首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The diatom Eucampia zodiacus Ehrenberg is one of the harmful diatom species which indirectly cause bleachings of Nori (Porphyra thalli) in aquaculture through competitive utilizing of nutrients (especially nitrogen) and resultant nutrient depletion in water columns during the bloom events. The seasonal changes in environmental factors, cell density and cell size of E. zodiacus were investigated for 4 years (April 2002–December 2005) to understand the population ecology of this diatom in Harima-Nada, the eastern part of the Seto Inland Sea, Japan. Vegetative cells of E. zodiacus were usually detected year-round. Total cell densities of E. zodiacus annually peaked from mid-February to early April, and high cell densities were observed in the whole water columns during the bloom-period. Nutrient concentrations decreased with the increase of cell density of E. zodiacus, and low nutrients concentrations continued throughout the E. zodiacus bloom-period. The average cell size (length of apical axis) of E. zodiacus populations ranged from 10.8 μm to 81.2 μm, and the restoration of cell size occurred once in autumn every year just after reaching the minimum cell size. In addition, its great seasonal regularity was confirmed by the decrease and restoration of its cell size through 4-year study period. Temperature and nutrients were suitable in autumn for the growth of E. zodiacus, its blooms never occur in that season. These results strongly suggest that E. zodiacus did not have a resting stage, and it spends autumn for size restoration and starts to bloom thereafter in Harima-Nada in winter and spring, causing fishery damage to Nori aquaculture by resulting nutrient deprivation.  相似文献   

2.
The diatom Eucampia zodiacus is a harmful species that indirectly causes bleaching to nori (Pyropia) cultivation through competitive utilization of nutrients during its bloom, however cellular storage and changes in physiology by asexual reproduction remains unclear. In the present study, we experimentally investigated the nitrate (N), phosphate (P) and silicic acid (Si) consumption by various cell sizes of E. zodiacus strains, the apical axis length of which ranged from 10.2 to 77.3 μm. Nutrient cell quotas of E. zodiacus ranged from 2.7 to 8.4 pM cell−1 for N, 0.34–0.76 pM cell−1 for P and 1.7–7.3 pM cell−1 for Si, and they increased with cell size, in which there is a significant correlation between these two elements. The N and P quotas were estimated to be several times higher than the minimum cell quotas. In contrast, the Si cell quotas were approximately equal to those of the minimum values. Based on the present cell quotas, total nitrate consumption by E. zodiacus population when the blooms reached maximum cell density (=1000 cells ml−1) were estimated to be 6.5 μM. Monthly mean concentrations of dissolved inorganic nitrogen (DIN) range from 3.5 to 8.2 μM during the period of late nori harvest season when E. zodiacus blooms occur, and nori bleaching is reported at the condition of DIN concentration of less than 3 μM in Harima-Nada, eastern Seto Inland Sea, Japan. Therefore, the present results suggest that E. zodiacus causes serious damage to nori cultivation due to high levels of nutrient consumption.  相似文献   

3.
The diatom Eucampia zodiacus Ehrenberg is a harmful diatom which indirectly causes bleaching of aquacultured Nori (Porphyra thalli) through competitive utilization of nutrients during bloom events. In the present study, we experimentally investigated the nitrate (N) and phosphate (P) uptake kinetics of E. zodiacus, Harima-Nada strain. Maximum uptake rates (ρmax), which were obtained by short-term experiments, were 0.777 and 0.916 pmol cell?1 h?1 for nitrate and 0.244 and 0.550 pmol cell?1 h?1 for phosphate at 9 and 20 °C, respectively. The half-saturation constants for uptake (Ks) were 2.59 and 2.92 μM N and 1.83 and 4.85 μM P at 9 and 20 °C, respectively. Although the maximum specific uptake rate (Vmax; Vmax = ρmax/Q0, Q0; minimum cell quota) and Vmax/Ks for nitrate at 9 °C are about 1/2 of those obtained at the optimum temperature (20 °C), they are still higher than those obtained for many other phytoplankton at their optimum temperature conditions for uptake. These results suggest that E. zodiacus utilizes nitrogen efficiently at low water temperature, and it is one of the important factors causing the serious damage to Porphyra thalli by bleaching due of this species. For phosphate, the Ks values of E. zodiacus were higher than those reported for other species; the Vmax and Vmax/Ks values were much lower than those of other diatoms such as Skeletonema costatum (Greville) Cleve. These results suggest that E. zodiacus is disadvantaged compared to other diatom species during competitive utilization of phosphate.  相似文献   

4.
《Harmful algae》2011,10(6):563-567
The large diatom Coscinodiscus wailesii is one of the problematic species which indirectly cause bleaching damage to “Nori” (Porphyra thalli) cultivation through competitive utilization of nutrients during its bloom. In the present study, we experimentally investigated the nitrate (N) and phosphate (P) uptake kinetics of C. wailesii, Harima-Nada strain. Maximum uptake rates (ρmax), obtained by short-term experiments, were 58.3 and 95.5 pmol cell−1 h−1 for nitrate and 41.9 and 59.1 pmol cell−1 h−1 for phosphate at 9 and 20 °C, respectively. The half saturation constants for uptake (Ks) were 2.91 and 5.08 μM N and 5.62 and 6.67 μM P at 9 and 20 °C, respectively. The ρmax values of C. wailesii, much higher than those of other marine phytoplankton species, suggest that C. wailesii is able to take up large amounts of nutrients from the water column. On the other hand, Vmax/Ks (Vmax; Vmax = ρmax/Q0, Q0; minimum cell quota) values of C. wailesii, which is a better measure to evaluate the competitive ability for nutrient uptake, were low in dominant diatom species. This parameter indicates that C. wailesii is disadvantaged compared to other diatom species in competing for nutrients, and the decreasing nutrient concentrations from winter to spring is an important factor limiting C. wailesii blooming in early spring.  相似文献   

5.
Diatom blooms in Thau lagoon are always related to rain events leading to inputs of inorganic nutrients such as phosphate, ammonium and nitrate through the watershed with time lags of about 1 week. In contrast, blooms of Alexandrium catenella/tamarense can occur following periods of 3 weeks without precipitation and no significant input of conventional nutrients such as nitrate and phosphate. Field results also indicate a significant drop (from 22–25 to 15–16 μM over 3 days) in dissolved organic nitrogen (DON) at the bloom peak, as well as a significant inverse relationship between A. catenella/tamarense cell density and DON concentrations that is not apparent for diatom blooms. Such dinoflagellate blooms are also associated with elevated (6–9 μM) ammonium concentrations, a curious feature also observed by other investigators, possibly the results of ammonium excretion by this organism during urea or other organic nitrogen assimilation.The potential use of DON by this organism represents short cuts in the nitrogen cycle between plants and nutrients and requires a new model for phytoplankton growth that is different from the classical diatom bloom model. In contrast to such diatom blooms that are due to conventional (nitrate, phosphate) nutrient pulses, Alexandrium catenella/tamarense blooms on the monthly time scale are due to organic nutrient enrichment, a feature that allows net growth rates of about 1.3 d−1, a value higher than that generally attributed to such organisms.  相似文献   

6.
Fjordic coastlines provide an ideal protected environment for both finfish and shellfish aquaculture operations. This study reports the results of a cruise to the Scottish Clyde Sea, and associated fjordic sea lochs, that coincided with blooms of the diarrhetic shellfish toxin producing dinoflagellate Dinophysis acuta and the diatom genus Chaetoceros, that can generate finfish mortalities. Unusually, D. acuta reached one order of magnitude higher cell abundance in the water column (2840 cells L−1) than the more common Dinophysis acuminata (200 cells L−1) and was linked with elevated shellfish toxicity (maximum 601 ± 237 μg OA eq/kg shellfish flesh) which caused shellfish harvesting closures in the region. Significant correlations between D. acuta abundance and that of Mesodinium rubrum were also observed across the cruise transect potentially supporting bloom formation of the mixotrophic D. acuta. Significant spatial variability in phytoplankton that was related to physical characteristics of the water column was observed, with a temperature-driven frontal region at the mouth of Loch Fyne being important in the development of the D. acuta, but not the Chaetoceros bloom. The front also provided important protection to the aquaculture located within the loch, with neither of the blooms encroaching within it. Analysis based on a particle-tracking model confirms the importance of the front to cell transport and shows significant inter-annual differences in advection within the region, that are important to the harmful algal bloom risk therein.  相似文献   

7.
《Aquatic Botany》2007,86(4):337-345
The seasonal dynamics of seagrass and epiphytic algal primary production were measured in an eelgrass (Zostera marina) bed in the Akkeshi-ko estuary, Hokkaido, Japan (43°02′N, 144°52′E). During spring and early summer, eelgrass biomass increased, with a high production (maximum: 2.89 g C m−2 day−1), but the production and biomass of epiphytic algae remained low. In contrast, epiphytic algae bloomed in August, with a high production (5.21 g C m−2 day−1), but eelgrass production ceased and its biomass subsequently decreased. Therefore, the major primary producers in this eelgrass bed switched seasonally from eelgrass in spring and early summer to epiphytic algae in late summer and autumn. Epiphytic algae maintained similar productivity because of the change of photosynthetic kinetics and the dominant epiphytic diatom changed from highly adhesive species to less adhesive or filamentous small species during the bloom. This suggests that the change of epiphyte density and biomass was due to change of its loss rate, possibly due to herbivorous grazing rate. Moreover, competition between epiphytic algae and eelgrass for nutrients and light may also affect the dramatic seasonal changes in the major primary producers.  相似文献   

8.
《Harmful algae》2003,2(2):89-99
Harmful algal blooms (HABs) have posed a serious threat to the aquaculture and fisheries industries in recent years, especially in Asia. During 1998 there were several particularly serious blooms in the coastal waters of south China, which caused a serious damage to aquaculture. We report a massive dinoflagellate bloom near the mouth of Pearl River in November 1998 with analyses of data from both in situ sea water measurements and satellites. A multi-parameter environmental mapping system was used to obtain real-time measurements of water quality properties and wind data through the algal bloom area, which allow us to compare water measurements from inside and outside of the bloom areas. This bloom with high concentrations of algal cells was evident as a series of red colored parallel bands of surface water that were 100–300 m long and 10–30 m wide with a total area of about 20–30 km2 by visual. The algal density reached 3.8×107 cells l−1 and the surface chlorophyll-a (Chl-a) concentration was high. The algal species has been identified as Gymnodinium cf. catenatum Graham. The water column in the bloom area was stratified, where the surface temperature was 24–25 °C, the salinity was 18–20%, and the northern wind was about 3–4 m s−1 in the bloom area. The SeaWiFS image has shown high Chl-a area coinciding with the bloom area. The sea surface temperature (SST) image of the Pearl River estuary combined with the in situ measurements indicated that the bloom occurred along a mixing front between cooler lower salinity river water and warmer higher saline South China Sea (SCS) water.  相似文献   

9.
During phytoplankton monitoring in the Beagle Channel (≈54°52′ S, 67°32′ W) a previously undetected Alexandrium species was observed in coincidence with mouse bioassay toxicity. Detailed thecal plates analysis using epifluorescence and scanning electron microscopy revealed the presence of the Alexandrium ostenfeldii species complex, showing a mixture of the diagnostic features usually used to discriminate between the morphospecies A. ostenfeldii and A. peruvianum. Cells of the A. ostenfeldii complex were commonly observed during spring after the main annual diatom bloom, when temperatures and salinities were respectively around 7.5–10 °C and 30–30.5 psu, and nutrients showed a seasonal decrease. Toxin analysis by liquid chromatography–mass spectrometry revealed the production of 13-desmethyl spirolide C and 20-methyl spirolide G in cell cultures. The cellular contain of spirolides during exponential phase growth was 0.5906 ± 0.0032 and 0.1577 ± 0.0023 pg cell−1 for 13-desMe-C and 20-Me-G, respectively. A third unknown compound, with a structure resembling that of spirolides was also detected in culture. Moreover, an additional compound with a similar m/z (692) than that of 13-desMe-C but presenting a higher retention time (Rt = 40.5 min) was found in high proportions in mussel samples. PSP toxins were present at low concentration in mussels but were not detected in cultures. These results extend the world-wide distribution of toxic strains of the A. ostenfeldii complex to the Beagle Channel (southern South America), where toxic events have been traditionally linked to the presence of Alexandrium catenella. This is the first confirmed occurrence of spirolides in mussels and plankton from Argentina, which highlights the importance of monitoring these toxins and their producing organisms to protect public health and improve the management of shellfish resources.  相似文献   

10.
The planktonic diatom Pseudo-nitzschia multistriata (Takano) Takano is known to produce the toxin domoic acid and it is recorded during late summer and autumn in the Gulf of Naples (Tyrrhenian Sea, Italy). We describe the sexual cycle of this species and report information on the variability of growth and cell size reduction rates at different experimental conditions. We induced sexual reproduction by crossing monoclonal cultures of opposite mating type. P. multistriata has a heterothallic life cycle that follows the general pattern reported for other congeneric species. Sexual stages were detected in cultures with an average apical length between 55 and 39 μm. The size of the initial cells produced at the end of the sexual phase was comprised between 72 and 82 μm and the lower cell size detected in culture was 26 μm. Sexual reproduction was thus recorded within a size window corresponding to 39–71% of the maximum cell apical length. Both growth performances and cell size reduction rates depend on cell size. The largest cells showed slower growth rates and larger size reduction rates at each division, while the relationship was opposite for cells smaller then 60% of the maximum size.  相似文献   

11.
The diatom Eucampia zodiacus Ehrenberg is one of the harmful diatoms which indirectly cause, through nutrient depletion, discoloration of Porphyra thalli. The effect of temperature on light-limited growth of E. zodiacus was examined at 13 irradiance levels (5–350 μmol m−2 s−1) in combination with five temperatures (8.0–25.0 °C). The results showed that all the parameters of growth-irradiance curves, such as the maximum growth rate (μm), half saturation constant (Ks), threshold value of irradiance (I0) and saturation irradiance for growth (S), increased with increasing temperature. On the basis of the relationship between temperature and growth-irradiance curves and seasonal fluctuation of the light environment in Harima-Nada, the effect of irradiance on the population dynamics of E. zodiacus during the period from October to March was evaluated using two indices, depth of the threshold irradiance for growth (Dt) and depth where a half of its maximum growth rate is attained (Dk). Dt and Dk remained almost stable from October to December, but gradually increased in early March. This indicates that the range of depth at which E. zodiacus was able to grow increased markedly in early spring when E. zodiacus blooms in Harima-Nada. As the vegetative cells of E. zodiacus tend to distribute in relatively deeper water layers, where growth is limited by irradiance, the increase in the depth range over which E. zodiacus is able to grow is concluded to be an important factor allowing development of its blooms.  相似文献   

12.
Annual blooms of the toxic dinoflagellate Karenia brevis in the eastern Gulf of Mexico represent one of the most predictable global harmful algal bloom (HAB) events, yet remain amongst the most difficult HABs to effectively monitor for human and environmental health. Monitoring of Karenia blooms is necessary for a variety of precautionary, management and predictive purposes. These include the protection of public health from exposure to aerosolized brevetoxins and the consumption of toxic shellfish, the protection and management of environmental resources, the prevention of bloom associated economic losses, and the evaluation of long term ecosystem trends and for potential future bloom forecasting and prediction purposes. The multipurpose nature of Karenia monitoring, the large areas over which blooms occur, the large range of Karenia cell concentrations (from 5 × 103 cells L?1 to >1 × 106 cells L?1) over which multiple bloom impacts are possible, and limitations in resources and knowledge of bloom ecology have complicated K. brevis monitoring, mitigation and management strategies. Historically, K. brevis blooms were informally and intermittently monitored on an event response basis in Florida, usually in the later bloom stages after impacts (e.g. fish kills, marine mammal mortalities, respiratory irritation) were noted and when resources were available. Monitoring of different K. brevis bloom stages remains the most practical method for predicting human health impacts and is currently accomplished by the state of Florida via direct microscopic counts of water samples from a state coordinated volunteer HAB monitoring program. K. brevis cell concentrations are mapped weekly and disseminated to stakeholders via e-mail, web and toll-free phone numbers and provided to Florida Department of Agriculture and Consumer Services (FDACS) for management of both recreational and commercial shellfish beds in Florida and to the National Oceanic and Atmospheric Administration (NOAA) for validation of the NOAA Gulf of Mexico HAB bulletin for provision to environmental managers. Many challenges remain for effective monitoring and management of Karenia blooms, however, including incorporating impact specific monitoring for the diverse array of potential human and environmental impacts associated with blooms, timely detection of offshore bloom initiation, sampling of the large geographic extent of blooms which often covers multiple state boundaries, and the involvement of multiple Karenia species other than K. brevis (several of which have yet to be isolated and described) with unknown toxin profiles. The implementation and integration of a diverse array of optical, molecular and hybrid Karenia detection technologies currently under development into appropriate regulatory and non-regulatory monitoring formats represents a further unique challenge.  相似文献   

13.
The Santa Barbara Channel, CA is a highly productive region where wind-driven upwelling and mesoscale eddies are important processes driving phytoplankton blooms. In recent years, the spring bloom has been dominated by the neurotoxin-producing diatom, Pseudo-nitzschia spp. In this paper, we relate a 1.5-year time series of Pseudo-nitzschia spp. abundance and domoic acid concentration to physical, chemical, and biological data to better understand the mechanisms controlling local Pseudo-nitzschia spp. bloom dynamics. The data were used to define the ranges of environmental conditions associated with Pseudo-nitzschia spp. bloom development in the Santa Barbara Channel. The time series captured three large toxic events (max. particulate domoic acid concentration, pDA ~6000 ng L?1; max. cellular domoic acid concentrations, cDA ~88 pg cell?1) in the springs of 2005–2006 and summer 2005 corresponding to bloom-level Pseudo-nitzschia spp. abundance (>5.0 × 104 cells L?1). In general, large increases in Pseudo-nitzschia spp. abundance were accompanied by increases in cDA levels, and cDA peaks preceded pDA peaks by at least one month in both the springs of 2005 and 2006. Statistical models incorporating satellite ocean color (MODIS-Aqua and SeaWiFS) and sea surface temperature (AVHRR) data were created to determine the probability that a remotely sensed phytoplankton bloom contains a significant population of toxic Pseudo-nitzschia spp. Models correctly estimate 98% of toxic bloom situations, with a 7–29% rate of false positive identification. Conditions most associated with high cDA levels are low sea surface temperature, high salinity, increased absorption by cDOM (412 nm), increased reflectance at 510/555 nm, and decreased particulate absorption at 510 nm. Future efforts to merge satellite and regionally downscaled forecasting products with these habitat models will help assess bloom forecasting capabilities in the central CA region and any potential connections to large-scale climate modes.  相似文献   

14.
《Ecological Indicators》2007,7(3):521-540
Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical–chemical parameters, were sampled from 70 small (average 0.86 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to (1) compare diatom assemblage structure between algal types; (2) develop biological indicators of wetland condition; (3) examine synecological relationships between diatom structure and environmental variables, with the ultimate goal of developing an index of biological integrity using a single assemblage. Collected diatom samples were enumerated to 250 valves and identified to species or subspecies. An assessment of wetland condition was made using a landscape-scale human disturbance score (Landscape Development Intensity index, LDI), calculated for each site using land use maps and GIS.Assemblages from both impaired and reference sites were compared using blocked multi-response permutation procedures, the percent similarity index, and visually examined using non-metric multidimensional scaling (NMDS). No ecologically significant compositional differences were found within sites. Mantel's test (Mantel's r = 0.29, p < 0.0001) and NMDS (stress: 14.52, variance: 78.5%) identified epiphytic diatoms as the most responsive to human disturbance. Strong significant correlations (|rs| > 0.50, p < 0.05) were found between epiphytic NMDS site scores and soil pH, specific conductivity, water total phosphorous, and LDI, while soil pH, water color, soil TP, and turbidity were also significantly correlated (p < 0.05).Metrics to assess wetland condition were developed using epiphytic abundance data. Epiphytic taxa sensitive or tolerant to human landscape modification were identified using Indicator Species Analysis, and autecological indices relating diatom sensitivity to nutrients, pH, dissolved oxygen levels, saprobity, salinity, and trophic status were calculated. Fourteen final metrics were identified, scored on an ordinal scale, and combined into the Diatom Index of Wetland Condition (DIWC). The DIWC was highly correlated with the disturbance score (Spearman's rs = −0.71, p < 0.0001), although the results need to be validated.  相似文献   

15.
Urbanization dramatically affects hydrology, water quality and aquatic ecosystem composition. Here we characterized changes in diatom assemblages along an urban-to-rural gradient to assess impacts of urbanization on stream conditions in Beijing, China. Diatoms, water chemistry, and physical variables were measured at 22 urban (6 in upstream and 16 in downstream) and 7 rural reference stream sites during July and August of 2013. One-way ANOVA showed that water physical and chemical variables were significantly different (p < 0.05) between urban downstream and both reference and urban upstream sites, but not between reference and urban upstream sites (p > 0.05). Similarly, structural metrics, including species richness (S), Shannon diversity (H′), species evenness (J′) and Simpson diversity (D′), were significantly different (p < 0.05) between urban downstream and both reference and urban upstream sites, but not (p > 0.05) between reference and urban upstream sites. However, diatom assemblages were very different among all sites. Achnanthidium minutissima was a consistent dominant species in reference sites; Staurosira construens var. venter and Pseudostaurosira brevistriata were the dominant species in urban upstream sites; and Nitzschia palea was the dominant species in urban downstream sites. Clustering analyses based on the relative abundance of diatom species, showed all the samples fit into three groups: reference sites, urban upstream sites, and urban downstream sites. Canonical correspondence analysis (CCA) and Monte Carlo permutation tests showed that concentration of K+, EC, TN, Cl and pH were positively correlated with relative abundance of dominant diatom species in urban downstream samples; WT and F were correlated with reference and urban stream diatom composition. Our results demonstrate that the composition of diatom species was more sensitive to urbanization than the water physical and chemical parameters, and that diatom assemblage structure metrics more accurately assessed water quality. Some species, such as Amphora pediculus and Cocconeis placentula were among the dominant species in low nutrients stream sites; however, they were considered to be high nutrient indicators in some streams in USA. We suggest using caution in applying indicator indices based on species composition from other regions. It is necessary to build a complete set of diatom species data and their co-ordinate environment data for specific regions.  相似文献   

16.
17.
Occurrence of toxic cyanobacterial blooms has become a worldwide problem, increasing the risk of human poisoning due to consumption of seafood contaminated with cyanotoxins. Though no such cases of human intoxication due to toxic blooms have been reported so far from India, most of the studies related to blooms have been restricted to reporting of a bloom and/or antimicrobial activity of its extract. Detailed toxicity study of cyanobacterial blooms are lacking. A study on the toxicity of a dense bloom (14.56 × 106 trichomes L−1) of the marine diazotrophic cyanobacteria, Trichodesmium erythraeum, observed in the coastal waters of Phoenix Bay, Port Blair, Andamans was undertaken. The significance of this bloom is that it was a single species and had conspicuously inhibited the growth of other phytoplankton and complete exclusion of zooplankton from the bloom region, intimating the involvement of toxins in the bloom. The cyanobacterial extracts showed prominent antimicrobial activity against certain human pathogenic bacteria and fungi. Studies on the toxicity of the cyanobacterial extracts was carried out using brine shrimp bioassay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and comet assay. The cyanobacterial extract exhibited toxic effect to Artemia salina causing mortality of up to 40% after 48 h at a concentration of 1 mg mL−1, while it induced cytotoxicity in cell lines (HepG2 and HaCat) and caused DNA damage in human lymphocytes in vitro.  相似文献   

18.
Confined to Texas, USA, for more than 20 years, brown tides caused by Aureoumbra lagunensis emerged in the Indian River Lagoon and Mosquito Lagoon, Florida, USA, during 2012 and 2013, affording the opportunity to assess whether hypotheses developed regarding the occurrence of these blooms are ecosystem-specific. To examine the extent to which top-down (e.g. grazing) and bottom-up (e.g. nutrients) processes controlled the development of Aureoumbra blooms in Florida, nitrogen (N) uptake, nutrient amendment, and seawater-dilution, zooplankton grazing experiments were performed and the responses of Aureoumbra and competing phytoplankton were evaluated. During the study, Aureoumbra comprised up to 98% of total phytoplankton biomass, achieved cell densities exceeding 2 × 106 cells mL−1, and contained isotopically lighter N compared to non-bloom plankton populations, potentially reflecting the use of recycled N. Consistent with this hypothesis, N-isotope experiments revealed that urea and ammonium accounted for >90% of N uptake within bloom populations whereas nitrate was a primary N source for non-bloom populations. Low levels (10 μM) of experimental ammonium enrichment during blooms frequently enhanced the growth of Aureoumbra and resulted in the growth rates of Aureoumbra exceeding those of phycoerythrin-containing, but not phycocyanin-containing, cyanobacteria. A near absence of grazing pressure on Aureoumbra further enabled this species to out-grow other phytoplankton populations. Given this alga is generally known to resist zooplankton grazing under hypersaline conditions, these findings collectively suggest that moderate loading rates of reduced forms of nitrogenous nutrients (e.g ammonium, urea) into other subtropical, hypersaline lagoons could make them susceptible to future brown tides caused by Aureoumbra.  相似文献   

19.
Cochlodinium polykrikoides is a globally distributed, ichthyotoxic, bloom-forming dinoflagellate. Blooms of C. polykrikoides manifest themselves as large (many km2) and distinct patches with cell densities exceeding 103 ml−1 while water adjacent to these patches can have low cell densities (<100 cells ml−1). While the effect of these blooms on fish and shellfish is well-known, their impacts on microbial communities and biogeochemical cycles are poorly understood. Here, we investigated plankton communities and the cycling of carbon, nitrogen, and B-vitamins within blooms of C. polykrikoides and compared them to areas in close proximity (<100 m) with low C. polykrikoides densities. Within blooms, C. polykrikoides represented more than 90% of microplankton (>20 μm) cells, and there were significantly more heterotrophic bacteria and picoeukaryotic phytoplankton but fewer Synechococcus. Terminal restriction fragment length polymorphism analysis of 16S and 18S rRNA genes revealed significant differences in community composition between bloom and non-bloom samples. Inside the bloom patches, concentrations of vitamin B12 were significantly lower while concentrations of dissolved oxygen were significantly higher. Carbon fixation and nitrogen uptake rates were up to ten times higher within C. polykrikoides bloom patches. Ammonium was a more important source of nitrogen, relative to nitrate and urea, for microplankton within bloom patches compared to non-bloom communities. While uptake rates of vitamin B1 were similar in bloom and non-bloom samples, vitamin B12 was taken up at rates five-fold higher (>100 pmol−1 L−1 d−1) in bloom samples, resulting in turn-over times of hours during blooms. This high vitamin demand likely led to the vitamin B12 limitation of C. polykrikoides observed during nutrient amendment experiments conducted with bloom water. Collectively, this study revealed that C. polykrikoides blooms fundamentally change microbial communities and accelerate the cycling of carbon, some nutrients, and vitamin B12.  相似文献   

20.
Massive blooms of the dinoflagellate Cochlodinium polykrikoides occur annually in the Chesapeake Bay and its tributaries. The initiation of blooms and their physical transport has been documented and the location of bloom initiation was identified during the 2007 and 2008 blooms. In the present study we combined daily sampling of nutrient concentrations and phytoplankton abundance at a fixed station to determine physical and chemical controls on bloom formation and enhanced underway water quality monitoring (DATAFLOW) during periods when blooms are known to occur. While C. polykrikoides did not reach bloom concentrations until late June during 2009, vegetative cells were present at low concentrations in the Elizabeth River (4 cells ml−1) as early as May 27. Subsequent samples collected from the Lafayette River documented the increase in C. polykrikoides abundance in the upper branches of the Lafayette River from mid-June to early July, when discolored waters were first observed. The 2009 C. polykrikoides bloom began in the Lafayette River when water temperatures were consistently above 25 °C and during a period of calm winds, neap tides, high positive tidal residuals, low nutrient concentrations, and a low dissolved inorganic nitrogen (DIN) to dissolved inorganic phosphorous (DIP) ratio. The pulsing of nutrients associated with intense but highly localized storm activity during the summer months when water temperatures are above 25 °C may play a role in the initiation of C. polykrikoides blooms. The upper Lafayette River appears to be an important area for initiation of algal blooms that then spread to other connected waterways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号