首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
IL-5 has been shown to specifically enhance IgA secretion in LPS-stimulated splenic B cell cultures. Maximum enhancement of IgA in such cultures, however, requires IL-4 in addition to IL-5. Because the Peyer's patches (PP), compared with spleen and lymph nodes, are enriched for precursors of IgA-secreting cells, we tested whether IL-4 and IL-5 would have a more profound effect on IgA secretion by polyclonally stimulated PP cells than spleen cells. The combination of IL-4 and IL-5 causes a comparable enhancement of IgA secretion in both LPS-stimulated PP and splenic B cell cultures. The majority of IgA secreted in LPS-stimulated PP cell cultures is derived from the sIgA- population. Furthermore, the binding high level of peanut agglutinin, germinal center subpopulation of PP cells is essentially nonresponsive to LPS, even in the presence of lymphokines; the majority of secreted IgA in these cultures is derived from the binding low level of peanut agglutinin population. In contrast to LPS-stimulated cultures, PP B cells secrete considerably more IgA than splenic B cells when polyclonally stimulated by a clone of autoreactive T cells in the presence of IL-4 and IL-5. The majority of IgA made by T cell-stimulated PP cell cultures is derived from the sIgA+ population. In these cultures, sIgA- PP cells and spleen cells secrete comparable levels of IgA and other non-IgM isotypes suggesting that sIgA- PP B cells are similar to splenic B cells in their potential to switch to IgA. In T cell-stimulated cultures the majority of IgA as well as of all other isotypes is also derived from the nongerminal center, binding low level of peanut agglutinin population.  相似文献   

2.
Human recombinant IL-3 stimulates B cell differentiation   总被引:3,自引:0,他引:3  
To investigate the role of human IL-3 in B cell differentiation, we examined its effect on IgG secretion from normal B cells and a B cell line, JDA. The effect of IL-3 was compared to that of IL-6. IL-3 stimulated IgG secretion from tonsil B cells or peripheral blood-derived B cells activated by Staphylococcus aureus Cowan I strain. This effect required the presence of IL-2. Neither B cell growth factor (BCGF) nor IFN-gamma replaced IL-2 in this function. IL-6 stimulated similar IgG secretion from tonsil B cells and also required the presence of IL-2. Moreover, the combination of IL-3 and IL-6 induced IgG secretion equivalent to that induced by either lymphokine. These data suggest that IL-3 and IL-6 might affect normal B cell differentiation by similar mechanism(s). The IL-3 effect on B cells appears to be caused by direct interaction with B cells because IL-3 induced a dose-dependent stimulation of IgG secretion from the JDA cells. This stimulation did not require the presence of IL-2. IL-6 displayed a similar effect on JDA cells and did not require IL-2. However, when IL-3 was combined with IL-6 a synergistic IgG secretion was observed in JDA cultures. These data suggest that IL-3 may potentiate the human immune response via stimulation of B cell differentiation and that its effect is dependent on the target B cell population, its stage of activation and/or maturation.  相似文献   

3.
The role of 5'-methylthioadenosine (MTA), formed during the process of polyamine biosynthesis, on differentiation of osteoprogenitor cells was assessed by its effects on alkaline phosphatase (ALP) activity, bone nodule formation and osteopontin contents of cultured rat calvaria (RC) cells. These three markers were stimulated by exogenous MTA and were depressed by 5'-difluoromethylthioadenosine (DFMTA), a synthetic inhibitor of MTA phosphorylase, which cleaves MTA to adenine and 5-methylthioribose-1-phosphate. 5-Methylthioribose and 2-keto-4-methylthiobutyrate, metabolites of 5-methylthioribose-1-phosphate, had no effects on ALP activity and bone nodule formation in the presence or absence of DFMTA. On the other hand, adenine enhanced ALP activity, bone nodule formation and osteopontin contents in mineralized nodules and also partially reversed DFMTA-induced inhibition of these three markers. MTA, its metabolites and DFMTA did not affect the growth of RC cells under these culture conditions. These results suggest that adenine formed from MTA is important in the differentiation of RC cells.  相似文献   

4.
In these studies we utilized the Ag (SRBC)-reactive B cell line CH12LX to study isotype switching. CH12LX cells are a stable population of B cells mainly bearing membrane IgM (mIgM) (98 to 99%) with a small population of B cells bearing membrane IgA (mIgA) (1 to 2%). LPS induced a 5- to 10-fold increase in the secretion of both Ig, whereas a lymphokine-rich supernatant of D10 T cells induced a greater increase in the secretion of IgA than IgM. Analysis of the latter effect with recombinant lymphokines disclosed that rIL-4 induced an increase in the number of mIgA+ cells (6 to 15%) with minimal effect on IgA secretion, whereas IL-5 induced increased IgA secretion but had no effect on mIgA expression. The addition of both lymphokines induced increased mIgA expression and IgA secretion. No effect on mIgA expression or IgA secretion was seen with other lymphokines, including IL-1, IL-2, IL-3, IL-6, GM-CSF, and IFN-gamma. The rIL-4 effect on CH12LX cells represents true differentiation rather than selective proliferation for the following reasons: first, subclones of CH12LX cells respond to IL-4-containing T cell supernatant in the same fashion as the original cell line; second, culture of CH12LX cells with IL-4 causes the appearance of large numbers of dual-bearing mIgM/mIgA cells as well as mIgA+ cells and a dual-bearing mIgM/mIgA line was obtained by cloning CH12LX after stimulation with an IL-4-containing supernatant; third, sorted mIgA+ and mIgA- CH12LX cells had similar rates of proliferation in the presence or absence of IL-4. In further studies, it was found that IL-5 causes IgA secretion by mIgA+ but not mIgA- CH12LX cells indicating that it is acting as a post-isotype switch differentiation factor. These studies are consistent with the view that IL-4 and IL-5 act in a sequential fashion to induce IgA expression and secretion in CH12LX cells, IL-4 inducing differentiation of mIgM+ cells to mIgA+ cells and IL-5 enhancing the IgA secretion by the resulting mIgA-bearing cells.  相似文献   

5.
IL-1 inhibits B cell differentiation in long term bone marrow cultures   总被引:2,自引:0,他引:2  
There is evidence that stromal cells are responsive to changes in their external milieu and that this can affect their function. IL-1 has been identified as one mediator that can affect stromal cells by increasing their secretion of CSF. The monokine has also been reported to be a B cell differentiation factor. The purpose of this study was to test the effects of IL-1 on the pattern of hemopoietic cell differentiation by adding IL-1 alpha to myeloid long term bone marrow cultures (MBMC) at the time of their transfer to lymphoid bone marrow culture conditions. This usually results in the cessation of myelopoiesis and the induction of B lymphopoiesis. The addition of 50 U/ml of rIL-1 alpha, but not 10 U/ml, to MBMC at the time of their transfer to lymphoid conditions resulted in a complete inhibition of B cell differentiation and sustained myelopoiesis. To determine whether adherent layer cells contributed to this effect, conditioned medium (CM) was collected from adherent layers treated previously with the antibiotic mycophenolic acid. This depletes the hemopoietic cells from the cultures and retains a purified population of stromal cells. CM from mycophenolic acid- treated adherent layers exposed for 24 h to 50 U/ml of IL-1 was added at volume concentrations of 5, 10, and 25% to MBMC at the time of transfer to lymphoid bone marrow culture conditions and at each feeding thereafter. Expression of the B lineage associated 14.8 Ag and IgM was inhibited on a dose dependent basis, and myelopoiesis was sustained in cultures to which 25% CM had been added. Induction of B lymphopoiesis occurred in cultures to which adherent cell CM not exposed to IL-1 had been added. The CM from the IL-1-treated adherent cells contained CSF, because it promoted the growth of myeloid colonies from fresh marrow or MBMC cells and stimulated the granulocyte-macrophage-CSF sensitive FDC-P1 cell line to proliferate. IL-3 was not present in the CM, because stimulation of the IL-3 sensitive 32D cell line was not observed. The CM from the IL-1-treated adherent cells stimulated thymocytes to proliferate in the presence of PHA. This raised the possibility that the induced CSF may have required IL-1 to mediate their effects in the cultures. However, B lymphopoiesis was inhibited and myelopoiesis maintained upon addition of recombinant granulocyte-, macrophage-, and granulocyte-macrophage-CSF to cultures, indicating that IL-1 or other non-CSF molecules induced by it need not be present.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
IL-6 is considered one of the well characterized cytokines exhibiting homeostatic, pro- and anti-inflammatory activities, depending on the receptor variant and the induced intracellular cis- or trans-signaling responses. IL-6-activated pathways are involved in the regulation of cell proliferation, survival, differentiation, and cell metabolism changes.Deviations in IL-6 levels or abnormal response to IL-6 signaling are associated with several autoimmune diseases including IgA nephropathy (IgAN), one of most frequent primary glomerulonephritis worldwide. IgAN is associated with increased plasma concentration of IL-6 and increased plasma concentration of aberrantly galactosylated IgA1 immunoglobulin (Gd-IgA1). Gd-IgA1 is specifically recognized by autoantibodies, leading to the formation of circulating immune complexes (CIC) with nephritogenic potential, since CIC deposited in the glomerular mesangium induce mesangial cells proliferation and glomerular injury. Infection of the upper respiratory or digestive tract enhances IL-6 production and in IgAN patients is often followed by the macroscopic hematuria.This review recapitulates general aspects of IL-6 signaling and summarizes experimental evidences about IL-6 involvement in the etiopathogenesis of IgA nephropathy through the production of Gd-IgA1 and regulation of mesangial cell proliferation.  相似文献   

7.
Differentiation of B cells into Ig-secreting cells (ISC) is critical for the generation of protective humoral immune responses. Because of the important role played by secreted Ig in host protection against infection, it is necessary to identify molecules that control B cell differentiation. Recently, IL-21 was reported to generate ISC from activated human B cells. In this study, we examined the effects of IL-21 on the differentiation of all human mature B cell subsets--neonatal, transitional, naive, germinal center, IgM-memory, and isotype-switched memory cells--into ISC and compared its efficacy to that of IL-10, a well-known mediator of human B cell differentiation. IL-21 rapidly induced the generation of ISC and the secretion of vast quantities IgM, IgG and IgA from all of these B cell subsets. Its effect exceeded that of IL-10 by up to 100-fold, highlighting the potency of IL-21 as a B cell differentiation factor. Strikingly, IL-4 suppressed the stimulatory effects of IL-21 on naive B cells by reducing the expression of B-lymphocyte induced maturation protein-1 (Blimp-1). In contrast, memory B cells were resistant to the inhibitory effects of IL-4. Finally, the ability of human tonsillar CD4+CXCR5+CCR7- T follicular helper (TFH) cells, known to be a rich source of IL-21, to induce the differentiation of autologous B cells into ISC was mediated by the production of IL-21. These findings suggest that IL-21 produced by TFH cells during the primary as well as the subsequent responses to T cell-dependent Ag makes a major contribution to eliciting and maintaining long-lived humoral immunity.  相似文献   

8.
Recent studies have shown that purified IL-5 from T cell lines and clones enhances IgA synthesis in LPS-triggered splenic B cell cultures, and that this effect is augmented by IL-4. In this study we have examined the ability of rIL-5 and rIL-4 to support spontaneous Ig synthesis in normal Peyer's patch (PP) B cell cultures. The rIL-4 supported proliferation of the HT-2 and in vivo adapted BCL-1 cell lines, increased Ia expression on normal spleen B cells, co-stimulated splenic B cell proliferation in the presence of anti-mu and enhanced IgG1 synthesis in LPS triggered splenic B cell cultures. The rIL-5 supported BCL-1 proliferation, co-stimulated splenic B cell proliferation in the presence of dextran sulfate, and increased IgA synthesis in LPS-stimulated splenic B cell cultures. Markedly enhanced IgA responses occurred in PP B cell, but not splenic B cell cultures supplemented with rIL-5 in the absence of an added B cell trigger. However, rIL-4 alone did not enhance IgA synthesis or increase the IgA synthesis of PP B cell cultures stimulated with rIL-5. The rIL-5 receptive PP B cells were present in the blast cell subpopulation, inasmuch as a low density fraction isolated on Percoll gradients accounted for the enhanced IgA synthesis. Further, cell cycle analysis of whole PP B cells using propidium iodide in conjunction with staining for surface B220, demonstrated that approximately 12 to 16% of the B cells were in the S and G2/M stages of cell cycle, the remainder being in Go + G1. The surface IgM+ B cells were predominantly in Go + G1, whereas the sIgA+ B cell subpopulation was enriched for cells in the S and G2/M compartments. The PP B cell subset responsible for enhanced IgA synthesis in the presence of rIL-5 was sIgA-positive because FACS-depletion of the sIgA+ B cells resulted in the total loss of rIL-5 enhanced IgA synthesis. Further, when PP B cells were enriched for sIgA+ B cells by cell sorting, these cells responded to rIL-5 with increased IgA synthesis in a dose-dependent manner. When the actual numbers of IgA secreting cells were assessed in PP B cell cultures with supplemental rIL-5, no significant increase in total IgA-producing cells was noted when compared with B cells cultured without rIL-5.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
10.
Murine gammaherpesvirus 68 (MHV68) establishes long-term latency in memory B cells similar to the human gammaherpesvirus Epstein Barr Virus (EBV). EBV encodes an interleukin-10 (IL-10) homolog and modulates cellular IL-10 expression; however, the role of IL-10 in the establishment and/or maintenance of chronic EBV infection remains unclear. Notably, MHV68 does not encode an IL-10 homolog, but virus infection has been shown to result in elevated serum IL-10 levels in wild-type mice, and IL-10 deficiency results in decreased establishment of virus latency. Here we show that a unique MHV68 latency-associated gene product, the M2 protein, is required for the elevated serum IL-10 levels observed at 2 weeks post-infection. Furthermore, M2 protein expression in primary murine B cells drives high level IL-10 expression along with increased secretion of IL-2, IL-6, and MIP-1alpha. M2 expression was also shown to significantly augment LPS driven survival and proliferation of primary murine B cells. The latter was dependent on IL-10 expression as demonstrated by the failure of IL10-/- B cells to proliferate in response to M2 protein expression and rescue of M2-associated proliferation by addition of recombinant murine IL-10. M2 protein expression in primary B cells also led to upregulated surface expression of the high affinity IL-2 receptor (CD25) and the activation marker GL7, along with down-regulated surface expression of B220, MHC II, and sIgD. The cells retained CD19 and sIgG expression, suggesting differentiation to a pre-plasma memory B cell phenotype. These observations are consistent with previous analyses of M2-null MHV68 mutants that have suggested a role for the M2 protein in expansion and differentiation of MHV68 latently infected B cells-perhaps facilitating the establishment of virus latency in memory B cells. Thus, while the M2 protein is unique to MHV68, analysis of M2 function has revealed an important role for IL-10 in MHV68 pathogenesis-identifying a strategy that appears to be conserved between at least EBV and MHV68.  相似文献   

11.
In this study, we examine whether native cholera toxin (nCT) as a mucosal adjuvant can support trinitrophenyl (TNP)-LPS-specific mucosal immune responses. C57BL/6 mice were given nasal TNP-LPS in the presence or absence of nCT. Five days later, significantly higher levels of TNP-specific mucosal IgA Ab responses were induced in the nasal washes, saliva, and plasma of mice given nCT plus TNP-LPS than in those given TNP-LPS alone. High numbers of TNP-specific IgA Ab-forming cells were also detected in mucosal tissues such as the nasal passages (NPs), the submandibular glands (SMGs), and nasopharyngeal-associated lymphoreticular tissue of mice given nCT. Flow cytometric analysis showed that higher numbers of surface IgA+, CD5+ B cells (B-1a B cells) in SMGs and NPs of mice given nasal TNP-LPS plus nCT than in those given TNP-LPS alone. Furthermore, increased levels of IL-5R alpha-chain were expressed by B-1a B cells in SMGs and NPs of mice given nasal TNP-LPS plus nCT. Thus, CD4+ T cells from these mucosal effector lymphoid tissues produce high levels of IL-5 at both protein and mRNA levels. When mice were treated with anti-IL-5 mAb, significant reductions in TNP-specific mucosal IgA Ab responses were noted in external secretions. These findings show that nasal nCT as an adjuvant enhances mucosal immune responses to a T cell-independent Ag due to the cross-talk between IL-5Ralpha+ B-1a B cells and IL-5-producing CD4+ T cells in the mucosal effector lymphoid tissues.  相似文献   

12.
A case of selective deficiency of IgG and IgA, in a 13-year old girl, is described. Immunologic investigations, showing an almost complete absence of IgG- and IgA-bearing lymphocytes and significant amounts of IgD and IgM positive cells, suggest the possibility of a block in the shift from IgM to IgG synthesis at the B lymphocyte level.  相似文献   

13.
The cDNA for stem cell factor was recently isolated from Buffalo rat liver cells (BRL-3A) and recombinant rat stem cell factor produced from Escherichia coli (rrSCF164). rrSCF164 synergizes with rhIL-7 to stimulate pre-B clonal growth in agar culture of mouse bone marrow cells, and in this study we have characterized the role of rrSCF164 in B cell development. The combination of rrSCF164 plus rhIL-7 stimulated increased colony numbers compared with the sum of colonies stimulated by rrSCF164 and rhIL-7 alone. Also, increased cell proliferation per colony was stimulated by the combination of rrSCF164 plus rhIL-7 compared with rhIL-7 or rrSCF164 alone. The colonies formed with rrSCF164 plus rhIL-7 and rhIL-7 alone contained exclusively pre-B cells, which expressed B220 Ag and cytoplasmic mu-chain, but were negative for surface Ig expression. Morphological examination of the cells in the colonies showed blast-like characteristics. rrSCF164 alone and in combination with rhIL-7 stimulated generation of B220+ cells in liquid culture of B220- cells, whereas rhIL-7 alone had no stimulatory effect on B220- cells. Both stem cell factor mRNA and bioactivity were detected in a mouse bone marrow-derived stromal cell line, termed OZ-11. We propose that stem cell factor is a stromal-derived factor that synergizes with IL-7 to stimulate the proliferation and differentiation of pro-B cells to pre-B cells, which become responsive to IL-7 alone.  相似文献   

14.
CH12 tumor B cells specific for SRBC require SRBC as Ag and the lymphokine IL-5 (formerly known as BCGFII) for optimal proliferation and differentiation to Ig-secreting cells. Lysed SRBC and IL-5 purified to homogeneity synergize markedly, especially at low B cell densities. A sizable proportion of CH12 cells differentiate into Ig-secreting plaque-forming cells when low numbers of the B lymphoma cells (100 to 3000) are cultured with Ag and IL-5. IL-2 or IL-4 have no effects. Intact SRBC or lysed SRBC are equally effective as sources of Ag. Even in the presence of the mitogens LPS and dextran sulfate, there is a striking requirement for Ag for both proliferation and differentiation at low B cell density. Because of the low cell numbers used, the results strongly suggest that the effects of Ag and lymphokine are directly on the B cell. The cell surface phenotype of the CH12 lymphoma and the kinetics of their response suggest that CH12 B cells have the characteristics of activated B cells. Thus, it appears that Ag binding to surface Ig gives a direct signal to at least some B cells that is critical in the later phases of the B cell response after initial activation during which proliferation and differentiation to Ig secretion occur and that the lymphokine IL-5 costimulates with Ag to mediate this phase of the response.  相似文献   

15.
16.
The role of aggregation in embryonal carcinoma cell differentiation   总被引:8,自引:0,他引:8  
Cultures of the P19 line of embryonal carcinoma cells differentiate into various cell types including cardiac muscle when aggregated and exposed to medium containing 1% dimethylsulfoxide (DMSO). DMSO-treated aggregates became completely covered with an epithelial cell type 3 to 4 days following drug exposure. This epithelial cell was tentatively identified as primitive extraembryonic endoderm by its ultrastructural appearance and its possession of cytokeratin intermediate filaments. Muscle cells developed within the interior of DMSO-treated aggregates. They first became apparent 5 to 6 days after DMSO exposure and were characterized by the presence of striated muscle-specific myosin, immature myofibrils, and intercalated discs. We determined the proportion of cells developing into epithelium and muscle in aggregates of various sizes and showed that the proportion of epithelium was highest in small aggregates whereas muscle cells developed only in aggregates of relatively large size. The muscle was usually associated with necrotic areas which developed within the interior of large aggregates. Our results suggest that cardiac muscle differentiation in the aggregates requires both the DMSO-induced formation of an epithelial cell coat and one other condition which may be the proximity to necrotic areas.  相似文献   

17.
A novel role for accessory cells in T cell-dependent B cell differentiation   总被引:1,自引:0,他引:1  
The monocyte requirement for pokeweed mitogen-induced T cell-dependent B cell activation was reexamined. We report a dichotomy in the requirement for accessory cells in B cell proliferation and differentiation. Adherent cell-depleted human peripheral blood mononuclear cells which contained only 5% monocytes generated sufficient T cell help for optimal B cell proliferation. However, the presence of 10 to 20% monocytes were required during the last 5 days of culture for stimulated B cells to become IgG-secreting cells. Similar numbers of monocytes were also needed for anti-CD3-induced B cell differentiation. Moreover, monocytes alone added to previously activated B cells could support B cell differentiation in the absence of T cells. To determine the role of cytokines in this system, we demonstrated that supernatants of adherent cell-depleted PBMC contained decreased IL-6 activity in comparison with unseparated PBMC, but not IL-1, IL-2, or BCGF. Recombinant IL-6, however, added back either alone or with other cytokines could not replace the effects of intact monocytes on B cell differentiation. Physical interaction between the accessory cells and the responder cells was also required. As a minimum, paraformaldehyde-fixed monocytes, IL-6, and IL-1 were needed to reconstitute maximal IgG secretion. These studies suggest that accessory cells capable of producing IL-1 and IL-6 can have direct effects on the terminal differentiation of stimulated B cells.  相似文献   

18.
The effect of rIL-6 on the growth and differentiation of highly purified human peripheral blood B cells was examined. IL-6 alone induced minimal incorporation of [3H]thymidine by unstimulated or Staphylococcus aureus (SA)-stimulated B cells and did not augment proliferation induced by SA and IL-2. Similarly, IL-6 alone did not support the generation of Ig-secreting cells (ISC) or induce the secretion of Ig by unstimulated or SA-stimulated B cells. However, IL-6 did augment the generation of ISC and the secretion of all isotypes of Ig induced by SA and IL-2. Maximal enhancement of B cell responsiveness by IL-6 required its presence from the initiation of culture. Delaying the addition of IL-6 to B cells stimulated with SA and IL-2 beyond 24 h diminished its effect on ISC generation. However, increased Ig production but not ISC generation was observed when IL-6 was added to B cells that had been preactivated for 48 h with SA and IL-2. This effect was most marked when the activated B cells were also stimulated with IL-2. IL-6 in combination with other cytokines such as IL-1 and IL-4 did not induce the secretion of Ig or generation of ISC in the absence of IL-2. Moreover, antibody to IL-6 did not inhibit the effect of IL-2 on the growth and differentiation of B cells stimulated with SA, but did inhibit the IL-6-induced augmentation of Ig secretion by B cells stimulated with SA and IL-2. IL-6 alone enhanced T cell dependent induction of B cell differentiation stimulated by PWM. Part of this enhancement was related to its capacity to increase the production of IL-2 in these cultures. These results indicate that IL-6 has several direct enhancing effects on the differentiation of B cells, all of which are at least in part dependent on the presence of IL-2. In addition, IL-6 can indirectly increase B cell differentiation by increasing IL-2 production by T cells.  相似文献   

19.
In these studies we determined the capacity of IL-6 to act as a differentiation cofactor for murine Peyer's patch B cells producing different Ig classes and subclasses. In preliminary studies we determined that sufficient endogenous IL-6 was produced in LPS-induced cell systems to obscure responses to exogenous IL-6. We therefore studied IL-6 effects on Peyer's patch B cells (T cell-depleted cell populations) in the absence of LPS, relying on responses of in vivo-activated cells. rIL-1 alpha or purified IL-6 only slightly enhanced synthesis of IgM over minimal baseline levels in Peyer's patch T cell-depleted cell cultures; however, when IL-6 was added to cultures also containing rIL-1, IgM synthesis was very substantially increased. In addition, rIL-5 alone gave rise to a modest increase in IgM synthesis and its effect was not enhanced by either rIL-1 or IL-6. IgG production (mainly IgG3) followed a similar pattern. In contrast, IgA production was only modestly increased above baseline by rIL-1, rIL-5, or IL-6 alone or by rIL-1 and IL-6 in combination, but was greatly increased by rIL-5 and IL-6 in combination. The effect of IL-6 on Ig synthesis in the above studies was not due to an effect on cell proliferation. In summary, these data indicate that B cells differ in respect to the cytokines supporting maximal terminal differentiation and thus the class of Ig produced may depend on the presence of a particular combination of cytokines and lymphokines.  相似文献   

20.
Adenosine is an endogenous metabolite produced during hypoxia or inflammation. Previously implicated as an anti-inflammatory mediator in CD4(+) T cell regulation, we report that adenosine acts via dendritic cell (DC) A(2B) adenosine receptor (A(2B)AR) to promote the development of Th17 cells. Mouse naive CD4(+) T cells cocultured with DCs in the presence of adenosine or the stable adenosine mimetic 5'-(N-ethylcarboximado) adenosine resulted in the differentiation of IL-17- and IL-22-secreting cells and elevation of mRNA that encode signature Th17-associated molecules, such as IL-23R and RORγt. The observed response was similar when DCs were generated from bone marrow or isolated from small intestine lamina propria. Experiments using adenosine receptor antagonists and cells from A(2B)AR(-/-) or A(2A)AR(-/-)/A(2B)AR(-/-) mice indicated that the DC A(2B)AR promoted the effect. IL-6, stimulated in a cAMP-independent manner, is an important mediator in this pathway. Hence, in addition to previously noted direct effects of adenosine receptors on regulatory T cell development and function, these data indicated that adenosine also acts indirectly to modulate CD4(+) T cell differentiation and suggested a mechanism for putative proinflammatory effects of A(2B)AR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号