首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerol carbonate is a key multifunctional compound employed as solvent, additive, monomer, and chemical intermediate. Enzymatic synthesis of glycerol carbonate from renewable starting materials (glycerol and dimethyl carbonate) was successfully achieved by immobilized lipase from Candida antarctica (CALB, Novozym 435). Addition of molecular sieves as scavenger for the removal of methanol, which was generated from dimethyl carbonate during the reaction, accelerated a reaction rate. After the optimization, the equimolar use of glycerol and dimethyl carbonate in the Novozym 435-catalyzed reaction yielded a glycerol carbonate with almost quantitative yield. The resulting glycerol carbonate from 60 °C reaction has shown the low enantiomeric excess (13% ee) as configuration of (R)-enantiomer.  相似文献   

2.
Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.  相似文献   

3.
The enzymatic coproduction of biodiesel and glycerol carbonate by the transesterification of soybean oil was studied using lipase as catalyst in organic solvent. To produce biodiesel and glycerol carbonate simultaneously, experiments were designed sequentially. Enzyme screening, the molar ratio of dimethyl carbonate (DMC) to soybean oil, reaction temperature and solvent effects were investigated. The results of enzyme screening, at 100 g/L Novozym 435 (immobilized Candida antarctica lipase B), biodiesel and glycerol carbonate showed conversions of 58.7% and 50.7%, respectively. The optimal conditions were 60 °C, 100 g/L Novozym 435, 6.0:1 molar ratio with tert-butanol as solvent: 84.9% biodiesel and 92.0% glycerol carbonate production was achieved.  相似文献   

4.
Glycerol carbonate is one of the higher value-added products derived from glycerol. In this study, glycerol carbonate (GC) was synthesized by transesterification of glycerol and dimethyl carbonate (DMC) using Novozym 435 (Candida antarctica Lipase B) at various conditions. For the enzymatic production of GC, the optimum conditions were the amount of enzyme (75 g/L), DMC/glycerol molar ratio (2.00), reaction temperature (60°C) and organic solvent (acetonitrile). Experimental investigation of the effect of water content revealed that the conversion of GC was maximized with no added water. The addition of surfactant such as Tween 80 increased the GC conversion, which finally reached 96.25% under the optimum condition and with surfactant addition.  相似文献   

5.
Min JY  Lee EY 《Biotechnology letters》2011,33(9):1789-1796
Biodiesel [fatty acid methyl esters (FAMEs)] and glycerol carbonate were synthesized from corn oil and dimethyl carbonate (DMC) via transesterification using lipase (Novozyme 435) in solvent-free reaction in which excess DMC was used as the substrate and reaction medium. Glycerol carbonate was also simultaneously formed from DMC and glycerol. Conversions of FAMEs and glycerol carbonate were examined in batch reactions. The FAMEs and glycerol carbonate reached 94 and 62.5% from oil and DMC (molar ratio of 1:10) with 0.2% (v/v) water and 10% (w/w) Novozyme 435 (based on oil weight) at 60°C. When Novozyme 435 was washed with acetone after each reaction, more than 80% activity still remained after seven recycling.  相似文献   

6.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

7.
Glycerol carbonate was synthesized as biosolvent for the development of soluble enzymatic system. The effects of various reaction parameters on activity and stability of lipases were investigated using the transesterification of ethyl butyrate with n-butanol as a model reaction. Enzymatic activity in glycerol carbonate was compared with that in water and in conventional organic solvents with different ionizing and dissociating abilities. The pKa value of trichloroacetic acid and transesterification activities of Candida antarctica lipase B and Candida rugosa lipase in glycerol carbonate are similar to those in water, indicating that ionizing and dissociating powers are capable of satisfactorily predicting the biocompatibility of organic solvents for soluble enzymatic systems.  相似文献   

8.
Research work was objectively targeted to synthesize highly pure diacylglycerol (DAG) with glycerolysis of soybean oil in a solvent medium of t-butanol. Three commercial immobilized lipases (Lipozyme RM IM, Lipozyme TL IM and Novozym 435) were screened, and Novozym 435 was the best out of three candidates. Batch reaction conditions of the enzymatic glycerolysis, the substrate mass ratio, the reaction temperature and the substrate concentration, were studied. The optimal reaction conditions were achieved as 6.23:1 mass ratio of soybean oil to glycerol, 40% (w/v) of substrate concentration in t-butanol and reaction temperature of 50 °C. A two-stage molecular distillation was employed for purification of DAG from reaction products. Scale-up was attempted based on the optimized reaction conditions, 98.7% (24 h) for the conversion rate of soybean oil, 48.5% of DAG in the glycerolysis products and 96.1% for the content of DAG in the final products were taken in account as the results.  相似文献   

9.
An efficient procedure for enzymatic desymmetrization of the prochiral dimethyl 3-(4-fluorophenyl)glutarate (3-DFG) in an aqueous–organic phase was successfully developed to prepare methyl (R)-3-(4-fluorophenyl)glutarate ((R)-3-MFG). Novozym 435 was selected as a highly efficient biocatalyst through lipase screening. The effects of various parameters in terms of co-solvent and its concentration, buffer pH, ionic strength and reaction temperature, on the reaction were investigated. It was found that 0.2 M phosphate buffer (pH 8.0) containing 20% MTBE (v/v) was the optimum reaction medium, and the optimum reaction temperature was 30 °C. Under the optimized reaction conditions, (R)-3-MFG was obtained in 95.6% ee value and 92.6% yield after 64 h when the concentration of 3-DFG and Novozym 435 were 200 mmol/l and 20 g/l respectively. Furthermore, Novozym 435 showed an excellent operational stability, retaining above 95% of the initial activity and enantioselectivity after 10 cycles of reaction. The developed method has a potential to be used for efficient enzymatic production of (R)-3-MFG.  相似文献   

10.
《Process Biochemistry》2010,45(12):1923-1927
1,3-Diacylglycerol (1,3-DAG) oil has beneficial effects on suppressing the accumulation of body fat and preventing the increase of body weight. So, more and more attention has been paid to enzyme-mediated 1,3-DAG production in recent years due to its mild reaction condition and safe products. In this work, t-butanol was adopted as the reaction medium for lipase-catalyzed esterification for 1,3-DAG preparation. In t-butanol system, the harmful effects on lipase caused by glycerol could be eliminated completely, so the high enzymatic activity was maintained and the stability of the lipase could be improved significantly. Under the optimum conditions (60 °C, 1.00 g Novozym 435, 2.5:1 molar ratio of oleic acid to glycerol (10.0 g oleic acid and 1.3 g glycerol) and 6.0 g t-butanol), 1,3-DAG concentration of 40% was achieved and Novozym 435 can be used 100 times. A simplified model based on Ping-Pong Bi-Bi with substrate competitive inhibition by glycerol was found to fit the initial rate data and the kinetics parameters were evaluated by nonlinear regression analysis.  相似文献   

11.
The detrimental effects of waste cooking oil on sewer system attracted attention toward its proper management and reusing this waste oil for making biodiesel provides commercial and environmental advantage. In the present study, biodiesel has been successfully produced from waste cooking oil and dimethyl carbonate by transesterification, instead of the conventional alcohol. In this optimization study, the effect of various reaction conditions such as solvent, time and temperature, molar ratio of DMC to oil, enzyme loading and reusability, on the yield of fatty acid methyl ester (FAME) has been studied. The Maximum conversion of FAMEs achieved was 77.87% under optimum conditions (solvent free system, reaction time of 24 h, 60 °C, molar ratio of DMC to oil 6:1, catalyst amount 10% Novozym 435 (based on the oil weight)). Moreover, there was no obvious loss in the conversion after lipases were reused for 6 batches under optimized conditions.  相似文献   

12.
Ilham Z  Saka S 《Bioresource technology》2009,100(5):1793-1796
In this study, the non-catalytic supercritical method has been studied in utilizing dimethyl carbonate. It was demonstrated that, the supercritical dimethyl carbonate process without any catalysts applied, converted triglycerides to fatty acid methyl esters with glycerol carbonate and citramalic acid as by-products, while free fatty acids were converted to fatty acid methyl esters with glyoxal. After 12 min of reaction at 350 degrees C/20 MPa, rapeseed oil treated with supercritical dimethyl carbonate reached 94% (w/w) yield of fatty acid methyl ester. The by-products from this process which are glycerol carbonate and citramalic acid are much higher in value than glycerol produced by the conventional process. In addition, the yield of the fatty acid methyl esters as biodiesel was almost at par with supercritical methanol method. Therefore, supercritical dimethyl carbonate process can be a good candidate as an alternative biodiesel production process.  相似文献   

13.
Combination use of microwave irradiation (MW) as heating mode and ionic liquid (IL) as reaction medium in enzymatic resolution of (R,S)-2-octanol with vinyl acetate as the acyl donor through transesterification by Novozym 435 was investigated. A synergistic effect of MW and IL [EMIM][NTf2], which was screened as the best reaction medium for this reaction, on improving enzyme activity and enantioselectivity was observed. The activity and enantioselectivity of Novozym 435 in [EMIM][NTf2] under MW were much higher than that in solvent free system under conventional heating, in solvent free system under MW, and in [EMIM][NTf2] under conventional heating, respectively. A systematic screening and optimization of the reaction parameters in [EMIM][NTf2] under MW were performed. Under the optimum conditions, 50% yield of (S)-2-octanol with 99% enantiomeric excess was obtained in 6 h. Furthermore, increased thermal stability and reusability of Novozym 435 under the combination use of MW and IL condition were also observed.  相似文献   

14.
Three new synthetic routes were critically evaluated for the lipase-catalyzed production of 1,3-oleoyl-2 docosahexaenoylglycerol (ODO) in relatively large-scale (approximately 200 g). First, the production of 1,3-diolein by the reaction of glycerol and oleic acid followed by incorporation of docosahexaenoic (DHA) ethyl ester at the sn-2 position was studied. 1,3-Diolein was produced in 68.3% and 84.6% yield when stoichiometric amounts of the substrates were reacted at 25 °C for 8 h in the presence of 10% Novozym 435 and Lipozyme RM IM, respectively. Further increase in reaction temperature and time led to decrease in the 1,3-diolein yield. However, only a 9.4% yield of triacylglycerol was obtained in the subsequent reaction step when the 1,3-diolein was reacted with DHA ethyl ester in the presence of Novozym 435. Secondly, the feasibility of direct acidolysis was studied. Acidolysis of single cell oil (SCO) in excess oleic acid using Novozym 435 as the catalyst occurred twice as fast in solvent (tert-butanol) compared to a solvent-free system, and 63% oleic acid was incorporated into SCO. However, the regio-isomeric purity of the product was poor. Finally, the ethanolysis of SCO to produce DHA-enriched 2-monoacylglycerol followed by esterification with oleic acid or ethyl oleate was investigated. ODO was obtained in 50.9% regio-purity by Lipozyme RM IM-catalyzed esterification. The latter method was the most feasible for preparing ODO in large-scale. This synthetic route could be adapted for related triacylglycerols containing highly polyunsaturated when their productions in large-scale and high regio-purity are required.  相似文献   

15.
Physical (ionic exchange of ionic polymers) or chemical (aminoethylamidation, succinylation, hydroxyethylamidation) modifications of Novozym 435 have been performed and the resulting biocatalysts have been assayed in diverse reactions. The coating of the immobilized enzyme with dextran-sulphate via ionic exchange permitted to increase the asymmetric factor of the biocatalyst from A = 13 (ee = 83%) to 24 (ee > 90%) in the hydrolysis of 3-phenylglutaric acid dimethyl diester, producing the (R)-monomethyl ester. The chemical succinylation of Novozym 435 permitted to enhance the biocatalyst enantiospecificity from E = 1 to 13 in the hydrolysis of (±)-mandelic acid methyl ester. In the hydrolysis of (±)-2-O-butyryl-2-phenylacetic acid, the enantiospecificity of Novozym 435 was very high towards the S-enantiomer (E > 100) but it was inverted after the chemical hydroxyethylamidation of the immobilized enzyme (E = 6.6 towards R-enantiomer).Thus, these simple protocols seem to be a very powerful tool to generate a library of biocatalysts from Novozym 435 with very different catalytic properties.  相似文献   

16.
L-ascorbyl acetate was synthesized through lipase-catalyzed esterification using Lipozyme TLIM and Novozym 435. Four solvents, including methanol, ethanol, acetonitrile, and acetone were investigated for the reaction, and acetone and acetonitrile were found to be suitable reaction media. The influences of several parameters such as water activity (a w), substrate molar ratio, enzyme loading, and reaction temperature on esterification of L-ascorbic acid were systematically and quantitatively analyzed. Through optimizing the reaction, lipase-catalyzed esterification of L-ascorbic acid gave a maximum conversion of 99%. The results from using Lipozyme TLIM and Novozym 435 as biocatalysts both showed that a w was an important factor for the conversion of L-ascorbic acid. The effect of pH value on lipase-catalyzed L-ascorbic acid esterification in acetone was also investigated. Furthermore, results from a kinetic characterization of Lipozyme TLIM were compared with those for Novozym 435, and suggested that the maximum reaction rate for Lipozyme TLIM was greater than that for Novozym 435, while the enzyme affinity for substrate was greater for Novozym 436.  相似文献   

17.
The stability and activity of commercial immobilized lipase from Candida antarctica (Novozym 435) in subcritical 1,1,1,2-tetrafluoroethane (R134a) was investigated. The esterification of oleic acid with glycerol was studied as a model reaction in subcritical R134a and in solvent-free conditions. The results indicated that subcritical R134a treatment led to significant increase of activity of Novozym 435, and a maximum residual activity of 300% was measured at 4 MPa, 30 °C after 7 h incubation. No deactivation of Novozym 435 treated with subcritical R134a under different operation factors (pressure 2–8 MPa, temperature 30–60 °C, incubation time 1–12 h, water content 1:1, 1:2, 1:5 enzyme/water, depressurization rate 4 MPa/1 min, 4 MPa/30 min, 4 MPa/90 min) was observed. While the initial reaction rate was high in subcritical R134a, higher conversion was obtained in solvent-free conditions. Though the apparent conversion of the reaction is lower in subcritical R134a, it is more practicable, especially at low enzyme concentrations desired at commercial scales.  相似文献   

18.
《Process Biochemistry》2010,45(4):519-525
The production of biodiesel with soybean oil and methanol through transesterification by Novozym 435 (Candida antarctica lipase B immobilized on polyacrylic resin) were conducted under two different conditions—ultrasonic irradiation and vibration to compare their overall effects. Compared with vibration, ultrasonic irradiation significantly enhanced the activity of Novozym 435. The reaction rate was further increased under the condition of ultrasonic irradiation with vibration (UIV). Effects of reaction conditions, such as ultrasonic power, water content, organic solvents, ratio of solvent/oil, ratio of methanol/oil, enzyme dosage and temperature on the activity of Novozym 435 were investigated under UIV. Under the optimum conditions (50% of ultrasonic power, 50 rpm vibration, water content of 0.5%, tert-amyl alcohol/oil volume ratio of 1:1, methanol/oil molar ratio of 6:1, 6% Novozym 435 and 40 °C), 96% yield of fatty acid methyl ester (FAME) could be achieved in 4 h. Furthermore, repeated use of Novozym 435 after five cycles showed no obvious loss in enzyme activity, which suggested this enzyme was stable under the UIV condition. These results indicated that UIV was a fast and efficient method for biodiesel production.  相似文献   

19.
This paper reports on the synthesis of triglycerides by enzymatic esterification of polyunsaturated fatty acids (PUFA) with glycerol. The lipase Novozym 435 (Novo Nordisk, A/S) from Candida antarctica was used to catalyze this reaction. The main factors influencing the degree of esterification and triglyceride yield were the amount of enzyme, water content, temperature and glycerol/fatty acid ratio. The optimum reaction conditions were established as: 100 mg of lipase; 9 ml hexane; 50°C; glycerol/PUFA concentrate molar ratio 1.2:3; 0% initial water; 1 g molecular sieves added at the start of reaction; and an agitation rate of 200 rpm. Under these conditions, a triglyceride yield of 93.5% was obtained from cod liver oil PUFA concentrate; the product contained 25.7% eicosapentaenoic acid and 44.7% docosahexaenoic acid. These optimized conditions were used to study esterification from a PUFA concentrate of the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. With the first, a triglyceride yield of 96.5%, without monoglycerides and very few diglycerides, was obtained after 72 h of reaction; the resulting triglycerides had 42.5% eicosapentaenoic acid. A triglyceride yield of 89.3% was obtained from a P. cruentum PUFA concentrate at 96 h of reaction, which contained 43.4% arachidonic acid and 45.6% EPA. These high triglyceride yields were also achieved when the esterification reaction was scaled up 5-fold.  相似文献   

20.
The enzymatic synthesis and hydrolysis of alkyl sebacates and o-, m-, p-phthalates were studied. Biosyntheses were conducted through alcoholysis of dimethyl phthalates and dimethyl sebacate with 2-ethylhexanol and 3,5,5-trimethylhexanol in a solvent-free medium, using lipases from Candida antarctica (Novozym 435), Rhizomucor miehei (Lipozyme IM) and Porcine pancreas (PPL). It was found that the synthesis and hydrolysis of sebacic acid esters were characterised by a satisfactory rate, however, by low enantioselectivity. The yield of synthesis of di-3,5,5-trimethylhexyl sebacate catalysed by Novozym 435 at 50 °C was 84%, after 20 h of reaction. The degree of conversion, 62.9% after 350 h, was obtained for alcoholysis reaction of dimethyl m-phthalate with 3,5,5-trimethylhexanol. For the enzymes used, no activity was detected at all on both the synthesis and hydrolysis of di-2-ethylhexyl o-phthalate and di-3,5,5-trimethylhexyl o-phthalate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号