首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Viral nervous necrosis virus (VNNV) is the aetiological agent of viral nervous necrosis (VNN), a widespread disease affecting different marine and freshwater fish species. Striped jack nervous necrosis virus (SJNNV) and red‐spotted grouper nervous necrosis virus (RGNNV) are the only genotypes of the Betanodavirus genus recorded in the Iberian Peninsula to date, but a high percentage of wild specimens simultaneously carrying both genotypes has been recently reported. The coexistence of the two viruses may affect the course of both viral infections. In the present study, viral genome quantification by two absolute real‐time PCR protocols has been performed to characterise the effect of the RGNNV‐SJNNV coexistence (coinfection and superinfection) on the replication of each genotype in E‐11 cells. This is the first study showing the effect of the coexistence on the viral replication of two genotypes within the Betanodavirus genus. The results obtained in vitro showed the partial inhibition of SJNNV replication by the coexistence with RGNNV, whereas RGNNV replication was favoured in coinfection or superinfection with SJNNV.  相似文献   

3.
Betanodaviruses causing viral nervous necrosis (VNN) have been detected and isolated from several species of cultured marine fish worldwide. In Korea, VNN was identified in several species of cultured marine fish. This study presents data on the amplified nested PCR product (420 bp) of 11 nodavirus strains from different species of apparently healthy aquarium fish and invertebrates collected in one private commercial aquarium in Korea. Phylogenetic analyses based on the partial nucleotide sequence (177 bases) of the RNA2 coat protein gene were identical to the redspotted grouper nervous necrosis virus (RGNNV) genotype (96%–100%). The presence of the RGNNV type of betanodaviruses in these subclinically infected aquarium fish and invertebrates imported from different countries probably indicates that the samples were contaminated inside the aquarium and represents a serious challenge for its management of viral nervous necrosis. These positive samples can be an inoculum source of betanodavirus infection to other susceptible fish species inside the aquarium.  相似文献   

4.
Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. The viruses have been classified into 4 distinct types based on nucleotide sequence similarities in the variable region (the so-called T4 region) of the smaller genomic segment RNA2 (1.4 kb). Betanodaviruses have marked host specificity, although the primary structures of the viral RNAs and encoded proteins are similar among the viruses. We have previously demonstrated, using reassortants between striped jack nervous necrosis virus (SJNNV) and redspotted grouper nervous necrosis virus (RGNNV), that RNA2, which encodes the coat protein, strictly controls host specificity. However, because RNA2 is large, we were unable to propose a mechanism underlying this RNA2-based host specificity. To identify the RNA2 region that controls host specificity, we constructed RNA2 chimeric viruses from SJNNV and RGNNV and tested their infectivity in the original host fish, striped jack Pseudocaranx dentex and sevenband grouper Epinephelus septemfasciatus. Among these chimeric viruses, SJNNV mutants containing the variable region of RGNNV RNA2 infected sevenband grouper larvae in a manner similar to RGNNV, while RGNNV mutants containing the variable region of SJNNV RNA2 infected striped jack larvae in a manner similar to SJNNV. Immunofluorescence microscopic studies using anti-SJNNV polyclonal antibodies revealed that these chimeric viruses multiplied in the brains, spinal cords and retinas of the infected fish, as in infections by the parental viruses. These results indicate that the variable region of RNA2 is sufficient to control host specificity in SJNNV and RGNNV.  相似文献   

5.
Currently virus-like particles (VLPs) are receiving much attention as platforms for next generation vaccines. However, chromatography-based methods for purifying VLPs remain challenging. Unlike traditional methods using density gradient for purifying VLPs, there have been few advances in explaining how assembled particles can be obtained by chromatography. Nervous necrosis virus (NNV) infects over 30 species of fish and leads to large economic losses in the farmed fish industry. Previously we developed a heparin chromatography-based method for purifying red-spotted grouper NNV (RGNNV) VLPs. However it is unclear how the assembled RGNNV VLPs are obtained by this method. It is known that assembly of NNV capsid proteins depends on calcium ions. In the present study, we found that the yield of purified RGNNV capsid protein in heparin chromatography was enhanced when calcium ions were present during binding. Also, it appears that the capsid protein of RGNNV undergoes partial disassembly and reassembly during sample preparation prior to heparin chromatography and the protein finally undergoes assembly during the chromatography. Therefore, our results indicated that heparin-binding affinity of RGNNV capsid protein is linked to its ability for VLP formation. The assembly of RGNNV capsid proteins recombinantly produced is a good model for explaining VLP formation during chromatography-based purification processes.  相似文献   

6.
Nervous necrosis virus (NNV) belongs to the betanodavirus of the Nodaviridae family. It is the causative agent of viral nervous necrosis (VNN) disease, and has inflicted devastating damage on the world-wide aquaculture industry. The fish that survived after the outbreak of VNN become persistently NNV-infected carriers. NNV-persistent infection has been demonstrated in a barramundi brain (BB) cell line, and it involves the type I interferon (IFN) response with the expression of Mx gene. However, little of the defense mechanism in fish cells against NNV infection is understood. In this study, the anti-NNV mechanism of barramundi Mx protein (BMx) was elucidated in cBB cells which were derived from BB cell line after serial treatments by NNV-specific antiserum and then became an NNV-free cell line. After NNV infection of cBB cells, the level of viral RNA-dependent RNA polymerase (RdRp) increased with time over a period of 24 h post-infection (hpi), but decreased when the BMx expression increased 48 and 72 hpi. When the expression of BMx was down-regulated by BMx-specific siRNA, the expression levels of viral RNA, proteins and progeny viral titers were restored. The BMx was found to colocalize with viral RdRp at the perinuclear area 24 hpi and coprecipitate with viral RdRp, indicating that they could bind with each other. Viral RdRp was also revealed to colocalize with lysosomes 48 hpi as the NNV RdRp level started to decline. Therefore, it is suggested that BMx inhibited the viral RNA synthesis by interaction with viral RdRp, and redistributed RdRp to perinuclear area for degradation.  相似文献   

7.
Viral nervous necrosis disease (VNN), caused by nervous necrosis virus (NNV), is one major threat to mariculture. Identifying loci and understanding the mechanisms associated with resistance to VNN are important in selective breeding programs. We performed a genome-wide association study (GWAS) using genotyping-by-sequencing (GBS) to study the genomic architecture of resistance to NNV infection in Asian seabass. We genotyped 986 individuals from 43 families produced by 15 founders with 44498 bi-allelic genetic variants using GBS. The GWAS identified three genome-wide significant loci on chromosomes 16, 19, and 20, respectively, and six suggestive loci on chromosomes 1, 8, 14, 15, 21, and 24, respectively, associated with resistance to NNV infection measured as binary and quantitative traits. Using the 500 most significant markers in combination with a training population of 800 samples could reach a genomic prediction accuracy of 0.7. Candidate genes significantly associated with resistance to NNV, including lysine-specific demethylase 2A, beta-defensin 1, and cystatin-B, which play important roles in immune responses against virus infection, were identified. Almost all the candidate genes were differentially expressed in different tissues against NNV infection. The significant genetic variants can be used in genomic selection and help understand the mechanism of resistance to VNN. Future studies should use populations of large effective size and whole genome resequencing to identify more useful genetic variants.  相似文献   

8.
Nervous necrosis virus (NNV) is classified as betanodavirus of Nodaviridae, and has caused mass mortality of numerous marine fish species at larval stage. Antimicrobial peptides (AMPs) play an important role of innate immunity either against bacterial pathogens or viruses. Up to date, little is known if any AMP could effectively inhibit fish nodaviruses and its mechanism. In this study, the antiviral activities of three antimicrobial peptides (AMPs) against grouper NNV (GNNV) were screened in the fish cell line. Two of the three AMPs, tilapia hepcidin 1-5 (TH 1-5) and cyclic shrimp anti-lipopolysaccharide factor (cSALF), were able to agglutinate purified NNV particles into clump, and the clumps were further confirmed to be viral proteins by TEM and Western blot. The NNV solution, separately pre-mixed with AMP (TH 1-5 or cSALF) or deionized-distilled water for 1 h, was used to infect GF-1 cells, and the levels of capsid protein in the GNNV-AMP-infected cells at 1 h post infection were much lower than that in the GNNV-H2O-infected cells, indicating that only a small portion of viral particles in the GNNV-AMP mixture could successfully infected the cells. Treatment of cBB cells with TH 1-5 and cSALF did not induce Mx gene expression; however, grouper epinecidin-1 (CP643-1) could induce the expression of Mx in the pre-treated cBB cells. This study revealed three AMPs with anti-NNV activity through two different mechanisms, and shed light on the future application in aquaculture.  相似文献   

9.
A continuous cell line, designated LJB, derived from the brain of sea perch (Lateolabrax japonicus) was established. LJB cells have been subcultured for more than 60 times in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 15% fetal bovine serum (FBS) since the initial primary culture. LJB cells exhibited maximum growth rate at 28°C in DMEM supplemented with 20% FBS. Cytogenetic analysis indicated that the modal chromosome number was 48, which was identical with the chromosome number of embryonic stem-like cells of sea perch. Comparison of the 18S ribosomal RNA gene sequences of LJB cells and sea perch confirmed that LJB cells originated from sea perch. After transfected with pEGFP-N3 plasmid, LJB cells showed a transfection efficiency of about 40% which was indicated by the percentage of cells expressing green fluorescence protein, indicating the potential application of LJB cells in gene expression studies. Cytopathic effect was clearly observed, and RNA-dependent RNA polymerase gene was also detected in LJB cells post red-spotted grouper nervous necrosis virus (RGNNV) infection. Furthermore, virus replication was confirmed by quantitative RT-PCR, virus titer, and transmission electron microscopy assay in RGNNV-infected LJB cells. The LJB cell line might be used as an ideal in vitro tool for analyzing and understanding the mechanisms of nervous necrosis virus-host interaction.  相似文献   

10.
Fish nodaviruses are causative agents of viral nervous necrosis causing high mortality in cultured marine fishes around the world. The first successful isolation of fish nodavirus was made with SSN-1 cells, which are persistently infected with snakehead retrovirus (SnRV). In the present study, a BF-2 cell line persistently infected with SnRV (PI-BF-2) was established to evaluate the influence of SnRV on the production of fish nodavirus. The PI-BF-2 cells were slightly more slender than BF-2 cells, but no difference was observed in propagation rate between both cell lines. No difference was observed in production of SnRV between PI-BF-2 and SSN-1 cell lines. Although both PI-BF-2 and BF-2 cell lines showed no cytopathic effect (CPE) after inoculation of striped jack nervous necrosis virus (SJNNV) and redspotted grouper nervous necrosis virus (RGNNV), these fish nodaviruses could be amplified in BF-2 cells, and moreover, production of fish nodaviruses in the PI-BF-2 cell line was more than 40 times higher than in BF-2 cells. Thus, it was concluded that BF-2 cell permissiveness to fish nodaviruses was enhanced by persistent infection with SnRV. Furthermore, homologous cDNA to genomic RNA of SJNNV was detected from both PI-BF-2 and SSN-1 cell lines persistently infected with SnRV. The amount of nodavirus cDNA in SJNNV-inoculated PI-BF-2 cells was clearly lower than that in SJNNV-inoculated SSN-1 cells.  相似文献   

11.
12.
Interferon (IFN) plays crucial roles in innate immune responses against viral infections. In the present study, we report cloning and characterization of the IFN gene from the sevenband grouper (Epinephelus septemfasciatus), and the anti-viral effects of its recombinant IFN protein in vivo. The isolated cDNA from sevenband grouper IFN encoded a protein consisting of 178 amino acids, and its first 22 amino acids represented a putative signal peptide. We named the identified sevenband grouper IFN gene as SgIFNa1 based on the result from phylogenetic analysis that categorized the deduced protein sequence into fish IFNa family. The expression of SgIFNa1 mRNA in the head kidney cells was induced by synthetic Poly(I:C), which is known as an inducer of IFN. It has also been confirmed that injection of recombinant SgIFNa1 protein (rSgIFNa1) upregulates expression of the Mx gene, which is known as an IFN-responsive gene, in head kidney cells. Moreover, we observed that preliminarily injection of rSgIFNa1 provided significant protection against a lethal challenge of nervous necrosis virus (NNV), which is a serious disease of sevenband grouper. These results demonstrate that SgIFNa1 has anti-viral activity and the administration of rSgIFNa1 to sevenband grouper is effective in preventing severe symptom development after NNV infection.  相似文献   

13.
Whether viral pathogens that induce ER stress responses benefit the host or the virus remains controversial. In this study we show that betanodavirus induced ER stress responses up-regulate GRP78, which regulates the viral replication and host cellular mitochondrial-mediated cell death. Betanodavirus (redspotted grouper nervous necrosis virus, RGNNV) infection resulted in the following increased ER stress responses in fish GF-1 grouper fin cells: (1) IRE-1 and ATF-6 sensors at 48 h post-infection (p.i.) that up-regulated chaperone protein GRP78; (2) activation of caspase-12; and (3) PERK phosphorylation and down-regulation of Bcl-2. Analyses of GRP78 functions during viral replication using either loss-of-function or gain-of-function approaches showed that GRP78 over-expression also enhanced viral replication and induced cell death. Then, we found that zfGRP78 localization gradually increased in mitochondria after RGNNV infection by EGFP tagging approach. Furthermore, zfGRP78 can interact with viral RNA-dependent RNA polymerase (RdRp) by using immunofluorescent and immunoprecipitation assays. Finally, we found that blocking GRP78-mediated ER signals can reduce the viral death factors protein α and protein B2 expression and decrease the Bcl-2 down-regulation mediated mitochondria-dependent cell death, which also enhances host cellular viability. Taken together, our results suggest that RGNNV infection and expression can trigger ER stress responses, which up-regulate the chaperone GRP78 at early replication stage. Then, GRP78 can interact with RdRp that may enhance the viral replication for increasing viral death factors’ expressions at middle-late replication stage, which can enhance mitochondrial-mediated cell death pathway and viral spreading. These results may provide new insights into the mechanism of ER stress-mediated cell death in RNA viruses.  相似文献   

14.
Comparisons among the complete genomes of four betanodavirus genotypes   总被引:1,自引:0,他引:1  
Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes and have been classified (based on analysis of RNA2 sequences) into 4 genotypes: tiger puffer nervous necrosis virus (TPNNV), barfin flounder nervous necrosis virus (BFNNV), striped jack nervous necrosis virus (SJNNV), and redspotted grouper nervous necrosis virus (RGNNV). Full-length genomes of TPNNV and BFNNV were sequenced for the first time in this study. Their sequence data and those of SJNNV and RGNNV retrieved from GenBank were compared in order to investigate the relationships among the 4 genotypes. Between TPNNV and BFNNV, sequence identities were relatively high in RNA1 and encoded Protein A, but were not significantly high in RNA2 or the coat protein (CP). Similarly, between BFNNV and RGNNV, the amino acid sequences of CP were highly similar, but identities of RNA1, RNA2, and Protein A sequences were not especially high. Furthermore, multiple alignment data of the 4 genotypes of RNA2 sequences revealed that the TPNNV and SJNNV sequences have the same sizes of gaps and extra sequences at the same positions. Collectively, these apparent contradictions in sequence identity suggest that betanodavirus genomes have been constructed via complex evolutionary processes.  相似文献   

15.
Red‐spotted grouper nervous necrosis virus (RGNNV), the causative agent of viral nervous necrosis disease, has caused high mortality and heavy economic losses in marine aquaculture worldwide. However, changes in host cell metabolism during RGNNV infection remain largely unknown. Here, the global metabolic profiling during RGNNV infection and the roles of cellular fatty acid synthesis in RGNNV infection were investigated. As the infection progressed, 71 intracellular metabolites were significantly altered in RGNNV‐infected cells compared with mock‐infected cells. The levels of metabolites involved in amino acid biosynthesis and metabolism were significantly decreased, whereas those that correlated with fatty acid synthesis were significantly up‐regulated during RGNNV infection. Among them, tryptophan and oleic acid were assessed as the most crucial biomarkers for RGNNV infection. In addition, RGNNV infection induced the formation of lipid droplets and re‐localization of fatty acid synthase (FASN), indicating that RGNNV induced and required lipogenesis for viral infection. The exogenous addition of palmitic acid (PA) enhanced RGNNV infection, and the inhibition of FASN and acetyl‐CoA carboxylase (ACC) significantly decreased RGNNV replication. Additionally, not only inhibition of palmitoylation and phospholipid synthesis, but also destruction of fatty acid β‐oxidation significantly decreased viral replication. These data suggest that cellular fatty acid synthesis and mitochondrial β‐oxidation are essential for RGNNV to complete the viral life cycle. Thus, it has been demonstrated for the first time that RGNNV infection in vitro overtook host cell metabolism and, in that process, cellular fatty acid synthesis was an essential component for RGNNV replication.  相似文献   

16.
Nervous necrosis virus (NNV)-induced, host cell apoptosis mediates secondary necrosis by an ill-understood process. In this study, redspotted grouper nervous necrosis virus (RGNNV) is shown to induce mitochondria-mediated necrotic cell death in GL-av cells (fish cells) via cytochrome c release, and anti-apoptotic proteins are shown to protect these cells from death. Western blots revealed that cytochrome c release coincided with disruption of mitochondrial ultrastructure and preceded necrosis, but did not correlate with caspases activation. To identify the mediator(s) of this necrotic process, a protein synthesis inhibitor (cycloheximide; CHX; 0.33 μg/ml) was used to block cytochrome c release as well as PS exposure and mitochondrial membrane permeability transition pore (MMP) loss. CHX (0.33 μg/ml) completely blocked viral protein B2 expression, and partly blocked protein A, protein α, and a pro-apoptotic death protein (Bad) expression. Overexpression of B2 gene increased necrotic-like cell death up to 30% at 48 h post-transfection, suggesting that newly synthesized protein (B2) may be involved in this necrotic process. Finally, necrotic death was prevented by overexpression of Bcl-2 family proteins, zfBcl-xL and xfMcl-1a. Thus, new protein synthesis and release of cytochrome c are required for RGNNV-induced necrotic cell death, which can be blocked by anti-apoptotic Bcl-2 members. J.-L. Wu and J.-R. Hong contributed equally to the research.  相似文献   

17.
Betanodaviruses are one of the serious pathogens in nervous necrosis viral (NNV) disease that brings about mortality in the larval stage of grouper (Epinephelus coioides). In this study, the efficacy of pretreatment, co-treatment, and posttreatment with the antimicrobial epinecidin-1 and hepcidin 1–5 peptides against a betanodavirus was evaluated by intraperitoneal inoculation in grouper. The results showed that co-treatment of epinecidin-1 or hepcidin 1–5 with the virus was effective in promoting a significant decrease in grouper mortality. Re-challenge with virus again after 30 day in co-treated grouper groups showed high survival suggesting that epinecidin-1 and hepcidin 1–5 enhanced fish survival. However, grouper inoculated with NNV and then inoculated with epinecidin-1 8 h later showed significantly different survival from the group inoculated with virus alone, suggesting that epinecidin-1 can be used as a drug to rescue infected grouper. Infection after pretreatment, co-treatment, and posttreatment with epinecidin-1 or hepcidin 1–5 was verified by RT-PCR which showed downregulation of Mx2 and Mx3 gene expressions. All these data strongly suggest that epinecidin-1 and hepcidin 1–5 are effective peptides for protecting grouper larvae by reducing NNV infection.  相似文献   

18.
Nervous necrosis virus (NNV) infection during larvae and juvenile stage in grouper (Epinephelus coioides) has caused severe economic losses in the aquaculture industry in Asia. The aims of this study were to evaluate the influence of recombinant Reishi protein, rLZ-8, on the innate immune responses and the viral resisting ability in fish. Groupers were fed with rLZ-8 supplemented diet (1.25-37.5 mg (rLZ-8)/kg(diet)), and the cytokine gene expression, innate immune responses, and survival rate after NNV challenge were examined. The fish fed with rLZ-8 diet showed 6- to 11-fold upregulated TNF-α and IL-1β gene expression, along with significant increased respiratory burst and phagocytic activity. Moreover, feeding the fish with 37.5 mg/kg rLZ-8 diet elicited significant improvement in post viral challenge survival rate (85.7%). These discoveries indicated that rLZ-8 could be utilized as an ant-pathogen immunostimulant, and provided a new candidate to fight against NNV infection in fish.  相似文献   

19.
A cell line ZBE3 isolated from a continuous cell culture derived from zebrafish Danio rerio blastomeres by clonal growth was characterized. ZBE3 cells had been subcultured for >120 passages since the initial primary culture of the blastomeres. The ZBE3 cells grow stably at temperature from 20 to 32° C with an optimum temperature of 28° C in ESM2 or ESM4 medium with 15% foetal bovine serum (FBS). The optimum FBS concentration for ZBE3 cell growth ranged from 15 to 20%. Cytogenetical analysis indicated that the modal chromosome number of ZBE3 cells was 50, the same as the diploid chromosome number of D. rerio. Significant cytopathic effect was observed in ZBE3 cells after infection with redspotted grouper nervous necrosis virus, Singapore grouper iridovirus and grass carp reovirus, and the viral replication in the cells was confirmed by real‐time quantitative PCR and transmission electron microscopy, indicating the susceptibility of ZBE3 cells to the three fish viruses. After transfected with pEGFP‐N3 plasmid, ZBE3 cells showed a transfection efficiency of about 40% which was indicated by the percentage of cells expressing green fluorescence protein. The stable growth, susceptibility to fish viruses as well as high transfection efficiency make ZBE3 cells be a useful tool in transgenic manipulation, fish virus‐host cell interaction and immune response in fish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号