首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flap endonuclease 1 (FEN1) is a central component of Okazaki fragment maturation in eukaryotes. Genetic analysis of Saccharomyces cerevisiae FEN1 (RAD27) also reveals its important role in preventing trinucleotide repeat (TNR) expansion. In humans such expansion is associated with neurodegenerative diseases. In vitro, FEN1 can inhibit TNR expansion by employing its endonuclease activity to compete with DNA ligase I. Here we employed two yeast FEN1 nuclease mutants, rad27-G67S and rad27-G240D, to further define the mechanism by which FEN1 prevents TNR expansion. Using a yeast artificial chromosome system that can detect both TNR instability and fragility, we demonstrate that the G240D but not the G67S mutation increases both the expansion and fragility of a CTG tract in vivo. In vitro, the G240D nuclease is proficient in cleaving a fixed nonrepeat double flap; however, it exhibits severely impaired cleavage of both nonrepeat and CTG-containing equilibrating flaps. In contrast, wild-type FEN1 and the G67S mutant exhibit more efficient cleavage on an equilibrating flap than on a fixed CTG flap. The degree of TNR expansion and the amount of chromosome fragility observed in the mutant strains correlate with the severity of defective flap cleavage in vitro. We present a model to explain how flap equilibration and the unique tracking mechanism of FEN1 can collaborate to remove TNR flaps and prevent repeat expansion.  相似文献   

2.
There is much evidence to indicate that FEN-1 efficiently cleaves single-stranded DNA flaps but is unable to process double-stranded flaps or flaps adopting secondary structures. However, the absence of Fen1 in yeast results in a significant increase in trinucleotide repeat (TNR) expansion. There are then two possibilities. One is that TNRs do not always form stable secondary structures or that FEN-1 has an alternative approach to resolve the secondary structures. In the present study, we test the hypothesis that concerted action of exonuclease and gap-dependent endonuclease activities of FEN-1 play a role in the resolution of secondary structures formed by (CTG)n and (GAA)n repeats. Employing a yeast FEN-1 mutant, E176A, which is deficient in exonuclease (EXO) and gap endonuclease (GEN) activities but retains almost all of its flap endonuclease (FEN) activity, we show severe defects in the cleavage of various TNR intermediate substrates. Precise knock-in of this point mutation causes an increase in both the expansion and fragility of a (CTG)n tract in vivo. Taken together, our biochemical and genetic analyses suggest that although FEN activity is important for single-stranded flap processing, EXO and GEN activities may contribute to the resolution of structured flaps. A model is presented to explain how the concerted action of EXO and GEN activities may contribute to resolving structured flaps, thereby preventing their expansion in the genome.  相似文献   

3.
Expansion of trinucleotide repeats (TNRs) is the causative mutation in several human genetic diseases. Expanded TNR tracts are both unstable (changing in length) and fragile (displaying an increased propensity to break). We have investigated the relationship between fidelity of lagging-strand replication and both stability and fragility of TNRs. We devised a new yeast artificial chromomosme (YAC)-based assay for chromosome breakage to analyze fragility of CAG/CTG tracts in mutants deficient for proteins involved in lagging-strand replication: Fen1/Rad27, an endo/exonuclease involved in Okazaki fragment maturation, the nuclease/helicase Dna2, RNase HI, DNA ligase, polymerase delta, and primase. We found that deletion of RAD27 caused a large increase in breakage of short and long CAG/CTG tracts, and defects in DNA ligase and primase increased breakage of long tracts. We also found a correlation between mutations that increase CAG/CTG tract breakage and those that increase repeat expansion. These results suggest that processes that generate strand breaks, such as faulty Okazaki fragment processing or DNA repair, are an important source of TNR expansions.  相似文献   

4.
The mechanism of trinucleotide repeat expansion, an important cause of neuromuscular and neurodegenerative diseases, is poorly understood. We report here on the study of the role of flap endonuclease 1 (Fen1), a structure-specific nuclease with both 5' flap endonuclease and 5'-3' exonuclease activity, in the somatic hypermutability of the (CTG)(n)*(CAG)(n) repeat of the DMPK gene in a mouse model for myotonic dystrophy type 1 (DM1). By intercrossing mice with Fen1 deficiency with transgenics with a DM1 (CTG)(n)*(CAG)(n) repeat (where 104n110), we demonstrate that Fen1 is not essential for faithful maintenance of this repeat in early embryonic cleavage divisions until the blastocyst stage. Additionally, we found that the frequency of somatic DM1 (CTG)(n)*(CAG)(n) repeat instability was essentially unaltered in mice with Fen1 haploinsufficiency up to 1.5 years of age. Based on these findings, we propose that Fen1, despite its role in DNA repair and replication, is not primarily involved in maintaining stability at the DM1 locus.  相似文献   

5.
Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yeast diploid cells results in gene conversion of the repeat tract with near 100% efficacy, deleting the repeat tract. Induction of the same TALEN in homozygous yeast diploids leads to contractions of both repeats to a final length of 3–13 triplets, with 100% efficacy in cells that survived the double-strand breaks. Whole-genome sequencing of surviving yeast cells shows that the TALEN does not increase mutation rate. No other CAG/CTG repeat of the yeast genome showed any length alteration or mutation. No large genomic rearrangement such as aneuploidy, segmental duplication or translocation was detected. It is the first demonstration that induction of a TALEN in an eukaryotic cell leads to shortening of trinucleotide repeat tracts to lengths below pathological thresholds in humans, with 100% efficacy and very high specificity.  相似文献   

6.
A quantitative genetic assay was developed to monitor alterations in tract lengths of trinucleotide repeat sequences in Saccharomyces cerevisiae. Insertion of (CAG)50 or (CTG)50 repeats into a promoter that drives expression of the reporter gene ADE8 results in loss of expression and white colony color. Contractions within the trinucleotide sequences to repeat lengths of 8 to 38 restore functional expression of the reporter, leading to red colony color. Reporter constructs including (CAG)50 or (CTG)50 repeat sequences were integrated into the yeast genome, and the rate of red colony formation was measured. Both orientations yielded high rates of instability (4 x 10(-4) to 18 x 10(-4) per cell generation). Instability depended on repeat sequences, as a control harboring a randomized (C,A,G)50 sequence was at least 100-fold more stable. PCR analysis of the trinucleotide repeat region indicated an excellent correlation between change in color phenotype and reduction in length of the repeat tracts. No preferential product sizes were observed. Strains containing disruptions of the mismatch repair gene MSH2, MSH3, or PMS1 or the recombination gene RAD52 showed little or no difference in rates of instability or distributions of products, suggesting that neither mismatch repair nor recombination plays an important role in large contractions of trinucleotide repeats in yeast.  相似文献   

7.
Expansion of CAG/CTG repeats is the underlying cause of >14 genetic disorders, including Huntington's disease (HD) and myotonic dystrophy. The mutational process is ongoing, with increases in repeat size enhancing the toxicity of the expansion in specific tissues. In many repeat diseases, the repeats exhibit high instability in the striatum, whereas instability is minimal in the cerebellum. We provide molecular insights into how base excision repair (BER) protein stoichiometry may contribute to the tissue-selective instability of CAG/CTG repeats by using specific repair assays. Oligonucleotide substrates with an abasic site were mixed with either reconstituted BER protein stoichiometries mimicking the levels present in HD mouse striatum or cerebellum, or with protein extracts prepared from HD mouse striatum or cerebellum. In both cases, the repair efficiency at CAG/CTG repeats and at control DNA sequences was markedly reduced under the striatal conditions, likely because of the lower level of APE1, FEN1, and LIG1. Damage located toward the 5' end of the repeat tract was poorly repaired, with the accumulation of incompletely processed intermediates as compared to an AP lesion in the center or at the 3' end of the repeats or within control sequences. Moreover, repair of lesions at the 5' end of CAG or CTG repeats involved multinucleotide synthesis, particularly at the cerebellar stoichiometry, suggesting that long-patch BER processes lesions at sequences susceptible to hairpin formation. Our results show that the BER stoichiometry, nucleotide sequence, and DNA damage position modulate repair outcome and suggest that a suboptimal long-patch BER activity promotes CAG/CTG repeat instability.  相似文献   

8.
Many diseases caused by trinucleotide expansion exhibit increased severity and decreased age of onset (genetic anticipation) in successive generations. Apparent evidence of genetic anticipation in schizophrenia has led to a search for trinucleotide repeat expansions. We have used several techniques, including Southern blot hybridization, repeat expansion detection (RED) and locus-specific PCR to search for expanded CAG/CTG repeats in 12 families from the United Kingdom and 11 from Iceland that are multiplex for schizophrenia and demonstrate anticipation. The unstable DNA theory could also explain discordance of phenotype for schizophrenia in pairs of monozygotic twins, where the affected twin has a greater number of repeats than the unaffected twin. We used these techniques to look for evidence of different CAG/CTG repeat size in 27 pairs of monozygotic twins who are either concordant or discordant for schizophrenia. We have found no evidence of an increase in CAG/CTG repeat size for affected members in the families, or for the affected twins in the MZ twin sample. Southern hybridization and RED analysis were also performed for the twin and family samples to look for evidence of expansion of GAA/TTC repeats. However, no evidence of expansion was found in either sample. Whilst these results suggest that these repeats are not involved in the etiology of schizophrenia, the techniques used for detecting repeat expansions have limits to their sensitivity. The involvement of other trinucleotide repeats or other expandable repeat sequences cannot be ruled out. Received: 8 September 1997 / Accepted: 13 March 1998  相似文献   

9.
The expansion of trinucleotide repeat (TNR) sequences in human DNA is considered to be a key factor in the pathogenesis of more than 40 neurodegenerative diseases. TNR expansion occurs during DNA replication and also, as suggested by recent studies, during the repair of DNA lesions produced by oxidative stress. In particular, the oxidized guanine base 8-oxoguanine within sequences containing CAG repeats may induce formation of pro-expansion intermediates through strand slippage during DNA base excision repair (BER). In this article, we describe how oxidized DNA lesions are repaired by BER and discuss the importance of the coordinated activities of the key repair enzymes, such as DNA polymerase β, flap endonuclease 1 (FEN1) and DNA ligase, in preventing strand slippage and TNR expansion.  相似文献   

10.
The expansion of trinucleotide repeats has been implicated in 17 neurological diseases to date. Factors leading to the instability of trinucleotide repeat sequences have thus been an area of intense interest. Certain genes involved in mismatch repair, recombination, nucleotide excision repair, and replication influence the instability of trinucleotide repeats in both Escherichia coli and yeast. Using a genetic assay for repeat deletion in E. coli, the effect of mutations in the recA, recB, and lexA genes on the rate of deletion of (CTG)n.(CAG)n repeats of varying lengths were examined. The results indicate that mutations in recA and recB, which decrease the rate of recombination, had a stabilizing effect on (CAG)n.(CTG)n repeats decreasing the high rates of deletion seen in recombination proficient cells. Thus, recombination proficiency correlates with high rates of genetic instability in triplet repeats. Induction of the SOS system, however, did not appear to play a significant role in repeat instability, nor did the presence of triplet repeats in cells turn on the SOS response. A model is suggested where deletion during exponential growth may result from attempts to restart replication when paused at triplet repeats.  相似文献   

11.
12.
Previous studies have shown that expansion-prone repeats form structures that inhibit human flap endonuclease (FEN-1). We report here that faulty processing by FEN-1 initiates repeat instability in mammalian cells. Disease-length CAG tracts in Huntington's disease mice heterozygous for FEN-1 display a tendency toward expansions over contractions during intergenerational inheritance compared to those in homozygous wild-type mice. Further, with regard to human cells expressing a nuclease-defective FEN-1, we provide direct evidence that an unprocessed FEN-1 substrate is a precursor to instability. In cells with no endogenous defects in DNA repair, exogenous nuclease-defective FEN-1 causes repeat instability and aberrant DNA repair. Inefficient flap processing blocks the formation of Rad51/BRCA1 complexes but invokes repair by other pathways.  相似文献   

13.
Repetitive DNA elements are mutational hotspots in the genome, and their instability is linked to various neurological disorders and cancers. Although it is known that expanded trinucleotide repeats can interfere with DNA replication and repair, the cellular response to these events has not been characterized. Here, we demonstrate that an expanded CAG/CTG repeat elicits a DNA damage checkpoint response in budding yeast. Using microcolony and single cell pedigree analysis, we found that cells carrying an expanded CAG repeat frequently experience protracted cell division cycles, persistent arrests, and morphological abnormalities. These phenotypes were further exacerbated by mutations in DSB repair pathways, including homologous recombination and end joining, implicating a DNA damage response. Cell cycle analysis confirmed repeat-dependent S phase delays and G2/M arrests. Furthermore, we demonstrate that the above phenotypes are due to the activation of the DNA damage checkpoint, since expanded CAG repeats induced the phosphorylation of the Rad53 checkpoint kinase in a rad52Δ recombination deficient mutant. Interestingly, cells mutated for the MRX complex (Mre11-Rad50-Xrs2), a central component of DSB repair which is required to repair breaks at CAG repeats, failed to elicit repeat-specific arrests, morphological defects, or Rad53 phosphorylation. We therefore conclude that damage at expanded CAG/CTG repeats is likely sensed by the MRX complex, leading to a checkpoint response. Finally, we show that repeat expansions preferentially occur in cells experiencing growth delays. Activation of DNA damage checkpoints in repeat-containing cells could contribute to the tissue degeneration observed in trinucleotide repeat expansion diseases.  相似文献   

14.
Zhang T  Huang J  Gu L  Li GM 《DNA Repair》2012,11(2):201-209
Expansion of CAG/CTG trinucleotide repeats (TNRs) in humans is associated with a number of neurological and neurodegenerative disorders including Huntington's disease. Increasing evidence suggests that formation of a stable DNA hairpin within CAG/CTG repeats during DNA metabolism leads to TNR instability. However, the molecular mechanism by which cells recognize and repair CAG/CTG hairpins is largely unknown. Recent studies have identified a novel DNA repair pathway specifically removing (CAG)(n)/(CTG)(n) hairpins, which is considered a major mechanism responsible for TNR instability. The hairpin repair (HPR) system targets the repeat tracts for incisions in the nicked strand in an error-free manner. To determine the substrate spectrum of the HPR system and its ability to process smaller hairpins, which may be the intermediates for CAG/CTG expansions, we constructed a series of CAG/CTG hairpin heteroduplexes containing different numbers of repeats (from 5 to 25) and examined their repair in human nuclear extracts. We show here that although repair efficiencies differ slightly among these substrates, removal of the individual hairpin structures all involve endonucleolytic incisions within the repeat tracts in the nicked DNA strand. Analysis of the repair intermediates defined specific incision sites for each substrate, which were all located within the repeat regions. Mismatch repair proteins are not required for, nor do they inhibit, the processing of smaller hairpin structures. These results suggest that the HPR system ensures CAG/CTG stability primarily by removing various sizes of (CAG)(n)/(CTG)(n) hairpin structures during DNA metabolism.  相似文献   

15.
In neurological diseases such as fragile X syndrome, spinal and bulbar muscular atrophy, myotonic dystrophy, and Huntington’s disease, the molecular basis of pathogenicity is the presence of an expanded trinucleotide repeat (TNR) tract (Ashley & Warren, 1995). TNRs implicated in many of these diseases are composed of CAG/CTG repeats. For example, in healthy individuals 5–35, CAG/CTG TNR repeats are present in the huntingtin gene. However, individuals with 40 or greater repeats will develop Huntington’s disease (Andrew et al., 1993). We are particularly interested in how these TNR sequences are packaged in chromatin. Recent evaluations of CAG/CTG TNR sequences in our laboratory have demonstrated that the repeats increase the propensity for the DNA sequences to incorporate into nucleosomes, where nucleosomes represent the minimal unit of packaging in chromatin (Volle & Delaney, 2012). In this work, we are interested in determining the minimum number of CAG/CTG repeats required to confer a significant increase in nucleosome incorporation relative to sequences that lack the TNR sequence. By defining the changes imposed on these fundamental interactions by the presence of a CAG/CTG repeat tract, we will gain insight into the possible interactions that allow for the expansion of these TNR tracts.  相似文献   

16.
潘学峰 《遗传学报》2006,33(1):1-11
与三核苷酸重复序列CAG.CTG、CGG·CCG和GAA·TTC扩增和缺失有关的分子机制尚不能得到清楚的阐释.体外研究表明,上述疾病相关的重复序列可以在体外形成non-B二级结构,并介导重复序列扩增.然而,迄今为止,类似的观察尚未在体内研究过程中得以实现.利用模型生物大肠杆菌和酵母等进行的有关研究并不能模拟三核苷酸重复序列的扩增,这暗示三核苷酸重复序列的体内扩增可能与重复序列形成non-B二级结构关联性并不大.尽管理论上较长的三核苷酸重复序列可以在复制和后复制过程中较易形成non-B DNA二级结构,但这样的二级结构倾向于导致重复序列出现"脆性",而不是扩增.事实上,患者所具有的三核苷酸重复序列扩增并非一定需要通过non-B二级结构的介导,这些重复序列的扩增是可以通过一种RNA转录诱导的局部DNA重复序列的复制和其后的DNA重排得以发生.  相似文献   

17.
Refsland EW  Livingston DM 《Genetics》2005,171(3):923-934
Among replication mutations that destabilize CAG repeat tracts, mutations of RAD27, encoding the flap endonuclease, and CDC9, encoding DNA ligase I, increase the incidence of repeat tract expansions to the greatest extent. Both enzymes bind to proliferating cell nuclear antigen (PCNA). To understand whether weakening their interactions leads to CAG repeat tract expansions, we have employed alleles named rad27-p and cdc9-p that have orthologous alterations in their respective PCNA interaction peptide (PIP) box. Also, we employed the PCNA allele pol30-90, which has changes within its hydrophobic pocket that interact with the PIP box. All three alleles destabilize a long CAG repeat tract and yield more tract contractions than expansions. Combining rad27-p with cdc9-p increases the expansion frequency above the sum of the numbers recorded in the individual mutants. A similar additive increase in tract expansions occurs in the rad27-p pol30-90 double mutant but not in the cdc9-p pol30-90 double mutant. The frequency of contractions rises in all three double mutants to nearly the same extent. These results suggest that PCNA mediates the entry of the flap endonuclease and DNA ligase I into the process of Okazaki fragment joining, and this ordered entry is necessary to prevent CAG repeat tract expansions.  相似文献   

18.
CAG and CTG repeat expansions are the cause of at least a dozen inherited neurological disorders. In these so-called "dynamic mutation" diseases, the expanded repeats display dramatic genetic instability, changing in size when transmitted through the germline and within somatic tissues. As the molecular basis of the repeat instability process remains poorly understood, modeling of repeat instability in model organisms has provided some insights into potentially involved factors, implicating especially replication and repair pathways. Studies in mice have also shown that the genomic context of the repeat sequence is required for CAG/CTG repeat instability in the case of spinocerebellar ataxia type 7 (SCA7), one of the most unstable of all CAG/CTG repeat disease loci. While most studies of repeat instability have taken a candidate gene approach, unbiased screens for factors involved in trinucleotide repeat instability have been lacking. We therefore attempted to use Drosophila melanogaster to model expanded CAG repeat instability by creating transgenic flies carrying trinucleotide repeat expansions, deriving flies with SCA7 CAG90 repeats in cDNA and genomic context. We found that SCA7 CAG90 repeats are stable in Drosophila, regardless of context. To screen for genes whose reduced function might destabilize expanded CAG repeat tracts in Drosophila, we crossed the SCA7 CAG90 repeat flies with various deficiency stocks, including lines lacking genes encoding the orthologues of flap endonuclease-1, PCNA, and MutS. In all cases, perfect repeat stability was preserved, suggesting that Drosophila may not be a suitable system for determining the molecular basis of SCA7 CAG repeat instability.  相似文献   

19.
The mechanisms of trinucleotide repeat expansions, underlying more than a dozen hereditary neurological disorders, are yet to be understood. Here we looked at the replication of (CGG)(n) x (CCG)(n) and (CAG)(n) x (CTG)(n) repeats and their propensity to expand in Saccharomyces cerevisiae. Using electrophoretic analysis of replication intermediates, we found that (CGG)(n) x (CCG)(n) repeats significantly attenuate replication fork progression. Replication inhibition for this sequence becomes evident at as few as approximately 10 repeats and reaches a maximal level at 30 to 40 repeats. This is the first direct demonstration of replication attenuation by a triplet repeat in a eukaryotic system in vivo. For (CAG)(n) x (CTG)(n) repeats, on the contrary, there is only a marginal replication inhibition even at 80 repeats. The propensity of trinucleotide repeats to expand was evaluated in a parallel genetic study. In wild-type cells, expansions of (CGG)(25) x (CCG)(25) and (CAG)(25) x (CTG)(25) repeat tracts occurred with similar low rates. A mutation in the large subunit of the replicative replication factor C complex (rfc1-1) increased the expansion rate for the (CGG)(25) repeat approximately 50-fold but had a much smaller effect on the expansion of the (CTG)(25) repeat. These data show dramatic sequence-specific expansion effects due to a mutation in the lagging strand DNA synthesis machinery. Together, the results of this study suggest that expansions are likely to result when the replication fork attempts to escape from the stall site.  相似文献   

20.
Trinucleotide repeat (TNR) expansions and deletions are associated with human neurodegeneration and cancer. However, their underlying mechanisms remain to be elucidated. Recent studies have demonstrated that CAG repeat expansions can be initiated by oxidative DNA base damage and fulfilled by base excision repair (BER), suggesting active roles for oxidative DNA damage and BER in TNR instability. Here, we provide the first evidence that oxidative DNA damage can induce CTG repeat deletions along with limited expansions in human cells. Biochemical characterization of BER in the context of (CTG)20 repeats further revealed that repeat instability correlated with the position of a base lesion in the repeat tract. A lesion located at the 5′-end of CTG repeats resulted in expansion, whereas a lesion located either in the middle or the 3′-end of the repeats led to deletions only. The positioning effects appeared to be determined by the formation of hairpins at various locations on the template and the damaged strands that were bypassed by DNA polymerase β and processed by flap endonuclease 1 with different efficiency. Our study indicates that the position of a DNA base lesion governs whether TNR is expanded or deleted through BER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号