.6 at the surface (8.2 at the bottom), indicating active photosynthesis in situ. Ambient inorganic nutrients (NO3, PO4, SiO4, and NH4) were all low in the waters and deep waters surrounding the red tide patch, suggesting that the nutrients were not high enough to support the high chl a >50 μg l−1 in the red tide. Nutrient addition experiments showed that the addition of all of the inorganic nutrients to a non-red-tide water sample containing low concentrations of Scrippsiella trochoidea did not produce cell density of Scrippsiella trochoidea as high as in the red tide patch, suggesting that nutrients were not an initializing factor for this red tide. During the incubation of the red tide water sample without any nutrient addition, the phytoplankton biomass decreased gradually over 9 days. However, with a N addition, the phytoplankton biomass increased steadily until day 7, which suggested that nitrogen addition was able to sustain the high biomass of the red tide for a week with and without nutrients. In contrast, the red tide in the bay disappeared on the sampling day when the wind direction changed. These results indicated that initiation, maintenance and disappearance of the dinoflagellate Scrippsiella trochoidea red tide in the bay were not directly driven by changes in nutrients. Therefore, how nutrients are linked to the formation of red tides in coastal waters need to be further examined, particularly in relation to dissolved organic nutrients.  相似文献   

4.
《Aquatic Botany》2005,81(1):85-96
Rooted submerged macrophytes can absorb significant amounts of nutrients from both sediment and water. We investigated root morphology of Vallisneria natans in mesocosm plastic bins, in response to three types of sediment (sandy loam, clay, and a 50:50 (v/v) mixture of the two sediments) and two levels of water-column nutrient (well water and nutrient medium). Compared to the plants grown in the clay or mixed sediments, root diameter decreased (0.39–0.41 versus 0.36–0.37 mm) but total root length per plant increased (0.87–1.27 versus 1.14–1.62 m) when grown in sandy loam. Increase of nutrient availability in water column led to decreased specific root length (306–339 versus 258–281 m g−1). However, both sediment type and water-column nutrient had no impacts on root number (ranged from 19 to 24 number of roots per plant). Root weight ratio, root:leaf mass ratio and root:leaf length ratio generally decreased with enhanced nutrient availability in sediment or water. Plant growth was affected by sediment type alone (P < 0.05), rather than water-column nutrient (P > 0.05). However, plant N and P contents were significantly impacted by both sediment type (P  0.001) and water-column nutrient (P < 0.05). Increase of nutrient availability in sediment or water led to increased plant N (ranged from 2.47 to 4.77 mg g−1) and P concentrations (ranged from 42.8 to 62.0 mg g−1). These results indicate that considerable variation in root morphology of V. natans exists in response to the fertility of the sediment it is rooted in.  相似文献   

5.
《Aquatic Botany》2007,86(2):191-196
The effect of nutrient addition on the growth of E. najas was evaluated in a dose response experiment using sand amended with phosphorus (P) and nitrogen (N), and in enrichment trials with N and P amendments to natural sediments. Plants, water and sediment came from lagoons of the Upper Paraná River Floodplain and from Itaipu Reservoir (Brazil). Relative growth rates (RGRs) of E. najas shoots, based on dry mass (DM), varied from 0.03 to 0.060 d−1 for both nutrients. Root:shoot biomass ratios were related to sediment exchangeable P (r = −0.419; P = 0.03) and N (r = −0.54; P = 0.006), however root RGR was not related to sediment nutrient concentrations. When natural sediments were amended with N and P, neither shoot nor root RGRs differed among treatments for substrata from either the reservoir or the floodplain lagoons (P > 0.05). Comparison of nutrient concentrations measured in natural sediments collected from several sites in both the Upper Paraná River Floodplain (range 49–213 μg P g−1 DM; 36–373 μg N g−1 DM) and Itaipu Reservoir (range 43–402 μg P g−1 DM; 7.9–238 μg N g−1 DM) showed that sediment N and P from these systems usually exceeded minimum requirements necessary for E. najas growth, as measured in the dose response experiment. Together, these results indicate that E. najas, at least in early stages of development, responds to sediment nutrient amendments and relies upon bottom sediments to meet its N and P requirements and that for at least two Brazilian ecosystems, growth of this species is not limited by insufficient sediment N or P. Thus, reducing N and P in water is not enough to control E. najas growth in short time periods in these ecosystems.  相似文献   

6.
《Process Biochemistry》2014,49(8):1245-1250
This work describes the development of a novel integrated system for lactic acid production by Actinobacillus succinogenes. Fermentation and separation were integrated with the use of a microfiltration (MF) membrane, and lactic acid was recovered by resin adsorption following MF. The fermentation broth containing residual sugar and nutrients was then recycled back into the fermenter after lactic acid adsorption. This novel approach overcame the problem of product inhibition and extended the cell growth period from 41 h to 120 h. Production of lactic acid was improved by 23% to 183.4 g L−1. The overall yield and productivity for glucose were 0.97 g g−1 and 1.53 g L−1 h−1, respectively. These experimental results indicate that the integrated system could benefit continuous production of lactic acid at high levels.  相似文献   

7.
Carbon limited continuous cultures of Lactobacillus rhamnosus ATCC 7469 were grown at dilution rates between 0.1 h−1 and 0.6 h−1. At 0.45 h−1, oxygen uptake decreases producing a deficiency in the production of cell energy, lowering the concentration of biomass and finally accumulating glucose in the broth. Under the lack of energy pressure, L. rhamnosus ATCC 7469 triggers the production of lactic acid from pyruvate freeing NAD+ and stimulates glycolysis to continue, producing extra ATP from substrate-level phosphorylation. The 12-fold growing concentration of lactic acid and the 2-fold increase of succinic acid are in parallel with the steep 4-fold decrease of acetic acid production and small concentration changes of formic and propionic acids.The way the cells balance the available energy between the growing dilution rate and detoxification produces a stress within the culture, detected and described by flow cytometry. As the dilution rate increased, the proportion of L. rhamnosus ATCC 7469 cells with depolarized membrane steadily increased (1% at D = 0.20 h−1, 8% at D = 0.30 h−1, 14% at D = 0.45 h−1 and 26% for D = 0.62 h−1, respectively). Only a low level of 3.7% of the population did not recover from the demanding growth rates in the acidic environment.  相似文献   

8.
For this study, 2,3-butanediol (BD) fermentation from pure and biomass-derived sugar were optimized in shake-flask and 5-L bioreactor levels using Klebsiella oxytoca ATCC 8724. The results showed that 70 g/L of single sugar (glucose or xylose) and 90 g/L of mixed-sugar (glucose:xylose = 2:1) were optimum concentrations for efficient 2,3-BD fermentation. At optimum sugar concentrations, 2,3-BD productivities were 1.03, 0.64 and 0.50 gL−1 h−1, and yields were 0.43, 0.36 and 0.35 g/g in glucose, xylose and mixed-sugar medium, respectively. The lack of simultaneous utilization of glucose and xylose led to the lowest productivity in the mixed-sugar medium. Detoxification of biomass hydrolyzates was necessary for efficient 2,3-BD fermentation when sugar concentrations in the medium was 90 g/L or higher, but not with sugar concentrations of 30 g/L or less. A fed-batch fermentation using glucose medium led to an increase 2,3-BD titer to 79.4 g/L and yields 0.47 g/g, while productivity decreased to 0.79 gL−1 h−1. However, the fed-batch process was inefficient using mixed-sugar and biomass hydrolyzates because of poor xylose utilization. These results indicated that appropriate biomass processing technologies must be developed to generate separate glucose and xylose streams to produce high 2,3-BD titer from biomass-derived sugar using a fed-batch process.  相似文献   

9.
《Process Biochemistry》2007,42(1):112-117
A simple fed-batch process was developed using a modified variable specific growth rate feeding strategy for high cell density cultivation of Escherichia coli BL21 (DE3) expressing human interferon-gamma (hIFN-γ). The feeding rate was adjusted to achieve the maximum attainable specific growth rate during fed-batch cultivation. In this method, specific growth rate was changed from a maximum value of 0.55 h−1 at the beginning of feeding and then it was reduced to 0.4 h−1 at induction time.The final concentration of biomass and IFN-γ was reached to ∼115 g l−1 (DCW) and 42.5 g(hIFN-γ) l−1 after 16.5 h, also the final specific yield and overall productivity of recombinant hIFN-γ (rhIFN-γ) were obtained 0.37 g(hIFN-γ) g−1 DCW and 2.57 g(hIFN-γ) l−1 h−1, respectively. According to available data this is the highest specific yield and productivity that has been reported for recombinant proteins production yet.  相似文献   

10.
《Process Biochemistry》2010,45(8):1334-1341
A high cell density cultivation protocol was developed for the secretory production of potato carboxypeptidase inhibitor (PCI) in Escherichia coli. The strain BW25113 (pIMAM3) was cultured in fed-batch mode employing minimal media and an exponential feed profile where the specific growth rate was fixed by limitation of the fed carbon source (glycerol). Plasmid loss rates were found to be proportional to the specific growth rate. Distribution of PCI along the cell compartments and the culture media was also dependent on the fixed growth rate. When specific growth rate was kept at μ = 0.10 h−1, 1.4 g PCI L−1 were obtained when adding the product present in periplasmic extracts and supernatant fractions, with a 50% of the total expressed protein recovered from the extracellular medium. This constituted a 1.2-fold increase compared to growth at μ = 0.15 h−1, and 2.0-fold compared to μ = 0.25 h−1. Last, a cell permeabilization treatment with Triton X-100 and glycine was employed to direct most of the product to the culture media, achieving over 81% of extracellular PCI. Overall, our results point out that production yields of secretory proteins in fed-batch cultures of E. coli can be improved by means of process variables, with applications to the production of small disulfide-bridged proteins. Overall, our results point out that control of the specific growth rate is a successful strategy to improve the production yields of secretory expression in fed-batch cultures of E. coli, with applications to the production of small disulfide-bridged proteins.  相似文献   

11.
《Harmful algae》2011,10(6):563-567
The large diatom Coscinodiscus wailesii is one of the problematic species which indirectly cause bleaching damage to “Nori” (Porphyra thalli) cultivation through competitive utilization of nutrients during its bloom. In the present study, we experimentally investigated the nitrate (N) and phosphate (P) uptake kinetics of C. wailesii, Harima-Nada strain. Maximum uptake rates (ρmax), obtained by short-term experiments, were 58.3 and 95.5 pmol cell−1 h−1 for nitrate and 41.9 and 59.1 pmol cell−1 h−1 for phosphate at 9 and 20 °C, respectively. The half saturation constants for uptake (Ks) were 2.91 and 5.08 μM N and 5.62 and 6.67 μM P at 9 and 20 °C, respectively. The ρmax values of C. wailesii, much higher than those of other marine phytoplankton species, suggest that C. wailesii is able to take up large amounts of nutrients from the water column. On the other hand, Vmax/Ks (Vmax; Vmax = ρmax/Q0, Q0; minimum cell quota) values of C. wailesii, which is a better measure to evaluate the competitive ability for nutrient uptake, were low in dominant diatom species. This parameter indicates that C. wailesii is disadvantaged compared to other diatom species in competing for nutrients, and the decreasing nutrient concentrations from winter to spring is an important factor limiting C. wailesii blooming in early spring.  相似文献   

12.
Gas hold-up (ɛg), sauter mean bubble diameter (d32) and oxygen transfer coefficient (kLa) were evaluated at four different alkane concentrations (0.05, 0.1, 0.3 and 0.5 vol.%) in water over the range of superficial gas velocity (ug) of (1.18–23.52) × 10−3 m/s at 25 °C in a laboratory-scale bubble column bioreactor. Immiscible hydrocarbons (n-decane, n-tridecane and n-hexadecane) were utilized in the experiments as impurity. A type of anionic surfactant was also employed in order to investigate the effect of addition of surfactant to organic-aqueous systems on sauter mean bubble diameter, gas hold-up and oxygen transfer coefficient. Influence of addition of alkanes on oxygen transfer coefficient and gas hold-up, was shown to be dependent on the superficial gas velocity. At superficial gas velocity below 0.5 × 10−3 m/s, addition of alkane in air–water medium has low influence on oxygen transfer coefficient and also gas hold-up, whereas; at higher gas velocities slight addition of alkane increases oxygen transfer coefficient and also gas hold-up. Increase in concentration of alkane resulted in increase in oxygen transfer coefficient and gas hold-up and roughly decrease in sauter mean bubble diameter, which was attributed to an increase in the coalescence-inhibiting tendency in the presence of surface contaminant molecules. Bubbles tend to become smaller with decreasing surface tension of hydrocarbon, thus, oxygen transfer coefficient increases due to increasing of specific gas–liquid interfacial area (a). Empirical correlations were proposed for evaluating gas hold-up as a function of sauter mean bubble diameter, superficial gas velocity and interfacial surface tension as well as evaluating Sherwood number as a function of Schmidt, Reynolds and Bond numbers.  相似文献   

13.
《Ecological Engineering》2007,29(2):192-199
Trees integrated into the range- and pasturelands of Florida could remove nutrients from deeper soil profiles that would otherwise be transported to water bodies and cause pollution. Soil nitrogen (N) and phosphorus (P) concentrations were monitored in three pastures: a treeless pasture of bahiagrass (Paspalum notatum); a pasture of bahiagrass under 20-year-old slash pine (Pinus elliotti) trees (silvopasture); and a pasture of native vegetation under pine trees (native silvopasture). Soil analysis from 10 profiles within each pasture showed that P concentrations were higher in treeless pasture (mean: 9.11 mg kg−1 in the surface to 0.23 mg kg−1 at 1.0 m depth) compared to silvopastures (mean: 2.51 and 0.087 mg kg−1, respectively), and ammonium–N and nitrate–N concentrations were higher in the surface horizon of treeless pasture. The more extensive rooting zones of the combined stand of tree + forage may have caused higher nutrient uptake from silvopastures than treeless system. Further, compared to treeless system, soils under silvopasture showed higher P storage capacity. The results suggest that, compared to treeless pasture, silvopastoral association enhances nutrient retention in the system and thus reduces chances for nutrient transport to surface water. The study reflects the scope for applying ecological-engineering and ecosystem-restoration principles to silvopastoral-system design.  相似文献   

14.
《Process Biochemistry》2007,42(1):77-82
The production of C595 diabody fragment (dbFv) in Escherichia coli (E. coli) HB2151 clone has been explored. The comparison of fermentation processes mode demonstrated that a higher biomass inoculum operation enhanced C595 dbFv production. It was demonstrated that a concentration of 12.1 mg l−1 broth of dbFv and a cell concentration of 23.6 g l−1 broth were achieved at the end of 75 l fermentation.  相似文献   

15.
The effects of post-induction nutrient feed rates, on recombinant streptokinase production in fed-batch processes, were investigated using various feed profiles. Recombinant streptokinase was produced using a secretory expression system and was induced by a temperature up-shift, using a temperature-sensitive λPL promoter. The specific growth rates decreased sharply upon induction of recombinant protein expression, thus necessitating a variable feed strategy in the post-induction phase. The various feed profiles employed in the post-induction phase included constant feed rates, linearly increasing feed rate and exponentially varying feed rates. Significant differences were obtained in the specific activity of streptokinase produced in these fed-batch processes. A maximum activity per unit biomass of 4.96 × 106 and 4.43 × 106 IU/g DCW was achieved for exponentially decreasing feed and linearly increasing feed, respectively. The decrease in specific growth rate during the post-induction phase was also less pronounced in these cases in comparison to other fed-batch experiments. It was observed that streptokinase productivity is governed by the nutrient feed rate per unit biomass at a critical juncture after induction. The highest activity per unit biomass was obtained when the nutrient feed rate per unit biomass was around 0.7–0.8 g glucose (g DCW)−1 h−1, between 2 and 4 h after induction.  相似文献   

16.
Oxidative transformation of tyrosol catalysed by Trametes trogii laccases in aqueous solution was investigated. LC–MS analysis shows that tyrosol was converted to its dimer. The enzymatic reaction was also investigated by 1H and 13C nuclear magnetic resonance, and the product formed was identified as a dimeric tetracyclic ketone. The bactericidal and fungicidal properties of tyrosol dimer were investigated using the NCCLS broth dilution and EN 1276 standard methods. High bactericidal and fungicidal effect of concentrations ranged between 1–0.5 g L−1 and 8–4 g L−1 were obtained. Dimer concentrations of 33 g L−1 and 66 g L−1 allowed reductions in viability higher than 5 log units per mL for Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 10536 and Enterococcus hirae ATCC 10541, Staphylococcus aureus ATCC 9144 respectively, within a contact time of 5 min under dirty conditions. The effect of this product on Tuta absoluta, a harmful pest of tomato in the world, was also evaluated. The results showed high insecticidal activity against this insect at a concentration of 16.5 g L−1. Germinability experiments on Lycopersicum esculetum were conducted in order to evaluate the potential of a laccase treatment in removing tyrosol phytotoxicity. The results showed that tyrosol dimer was nonphytotoxic. This study presents the first comprehensive results of biological characterisation of the product obtained by the action of laccase on tyrosol transformation with T. trogii laccases.  相似文献   

17.
Extracellular lipase of the yeast Candida rugosa was produced via high cell density fed-batch fermentations using palm oil as the sole source of carbon and energy. Feeding strategies consisted of a pH-stat operation, foaming-dependent control and specific growth rate control in different experiments. Compared to foaming-dependent feeding and the pH-stat operation, the specific growth rate control of feeding proved to be the most successful. At the specific growth rate control set at 0.05 h−1, the final lipase activity in the culture broth was the highest at ∼700 U L−1. This was 2.6-fold higher than the final enzyme activity obtained at a specific growth rate control set at 0.15 h−1. The peak enzyme concentration achieved using the best foaming-dependent control of feeding was around 28% of the peak activity attained using the specific growth rate control of feeding at 0.05 h−1. Similarly, the peak enzyme concentration attained using the pH-stat feeding operation was a mere 9% of the peak activity attained by specific growth rate control of feeding at a set-point of 0.05 h−1. Fed-batch fermentations were performed in a 2 L stirred-tank bioreactor (30 °C, pH 7) with the dissolved oxygen level controlled at 30% of air saturation.  相似文献   

18.
Fermentations were performed in an external recycle bioreactor using CO2 and d-glucose at feed concentrations of 20 and 40 g L−1. Severe biofilm formation prevented kinetic analysis of suspended cell (‘chemostat’) fermentation, while perlite packing enhanced the volumetric productivity by increasing the amount of immobilised cells. The highest productivity of 6.35 g L−1 h−1 was achieved at a dilution rate of 0.56 h−1. A constant succinic acid yield of 0.69 ± 0.02 g/(g of glucose consumed) was obtained and found to be independent of the dilution rate, transient state and extent of biofilm build-up – approximately 56% of the carbon that formed phosphoenolpyruvate ended up as succinate. Byproduct analysis indicated that pyruvate oxidation proceeded solely via the formate-lyase pathway. Cell growth and corresponding biofilm formation were rapid at dilution rates higher than 0.35 h−1 when the product concentrations were low (succinic acid < 10 g L−1), while minimal growth was observed at succinic acid concentrations above this threshold.  相似文献   

19.
20.
The diatom Eucampia zodiacus is a harmful species that indirectly causes bleaching to nori (Pyropia) cultivation through competitive utilization of nutrients during its bloom, however cellular storage and changes in physiology by asexual reproduction remains unclear. In the present study, we experimentally investigated the nitrate (N), phosphate (P) and silicic acid (Si) consumption by various cell sizes of E. zodiacus strains, the apical axis length of which ranged from 10.2 to 77.3 μm. Nutrient cell quotas of E. zodiacus ranged from 2.7 to 8.4 pM cell−1 for N, 0.34–0.76 pM cell−1 for P and 1.7–7.3 pM cell−1 for Si, and they increased with cell size, in which there is a significant correlation between these two elements. The N and P quotas were estimated to be several times higher than the minimum cell quotas. In contrast, the Si cell quotas were approximately equal to those of the minimum values. Based on the present cell quotas, total nitrate consumption by E. zodiacus population when the blooms reached maximum cell density (=1000 cells ml−1) were estimated to be 6.5 μM. Monthly mean concentrations of dissolved inorganic nitrogen (DIN) range from 3.5 to 8.2 μM during the period of late nori harvest season when E. zodiacus blooms occur, and nori bleaching is reported at the condition of DIN concentration of less than 3 μM in Harima-Nada, eastern Seto Inland Sea, Japan. Therefore, the present results suggest that E. zodiacus causes serious damage to nori cultivation due to high levels of nutrient consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号