首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   

5.
6.
7.
8.
9.
Thalidomide ([+]-alpha-phthalimidoglutarimide), a psychoactive drug that readily crosses the blood-brain barrier, has been shown to exhibit anti-inflammatory, antiangiogenic, and immunosuppressive properties through a mechanism that is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that thalidomide mediates its effects through suppression of NF-kappaB activation. We investigated the effects of thalidomide on NF-kappaB activation induced by various inflammatory agents in Jurkat cells. The treatment of these cells with thalidomide suppressed TNF-induced NF-kappaB activation, with optimum effect occurring at 50 microg/ml thalidomide. These effects were not restricted to T cells, as other hematopoietic and epithelial cell types were also inhibited. Thalidomide suppressed H(2)O(2)-induced NF-kappaB activation but had no effect on NF-kappaB activation induced by PMA, LPS, okadaic acid, or ceramide, suggesting selectivity in suppression of NF-kappaB. The suppression of TNF-induced NF-kappaB activation by thalidomide correlated with partial inhibition of TNF-induced degradation of an inhibitory subunit of NF-kappaB (IkappaBalpha), abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Thalidomide abolished the NF-kappaB-dependent reporter gene expression activated by overexpression of TNFR1, TNFR-associated factor-2, and NF-kappaB-inducing kinase, but not that activated by the p65 subunit of NF-kappaB. Overall, our results clearly demonstrate that thalidomide suppresses NF-kappaB activation specifically induced by TNF and H(2)O(2) and that this may contribute to its role in suppression of proliferation, inflammation, angiogenesis, and the immune system.  相似文献   

10.
11.
Methotrexate (MTX), a folate antagonist, is a commonly used anti-inflammatory, antiproliferative, and immunosuppressive drug whose mode of action is not fully established. Due to the central role of NF-kappaB in these responses, we postulated that MTX must mediate its effects through suppression of NF-kappaB activation. We investigated the effects of MTX on NF-kappaB activation induced by TNF in Jurkat cells. The treatment of these cells with MTX suppressed TNF-induced NF-kappaB activation with optimum effects occurring at 10 microM MTX for 60 min. These effects were not restricted to Jurkat cells because other cell types were also inhibited. Besides TNF, MTX also suppressed the NF-kappaB activation induced by various other inflammatory stimuli. The suppression of TNF-induced NF-kappaB activation by MTX correlated with inhibition of IkappaBalpha degradation, suppression of IkappaBalpha phosphorylation, abrogation of IkappaBalpha kinase activation, and inhibition of NF-kappaB-dependent reporter gene expression. Because ecto 5' nucleotidase inhibitor (alpha,beta-methylene adenosine-5'-diphosphate) blocked the effect of MTX, adenosine mimicked the effect of MTX, and adenosine A2b receptor antagonist (3,7-dimethyl-1-propargylxanthine) reversed the inhibitory effect of MTX, we suggest that MTX suppresses NF-kappaB activation by releasing adenosine. A partial reversal of MTX-induced NF-kappaB suppression by thymidine and folinic acid indicates the role of the thymidylate synthase pathway also. Overall, our results clearly demonstrate that MTX suppresses NF-kappaB activation through the release of adenosine, which may contribute to the role of MTX in anti-inflammatory, immunomodulatory, and antiproliferative effects.  相似文献   

12.
The anti-inflammatory effect of acetylsalicylic acid (ASA) has been thought to be secondary to the inhibition of prostaglandin synthesis. Because doses of ASA necessary to treat chronic inflammatory diseases are much higher than those needed to inhibit prostaglandin synthesis, a prostaglandin-independent pathway has been emerging as the new anti-inflammatory mechanism of ASA. Here, we examined the effect of ASA on the interleukin (IL)-1 beta- and tumor necrosis factor (TNF)-alpha-induced proinflammatory cytokine expression and evaluated whether this effect is closely linked to the nuclear factor (NF)-kappa B/I kappa B-alpha pathway. A high dose of ASA blocked IL-1 beta- and TNF-alpha-induced TNF-alpha and IL-8 expression, respectively. ASA inhibited TNF-alpha-induced activation of NF-kappa B by preventing phosphorylation and subsequent degradation of I kappa B-alpha in a prostanoid-independent manner. TNF-alpha-induced activation of I kappa B kinase was also suppressed by ASA pretreatment. These observations suggest that the anti-inflammatory effect of ASA in lung epithelial cells may be due to suppression of I kappa B kinase activity, which thereby inhibits subsequent phosphorylation and degradation of I kappa B-alpha, activation of NF-kappa B, and proinflammatory cytokine expression in lung epithelial cells.  相似文献   

13.
14.
The proliferation of human melanoma cell line A375-6 cells is inhibited by several cytokines, including interleukin-1 (IL-1). A375-R8 cells, a subclone of A375-6, are resistant to IL-1-induced growth inhibition. The proliferation of both cell lines is inhibitable by tumor necrosis factor (TNF). In this study, we characterized the mechanisms of TNF-induced growth inhibition. TNF-induced growth inhibition in both cell lines was partially suppressed by a selective p38 mitogen-activated protein kinase (MAPK) inhibitor (SB203580), whereas a combination of SB203580 and Z-VAD-fmk, an inhibitor for a wide range of caspases, completely blocked TNF-induced growth inhibition, indicating that TNF-induced growth inhibition is mediated by both p38 MAPK and caspases. However, Z-VAD-fmk alone suppressed TNF-induced growth inhibition in A375-R8, but not A375-6, cells, suggesting that there may exist a TNF-induced anti-apoptotic mechanism in A375-6 cells which is lost or mutated in A375-R8 cells. Evidence in support of this notion includes (1) TNF-induced apoptosis only in A375-R8, but not A375-6 cells; (2) cycloheximide enabled TNF to induce apoptosis even in A375-6 cells; and (3) somatic hybrid cells between A375-6 and A375-R8 cells are resistant to TNF-induced apoptosis. Since TNF-induced NF-kappa B activation, cell cycle arrest, RB dephosphorylation, and E2F downregulation are indistinguishable in both cell lines, none of these factors is likely to be involved in the TNF-induced anti-apoptotic mechanism in A375-6 cells. Our results indicate that TNF activates two distinct anti-proliferative pathways including p38 MAPK-dependent cell cycle arrest and caspase-mediated apoptosis, as well as an anti-apoptotic mechanism in melanoma cells.  相似文献   

15.
HIV-tat protein, like TNF, activates a wide variety of cellular responses, including NF-kappa B, AP-1, c-Jun N-terminal kinase (JNK), and apoptosis. Whether HIV-tat transduces these signals through the same mechanism as TNF is not known. In the present study we investigated the role of the T cell-specific tyrosine kinase p56lck in HIV-tat and TNF-mediated cellular responses by comparing the responses of Jurkat T cells with JCaM1 cells, an isogeneic lck-deficient T cell line. Treatment with HIV-tat protein activated NF-kappa B, degraded I kappa B alpha, and induced NF-kappa B-dependent reporter gene expression in a time-dependent manner in Jurkat cells but not in JCaM1 cells, suggesting the critical role of p56lck kinase. These effects were specific to HIV-tat, as activation of NF-kappa B by PMA, LPS, H2O2, and TNF was minimally affected. p56lck was also found to be required for HIV-tat-induced but not TNF-induced AP-1 activation. Similarly, HIV-tat activated the protein kinases JNK and mitogen-activated protein kinase kinase in Jurkat cells but not in JCaM1 cells. HIV-tat also induced cytotoxicity, activated caspases, and reactive oxygen intermediates in Jurkat cells, but not in JCaM1 cells. HIV-tat activated p56lck activity in Jurkat cells. Moreover, the reconstitution of JCaM1 cells with p56lck tyrosine kinase reversed the HIV-tat-induced NF-kappa B activation and cytotoxicity. Overall, our results demonstrate that p56lck plays a critical role in the activation of NF-kappa B, AP-1, JNK, and apoptosis by HIV-tat protein but has minimal or no role in activation of these responses by TNF.  相似文献   

16.
17.
18.
19.
Buruli ulcer is a chronic and progressive necrotizing ulcer for which there is no medical treatment. Historically, a soluble toxin (factor) derived from the causative Mycobacterium ulcerans was found to induce the massive necrosis of skin and s.c. tissue seen in this condition. However, the persistence of the disease is thought to be caused by a lack of any immune response. We therefore investigated whether the factor was related to immunosuppression. A protocol to partially purify the factor was developed, and its effects on immune competent cells were tested. The factor produced >95% inhibition of LPS-induced release of TNF and IL-10 from human monocytes and caused a loss of adherence of these cells without cell death. The factor also blocked the production of IL-2 from activated T lymphocytes. The factor had no effect on TNF-induced cytotoxicity, but abrogated TNF-induced NF-kappa B activation. Surprisingly, a synergy was observed between the factor and phorbol ester-directed NF-kappa B activation. The factor had no effect on IL-1- or LPS-induced NF-kappa B activity, indicating selective activity of the factor. The factor did not inhibit the degradation of I kappa B alpha induced by TNF, indicating that the target for its activity lies within an undefined part of the TNF signaling mechanism. The data indicate that the localized immunosuppression associated with Buruli ulcer relates to the activity of the released factor, and this may provide a target for future therapeutic strategies for this intractable disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号