首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxynitrile lyase from Linum usitatissimum (LuHNL) is an enzyme involved in the catabolism of cyanogenic glycosides to release hydrogen cyanide upon tissue damage. This enzyme strictly conserves the substrate- and NAD(H)-binding domains of Zn2+-containing alcohol dehydrogenase (ADH); however, there is no evidence suggesting that LuHNL possesses ADH activity. Herein, we determined the ligand-free 3D structure of LuHNL and its complex with acetone cyanohydrin and (R)-2-butanone cyanohydrin using X-ray crystallography. These structures reveal that an A-form NAD+ is tightly but not covalently bound to each subunit of LuHNL. The restricted movement of the NAD+ molecule is due to the “sandwich structure” on the adenine moiety of NAD+. Moreover, the structures and mutagenesis analysis reveal a novel reaction mechanism for cyanohydrin decomposition involving the cyano-zinc complex and hydrogen-bonded interaction of the hydroxyl group of cyanohydrin with Glu323/Thr65 and H2O/Lys162 of LuHNL. The deprotonated Lys162 and protonated Glu323 residues are presumably stabilized by a partially desolvated microenvironment. In summary, the substrate binding geometry of LuHNL provides insights into the differences in activities of LuHNL and ADH, and identifying this novel reaction mechanism is an important contribution to the study of hydroxynitrile lyases.  相似文献   

2.
Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) was fused to different fluorescent reporter proteins. Whereas all fusion constructs retained enzymatic activity and fluorescence in vivo and in vitro, significant differences in activity and pH stability were observed. In particular, flavin-based fluorescent reporter (FbFP) fusions showed almost 2 orders of magnitude-increased half-lives in the weakly acidic pH range compared to findings for the wild-type enzyme. Analysis of the quaternary structure of the respective FbFP-AtHNL fusion proteins suggested that this increased stability is apparently caused by oligomerization mediated via the FbFP tag. Moreover, the increased stability of the fusion proteins enabled the efficient synthesis of (R)-mandelonitrile in an aqueous-organic two-phase system at a pH of <5. Remarkably, (R)-mandelonitrile synthesis is not possible using wild-type AtHNL under the same conditions due to the inherent instability of this enzyme below pH 5. The fusion strategy presented here reveals a surprising means for the stabilization of enzymes and stresses the importance of a thorough in vitro characterization of in vivo-employed fluorescent fusion proteins.  相似文献   

3.
Hydroxynitrile lyase (HNL) catalyzed enantioselective CC bond formation is an efficient approach to synthesize chiral cyanohydrins which are important building blocks in the synthesis of a number of fine chemicals, agrochemicals and pharmaceuticals. Immobilization of HNL is known to provide robustness, reusability and in some cases also enhances activity and selectivity.We optimized the preparation of immobilization of Baliospermium montanum HNL (BmHNL) by cross linking enzyme aggregate (CLEA) method and characterized it by SEM. Optimization of biocatalytic parameters was performed to obtain highest % conversion and ee of (S)-mandelonitrile from benzaldehyde using CLEA-BmHNL. The optimized reaction parameters were: 20 min of reaction time, 7 U of CLEA-BmHNL, 1.2 mM substrate, and 300 mM citrate buffer pH 4.2, that synthesized (S)-mandelonitrile in ∼99% ee and ∼60% conversion. Addition of organic solvent in CLEA-BmHNL biocatalysis did not improve in % ee or conversion of product unlike other CLEA-HNLs. CLEA-BmHNL could be successfully reused for eight consecutive cycles without loss of conversion or product formation and five cycles with a little loss in enantioselectivity. Eleven different chiral cyanohydrins were synthesized under optimal biocatalytic conditions in up to 99% ee and 59% conversion, however the % conversion and ee varied for different products. CLEA-BmHNL has improved the enantioselectivity of (S)-mandelonitrile synthesis compared to the use of purified BmHNL. Nine aldehydes not tested earlier with BmHNL were converted into their corresponding (S)-cyanohydrins for the first time using CLEA-BmHNL. Among the eleven (S)-cyanohydrins syntheses reported here, eight of them have not been synthesized by any CLEA-HNL. Overall, this study showed preparation, characterization of a stable, robust and recyclable biocatalyst i.e. CLEA-BmHNL and its biocatalytic application in the synthesis of different (S)-aromatic cyanohydrins.  相似文献   

4.

Objectives

To characterize a recombinant carbonyl reductase from Saccharomyces cerevisiae (SceCPR1) and explore its use in asymmetric synthesis of (R)-pantolactone [(R)-PL].

Results

The NADPH-dependent SceCPR1 exhibited strict (R)-enantioselectivity and high activity in the asymmetric reduction of ketopantolactone (KPL) to (R)-PL. Escherichia coli, coexpressing SceCPR1 and glucose dehydrogenase from Exiguobacterium sibiricum (EsGDH), was constructed to fulfill efficient NADPH regeneration. During the whole-cell catalyzed asymmetric reduction of KPL, the spontaneous hydrolysis of KPL significantly affected the yield of (R)-PL, which was effectively alleviated by the employment of the substrate constant-feeding strategy. The established whole-cell bioreduction for 6 h afforded 458 mM (R)-PL with the enantiomeric excess value of >99.9% and the yield of 91.6%.

Conclusions

Escherichia coli coexpressing SceCPR1 and EsGDH efficiently catalyzed the asymmetric synthesis of (R)-PL through the substrate constant-feeding strategy.
  相似文献   

5.
6.
HNL catalysis is usually carried out in a biphasic solvent and at low pH to suppress the non-enzymatic synthesis of racemic cyanohydrins. However, enzyme stability under these conditions remain a challenge. We have investigated the effect of different biocatalytic parameters, i.e., pH, temperature, buffer concentrations, presence of stabilizers, organic solvents, and chemical additives on the stability of Baliospermum montanum hydroxynitrile lyase (BmHNL). Unexpectedly, glycerol (50 mg/mL) added BmHNL biocatalysis had produced >99% of (S)-mandelonitrile from benzaldehyde, while without glycerol it is 54% ee. Similarly, BmHNL had converted 3-phenoxy benzaldehyde and 3,5-dimethoxy benzaldehyde, to their corresponding cyanohydrins in the presence of glycerol. Among the different stabilizers added to BmHNL at low pH, 400 mg/mL of sucrose had increased enzyme’s half-life more than fivefold. BmHNL’s stability study showed half-lives of 554, 686, and 690 h at its optimum pH 5.5, temperature 20 °C, buffer concentration, i.e., 100 mM citrate-phosphate pH 5.5. Addition of benzaldehyde as inhibitor, chemical additives, and the presence of organic solvents have decreased both the stability and activity of BmHNL, compared to their absence. Secondary structural study by CD-spectrophotometer showed that BmHNL’s structure is least affected in the presence of different organic solvents and temperatures.  相似文献   

7.
The application of unusual high pH-values within enzymatic cyanohydrin synthesis has been investigated. Usually enzymatic cyanohydrin synthesis in two-phase systems requires low pH-values within the aqueous phase to suppress the non-enzymatic side reaction. In contrast, we investigated the usage of pH-values above pH 6 by using the highly enantioselective (S)-selective hydroxynitrile lyase from Manihot esculenta. With these unusual reaction conditions also the unfavorable substrate 3-phenoxy-benzaldehyde can be converted by the wild type enzyme with excellent conversion and enantiomeric excess yielding pure (S)-3-phenoxy-benzaldehyde cyanohydrin with an enantiomeric excess of 97%. Although the variant MeHNL–W128A shows a higher activity with respect to this reaction, the enantioselectivity was reduced (85% e.e.(S)). Additionally, a new continuous spectroscopic cyanohydrin assay monitoring the formation of 3-phenoxy-benzaldehyde cyanohydrin was developed. Dedicated to Prof. Dr. Christian Wandrey on the occasion of his 65th birthday.  相似文献   

8.
Morphinan alkaloids are the most powerful narcotic analgesics currently used to treat moderate to severe and chronic pain. The feasibility of morphinan synthesis in recombinant Saccharomyces cerevisiae starting from the precursor (R,S)-norlaudanosoline was investigated. Chiral analysis of the reticuline produced by the expression of opium poppy methyltransferases showed strict enantioselectivity for (S)-reticuline starting from (R,S)-norlaudanosoline. In addition, the P. somniferum enzymes salutaridine synthase (PsSAS), salutaridine reductase (PsSAR) and salutaridinol acetyltransferase (PsSAT) were functionally co-expressed in S. cerevisiae and optimization of the pH conditions allowed for productive spontaneous rearrangement of salutaridinol-7-O-acetate and synthesis of thebaine from (R)-reticuline. Finally, we reconstituted a 7-gene pathway for the production of codeine and morphine from (R)-reticuline. Yeast cell feeding assays using (R)-reticuline, salutaridine or codeine as substrates showed that all enzymes were functionally co-expressed in yeast and that activity of salutaridine reductase and codeine-O-demethylase likely limit flux to morphine synthesis. The results of this study describe a significant advance for the synthesis of morphinans in S. cerevisiae and pave the way for their complete synthesis in recombinant microbes.  相似文献   

9.
Cassava (Manihot esculenta, Crantz) roots are the primary source of calories for more than 500 million people, the majority of whom live in the developing countries of Africa. Cassava leaves and roots contain potentially toxic levels of cyanogenic glycosides. Consumption of residual cyanogens (linamarin or acetone cyanohydrin) in incompletely processed cassava roots can cause cyanide poisoning. Hydroxynitrile lyase (HNL), which catalyses the conversion of acetone cyanohydrin to cyanide, is expressed predominantly in the cell walls and laticifers of leaves. In contrast, roots have very low levels of HNL expression. We have over-expressed HNL in transgenic cassava plants under the control of a double 35S CaMV promoter. We show that HNL activity increased more than twofold in leaves and 13-fold in roots of transgenic plants relative to wild-type plants. Elevated HNL levels were correlated with substantially reduced acetone cyanohydrin levels and increased cyanide volatilization in processed or homogenized roots. Unlike acyanogenic cassava, transgenic plants over-expressing HNL in roots retain the herbivore deterrence of cyanogens while providing a safer food product.  相似文献   

10.
(R)-3-Hydroxypentanenitrile (HPN) is an important intermediate in the synthesis of an immunosuppressive inosine 5′-monophosphate dehydrogenase inhibitor. An efficient enzymatic procedure for the synthesis of (R)-HPN with over 99 % enantiomeric excess using a novel acetoacetyl-CoA reductase (AdKR) from Achromobacter denitrificans was successfully established. Many microorganisms are known to reduce 3-oxopentannitrile (KPN) to (R)-HPN. An enzyme from A. denitrificans partially purified using ion exchange chromatography reduced KPN to (R)-HPN with high enantioselectivity. The AdKR gene was cloned and sequenced and found to comprise 738 bp and encode a polypeptide of 26,399 Da. The deduced amino acid sequence showed a high degree of similarity to those of other putative acetoacetyl-CoA reductases and putative 3-ketoacyl-ACP reductases. The AdKR gene was singly expressed and coexpressed together with a glucose dehydrogenase (GDH) as a coenzyme regenerator in Escherichia coli under the control of the lac promoter. (R)-HPN was synthesized with over 99 % e.e. using a cell-free extract of recombinant E. coli cells coexpressing AdKR and GDH.  相似文献   

11.
(R)-Mandelonitrile was successfully synthesized by an enzymatic transcyanation reaction of benzaldehyde and acetone cyanohydrin catalyzed by a hydroxynitrile lyase from Eriobotrya japonica (EjHNL) in an aqueous-organic biphasic system. The effects of pH, temperature, organic solvent, substrate concentration and enzyme concentration on the initial activity and enantioselectivity of the enzyme were studied. Both pH and temperature had a large effect on the initial velocity and enantiomeric excess (e.e.) of the product, (R)-mandelonitrile. High enantiomeric purity of the product was observed at low pH and temperature because the non-enzymatic reaction producing racemates of mandelonitrile was almost suppressed. The optimum pH and temperature to obtain high e.e. were pH 4.0 and 10 °C, respectively. Surprisingly, the organic solvents had a significant influence on the initial velocity of the reaction but less influence on the enantiomeric purity of product. The EjHNL was very stable in ethyl acetate, diethyl ether, methyl-t-butyl ether, diisopropyl ether, dibutyl ether and hexane for 12 h. The best solvent for the highest initial velocity and e.e. was diethyl ether with an optimum aqueous phase content of 50% (v/v). The initial reaction rate increase as the aqueous phase content rose, but when the content was more than 50%, a reduction of e.e. was observed. Increasing the concentration of the substrates accelerated the initial velocity, but caused a slight decrease in the e.e. of the product. Under the optimized conditions, the conversion and e.e. of (R)-mandelonitrile for 3 h were 40 and 99%, respectively. The aqueous phase containing the enzyme also showed considerably efficient reusability for 4 batch reactions.  相似文献   

12.
13.
The gene encoding for (R)-hydroxynitrile lyase ((R)-HNL) from Linum usitatissimum has been cloned by polymerase chain reaction using 3′,5′-RACE (rapid amplification of cDNA ends). The resulting clone contained an open reading frame of 1266 bp corresponding to a protein of 422 amino acids (45.8 kDa), which shows significant homologies to zinc-dependent formaldehyde dehydrogenases and alcohol dehydrogenases from various organisms. The dimeric active enzyme was expressed in Escherichia coli as N-terminal hexa-histidine fusion protein allowing the purification of homogeneous protein in one step. The formation of inclusion bodies could be reduced using a thioreductase deficient E. coli strain as a host and performing expression of (R)-HNL at 28°C. Under these conditions recombinant (R)-HNL was obtained with a specific activity of 76 U/mg.  相似文献   

14.
The leaves of Nandina domestica Thunb. exhibited high hydroxynitrile lyase (HNL) activity in (R)-mandelonitrile synthesis. The specific activity of young leaves was significantly higher than that of mature leaves. We isolated two HNLs with molecular mass of 24.9 kDa (NdHNL-S) and 28.0 kDa (NdHNL-L) from the young leaves. Both NdHNLs were composed of two identical subunits, without FAD and carbohydrates. We purified NdHNL-L and revealed its enzymatic properties. The whole deduced amino acid sequence of NdHNL-L was not homologous to any other HNLs, and the specific activity for mandelonitrile synthesis by NdHNL-L was higher than that by other plant HNLs. The enzyme catalyzed enantioselective synthesis of (R)-cyanohydrins, exhibited high activity at pH 4.0, and high stability in the pH range of 3.5–8.0 and below 55°C. Thus, NdHNL-L is a novel HNL with novel amino acid sequence and has a potential for the efficient production of (R)-cyanohydrins.  相似文献   

15.
Hydroxynitrile lyases (HNLs) catalyze degradation of cyanohydrins to hydrogen cyanide and the corresponding ketone or aldehyde. HNLs can also catalyze the reverse reaction, i.e., synthesis of cyanohydrins. Although several crystal structures of S-selective hydroxynitrile lyases (S-HNLs) have been reported, it remains unknown whether and how dynamics at the active site of S-HNLs influence their broad substrate specificity and affinity. In this study, we analyzed the structure, dynamics and function of S-HNL from Baliospermum montanum (BmHNL), which has an α/β hydrolase fold. Two crystal structures of BmHNL, apo1 and apo2, were determined at 2.55 and 1.9 Å, respectively. Structural comparison between BmHNL (apo2) and S-HNL from Hevea brasiliensis with (S)-mandelonitrile bound to the active site revealed that hydrophobic residues at the entrance region of BmHNL formed hydrophobic interactions with the benzene ring of the substrate. The flexible structures of these hydrophobic residues were confirmed by a 15 ns molecular dynamics simulation. This flexibility regulated the size of the active site cavity, enabling binding of various substrates to BmHNL. The high affinity of BmHNL toward substrates containing a benzene ring was also confirmed by comparing the kinetics of BmHNL and S-HNL from Manihot esculenta. Taken together, the results indicated that the flexibility and placement of the residues are important for the broad substrate specificity of S-HNLs.  相似文献   

16.
Benzoylformate decarboxylase (BFD, EC 4.1.1.7) is a homotetrameric thiamine diphosphate (ThDP)-dependent enzyme which catalyzes the synthesis of chiral 2-hydroxyketones accepting a broad range of aldehydes as substrates. In this study the synthesis of 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde was catalyzed by three BFD variants namely BFD F464I, BFD A460I and BFD A460I-F464I. This paper reports the effect of hydrostatic pressure up to 290 MPa when the reactions were carried out at different benzaldehyde concentrations (5-40 mM) as well as at different pH values (7.0-8.5). Acetaldehyde concentration was fixed at 400 mM in all biotransformations. Reactions performed at high benzaldehyde concentrations and at high hydrostatic pressures showed an increase in (R)-2-HPP formation catalyzed by all BFD variants. For BFD A460I-F464I we observed an increase in the ee of (R)-2-HPP up to 80%, whereas at atmospheric conditions this variant synthesizes (R)-2-HPP with an ee of only 50%. Alkaline conditions (up to pH 8.5) and high hydrostatic pressures resulted in an increase of (R)-2-HPP synthesis, especially in the case of BFD A460I and BFD F464I.  相似文献   

17.
Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2-20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels.  相似文献   

18.
The genome of the rice blast fungus Magnaporthe oryzae codes for two proteins with N-terminal dioxygenase (DOX) and C-terminal cytochrome P450 (CYP) domains, respectively. One of them, MGG_13239, was confirmed as 7,8-linoleate diol synthase by prokaryotic expression. The other recombinant protein (MGG_10859) possessed prominent 10R-DOX and epoxy alcohol synthase (EAS) activities. This enzyme, 10R-DOX-EAS, transformed 18:2n-6 sequentially to 10(R)-hydroperoxy-8(E),12(Z)-octadecadienoic acid (10R-HPODE) and to 12S(13R)-epoxy-10(R)-hydroxy-8(E)-octadecenoic acid as the end product. Oxygenation at C-10 occurred by retention of the pro-R hydrogen of C-8 of 18:2n-6, suggesting antarafacial hydrogen abstraction and oxygenation. Experiments with 18O2 and 16O2 gas confirmed that the epoxy alcohol was formed from 10R-HPODE, likely by heterolytic cleavage of the dioxygen bond with formation of P450 compound I, and subsequent intramolecular epoxidation of the 12(Z) double bond. Site-directed mutagenesis demonstrated that the cysteinyl heme ligand of the P450 domain was required for the EAS activity. Replacement of Asn965 with Val in the conserved AsnGlnXaaGln sequence revealed that Asn965 supported formation of the epoxy alcohol. 10R-DOX-EAS is the first member of a novel subfamily of DOX-CYP fusion proteins of devastating plant pathogens.  相似文献   

19.
The 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB catalyzes NADPH- and oxygen-dependent Baeyer-Villiger oxidation of 4-hydroxyacetophenone to the corresponding acetate ester. Using the purified enzyme from recombinant Escherichia coli, we found that a broad range of carbonylic compounds that are structurally more or less similar to 4-hydroxyacetophenone are also substrates for this flavin-containing monooxygenase. On the other hand, several carbonyl compounds that are substrates for other Baeyer-Villiger monooxygenases (BVMOs) are not converted by HAPMO. In addition to performing Baeyer-Villiger reactions with aromatic ketones and aldehydes, the enzyme was also able to catalyze sulfoxidation reactions by using aromatic sulfides. Furthermore, several heterocyclic and aliphatic carbonyl compounds were also readily converted by this BVMO. To probe the enantioselectivity of HAPMO, the conversion of bicyclohept-2-en-6-one and two aryl alkyl sulfides was studied. The monooxygenase preferably converted (1R,5S)-bicyclohept-2-en-6-one, with an enantiomeric ratio (E) of 20, thus enabling kinetic resolution to obtain the (1S,5R) enantiomer. Complete conversion of both enantiomers resulted in the accumulation of two regioisomeric lactones with moderate enantiomeric excess (ee) for the two lactones obtained [77% ee for (1S,5R)-2 and 34% ee for (1R,5S)-3]. Using methyl 4-tolyl sulfide and methylphenyl sulfide, we found that HAPMO is efficient and highly selective in the asymmetric formation of the corresponding (S)-sulfoxides (ee >99%). The biocatalytic properties of HAPMO described here show the potential of this enzyme for biotechnological applications.  相似文献   

20.
The lack of a few conserved enzymes in the classical mevalonate pathway and the widespread existence of isopentenyl phosphate kinase suggest the presence of a partly modified mevalonate pathway in most archaea and in some bacteria. In the pathway, (R)-mevalonate 5-phosphate is thought to be metabolized to isopentenyl diphosphate via isopentenyl phosphate. The long anticipated enzyme that catalyzes the reaction from (R)-mevalonate 5-phosphate to isopentenyl phosphate was recently identified in a Cloroflexi bacterium, Roseiflexus castenholzii, and in a halophilic archaeon, Haloferax volcanii. However, our trial to convert the intermediates of the classical and modified mevalonate pathways into isopentenyl diphosphate using cell-free extract from a thermophilic archaeon Thermoplasma acidophilum implied that the branch point intermediate of these known pathways, i.e. (R)-mevalonate 5-phosphate, is unlikely to be the precursor of isoprenoid. Through the process of characterizing the recombinant homologs of mevalonate pathway-related enzymes from the archaeon, a distant homolog of diphosphomevalonate decarboxylase was found to catalyze the phosphorylation of (R)-mevalonate to yield (R)-mevalonate 3-phosphate. The product could be converted into isopentenyl phosphate, probably through (R)-mevalonate 3,5-bisphosphate, by the action of unidentified T. acidophilum enzymes fractionated by anion-exchange chromatography. These findings demonstrate the presence of a third alternative “Thermoplasma-type” mevalonate pathway, which involves (R)-mevalonate 3-phosphotransferase and probably both (R)-mevalonate 3-phosphate 5-phosphotransferase and (R)-mevalonate 3,5-bisphosphate decarboxylase, in addition to isopentenyl phosphate kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号