首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The eyespot disease of sugarcane is caused by Helminthosporium sacchari. Helminthosporoside, a host-specific toxin produced by H. sacchari, is essential for the pathogenicity of this fungus. The presence of the helminthosporoside-binding protein in sugarcane likewise appears to be essential for susceptibility to the toxin. The results of this report show that leaf cell protoplasts of tobacco and toxin resistant sugarcane effectively adsorbed the toxin-binding protein derived from membranes of susceptible sugarcane. These protoplasts then became susceptible to the helminthosporoside. They also functioned to takeup raffinose, a trisaccharide structurally related to the toxin. Tobacco protoplasts were treated with [14C] - binding protein, ruptured, and fractionated on a sucrose density gradient column. A peak of radioactivity was associated with the enriched plasma membrane fraction. The results support the hypothesis that the binding protein is the primary recognition site governing susceptibility of sugarcane to helminthosporoside.  相似文献   

2.
Polyclonal antibodies against victorin, the host-specific toxin produced by Cochliobolus victoriae, were raised in rabbits immunized with a victorin-bovine serum albumin conjugate. The antibodies were purified from serum by protein A column chromatography and characterized by indirect and direct enzymelinked immunosorbent assays (ELISA). The concentration of victorin that inhibited anti-victorin antibody binding by 50% was 10 nanograms per milliliter in an indirect ELISA. The lowest concentration of victorin detectable was 10 picograms per milliliter. In a direct ELISA, 25 nanograms per milliliter of victorin inhibited binding of victorin-horseradish peroxidase conjugate by 50%. In vivo and in vitro covalent binding of victorin to proteins in susceptible and resistant oat (Avena sativa) tissue was examined by western blotting assays using anti-victorin antibody and a second antibody conjugated with 125I or alkaline phosphatase. In vivo binding of victorin to proteins of 100 and 45 kilodaltons was observed in both susceptible and resistant cultivars of oats. Victorin also bound in vitro to proteins of 100, 65, and 45 kilodaltons in both susceptible and resistant oats. The data indicate that victorin binds covalently to the same sites in susceptible and resistant genotypes of oats.  相似文献   

3.
1. Heating of susceptible sugarcane leaves (4 h at 35 degrees C) renders them resistant, for 24 h, to the effects of helminthosporoside. Membrane ATPase activity is reduced by 50% as a result of the heat treatment. When the leaves again become susceptible (after 24 h), membrane. ATPase activity is fully restored. 2. Inhibitors of membrane ATPase activity protect susceptible leaves from the effects of helminthosporoside (KF, EDTA, and octylguanidine). 3. Helminthosporoside activates (30%) membrane ATPase in microsomes from susceptible, but not heat-treated (resistant) leaves. Once heat-treated leaves again become susceptible, helminthosporoside activation of membrane ATPase activity resumes. 4. A plot of the production of helminthosporoside-induced symptoms, and membrane ATPase activity as a function of the reciprocal of the absolute temperature reveals that both have sharp breaks at 32 degrees C. 5. Protoplasts of susceptible cane are rendered insensitivity to the effects of the toxin in a medium deficient in K+ and Mg2+. When these ions are added, cell sensitivity to the toxin is restored. Since K+ uptake in plants is mediated by membrane ATPase, a connection with this enzyme activity can be made to cell sensitivity to the toxin.  相似文献   

4.

Background

Evolution of resistance by target pests is the main threat to the long-term efficacy of crops expressing Bacillus thuringiensis (Bt) insecticidal proteins. Cry2 proteins play a pivotal role in current Bt spray formulations and transgenic crops and they complement Cry1A proteins because of their different mode of action. Their presence is critical in the control of those lepidopteran species, such as Helicoverpa spp., which are not highly susceptible to Cry1A proteins. In Australia, a transgenic variety of cotton expressing Cry1Ac and Cry2Ab (Bollgard II) comprises at least 80% of the total cotton area. Prior to the widespread adoption of Bollgard II, the frequency of alleles conferring resistance to Cry2Ab in field populations of Helicoverpa armigera and Helicoverpa punctigera was significantly higher than anticipated. Colonies established from survivors of F2 screens against Cry2Ab are highly resistant to this toxin, but susceptible to Cry1Ac.

Methodology/Principal Findings

Bioassays performed with surface-treated artificial diet on neonates of H. armigera and H. punctigera showed that Cry2Ab resistant insects were cross-resistant to Cry2Ae while susceptible to Cry1Ab. Binding analyses with 125I-labeled Cry2Ab were performed with brush border membrane vesicles from midguts of Cry2Ab susceptible and resistant insects. The results of the binding analyses correlated with bioassay data and demonstrated that resistant insects exhibited greatly reduced binding of Cry2Ab toxin to midgut receptors, whereas no change in 125I-labeled-Cry1Ac binding was detected. As previously demonstrated for H. armigera, Cry2Ab binding sites in H. punctigera were shown to be shared by Cry2Ae, which explains why an alteration of the shared binding site would lead to cross-resistance between the two Cry2A toxins.

Conclusion/Significance

This is the first time that a mechanism of resistance to the Cry2 class of insecticidal proteins has been reported. Because we found the same mechanism of resistance in multiple strains representing several field populations, we conclude that target site alteration is the most likely means that field populations evolve resistance to Cry2 proteins in Helicoverpa spp. Our work also confirms the presence in the insect midgut of specific binding sites for this class of proteins. Characterizing the Cry2 receptors and their mutations that enable resistance could lead to the development of molecular tools to monitor resistance in the field.  相似文献   

5.
Induction of pathogenesis-related proteins in tobacco leaves   总被引:3,自引:1,他引:2       下载免费PDF全文
  相似文献   

6.
Sugarcane clones susceptible to eye spot disease became resistant to the pathogen or helminthosporoside activity during warm summer months. Exposure of plants to 30 to 35 C temperatures, hot water treatment of excised leaves from 30 to 50 C, preincubation of leaves in an N2 atmosphere, or preincubation in the presence of protein synthesis inhibitors also induced resistance. Hot water-treated leaves reverted to a susceptible condition. Five to 15 C temperatures, an N2 atmosphere, or protein synthesis inhibitors prevented this recovery. Results indicate that temperature may influence host tissue sensitivity to helminthosporoside, thus governing disease development throughout the year.  相似文献   

7.
The race-specific peptide elicitor AVR9 of the fungus Cladosporium fulvum induces a hypersensitive response only in tomato (Lycopersicon esculentum) plants carrying the complementary resistance gene Cf-9 (MoneyMaker-Cf9). A binding site for AVR9 is present on the plasma membranes of both resistant and susceptible tomato genotypes. We used mutant AVR9 peptides to determine the relationship between elicitor activity of these peptides and their affinity to the binding site in the membranes of tomato. Mutant AVR9 peptides were purified from tobacco (Nicotiana clevelandii) inoculated with recombinant potato virus X expressing the corresponding avirulence gene Avr9. In addition, several AVR9 peptides were synthesized chemically. Physicochemical techniques revealed that the peptides were correctly folded. Most mutant AVR9 peptides purified from potato virus X::Avr9-infected tobacco contain a single N-acetylglucosamine. These glycosylated AVR9 peptides showed a lower affinity to the binding site than the nonglycosylated AVR9 peptides, whereas their necrosis-inducing activity was hardly changed. For both the nonglycosylated and the glycosylated mutant AVR9 peptides, a positive correlation between their affinity to the membrane-localized binding site and their necrosis-inducing activity in MoneyMaker-Cf9 tomato was found. The perception of AVR9 in resistant and susceptible plants is discussed.  相似文献   

8.
Cry1Ab toxin binding analysis was performed to determine whether resistance in laboratory-selected Ostrinia nubilalis strains is associated with target site alteration. Brush border membrane vesicles were prepared using dissected midguts from late instars of susceptible and resistant strains (Europe-R and RSTT) of O. nubilalis. Immunoblot analysis indicated that three different proteins bound to Cry1Ab toxin and were recognized by an anticadherin serum. In a comparison of resistant and susceptible strains, reduced Cry1Ab binding was apparent for all three bands corresponding to cadherin-like proteins in the Europe-R strain, while reduced binding was apparent in only one band for the RSTT strain. Real-time analysis of Cry1Ab binding to gut receptors using surface plasmon resonance suggested slight differences in affinity in both resistant strains. Additional binding analysis was conducted using 125I-labeled Cry1Ab, Cry1Ac, and Cry1Aa. Slight differences were again observed between the resistant and susceptible strains for Cry1Ab binding. However, when binding of 125I-labeled Cry1Aa was tested, a 10-fold reduction in the concentration of binding sites was observed in the Europe-R strain. Expression of the O. nubilalis cadherin gene was similar in both the resistant and susceptible strains and did not account for differences in binding. In combination, the results of the present work suggest that differences in susceptibility to Cry1A toxins in the Europe-R strain of O. nubilalis are associated with altered receptor binding, although the precise nature of this mechanism is still uncertain.  相似文献   

9.
Polyamine Binding to Proteins in Oat and Petunia Protoplasts   总被引:2,自引:0,他引:2       下载免费PDF全文
Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozenthawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.  相似文献   

10.
The induction of pathogenesis-related (PR) proteins in sugarcane (Saccharum officinarum L.) leaves and suspension-cultured cells in response to treatment with a glycoprotein elicitor isolated from Colletotrichum falcatum (the red rot pathogen) was investigated. Treatment of leaves and cells with the elicitor resulted in a much marked increase in the activities of chitinase and β-1,3-glucanase in red rot resistant (BO 91) than susceptible (CoC 671) sugarcane cultivar. SDS-PAGE analysis revealed that C. falcatum elicitor induced the accumulation of several proteins in suspension-cultured cells of resistant cultivar (BO 91); among them the 35 kDa protein was predominant. Whereas, a 27 kDa protein was induced predominantly in the cells of susceptible cultivar upon treatment with the elicitor. When sugarcane leaves were treated with C. falcatum elicitor, two proteins with apparent molecular masses of 25 and 27 kDa were induced both in the resistant and susceptible cultivars. However, the induction was stronger in the resistant than the susceptible cultivar. Immunoblot analysis for chitinase indicated that a protein with an apparent molecular mass of 37 kDa cross-reacting with barley chitinase antiserum was strongly induced in the suspension cultured cells of both the cultivars. The induction of 37 kDa chitinase was more in the cells of resistant cultivar than in the susceptible cultivar. Western blot analysis revealed that a 25 kDa thaumatin-like protein (TLP) cross-reacting with bean TLP antiserum was strongly induced in leaves and cultured cells of both resistant and susceptible cultivars due to elicitor treatment.  相似文献   

11.
Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded) LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is “conformationally activated” upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.  相似文献   

12.
The binding and pore formation abilities of Cry1A and Cry1Fa Bacillus thuringiensis toxins were analyzed by using brush border membrane vesicles (BBMV) prepared from sensitive (YDK) and resistant (YHD2) strains of Heliothis virescens. 125I-labeled Cry1Aa, Cry1Ab, and Cry1Ac toxins did not bind to BBMV from the resistant YHD2 strain, while specific binding to sensitive YDK vesicles was observed. Binding assays revealed a reduction in Cry1Fa binding to BBMV from resistant larvae compared to Cry1Fa binding to BBMV from sensitive larvae. In agreement with this reduction in binding, neither Cry1A nor Cry1Fa toxin altered the permeability of membrane vesicles from resistant larvae, as measured by a light-scattering assay. Ligand blotting experiments performed with BBMV and 125I-Cry1Ac did not differentiate sensitive larvae from resistant larvae. Iodination of BBMV surface proteins suggested that putative toxin-binding proteins were exposed on the surface of the BBMV from resistant insects. BBMV protein blots probed with the N-acetylgalactosamine-specific lectin soybean agglutinin (SBA) revealed altered glycosylation of 63- and 68-kDa glycoproteins but not altered glycosylation of known Cry1 toxin-binding proteins in YHD2 BBMV. The F1 progeny of crosses between sensitive and resistant insects were similar to the sensitive strain when they were tested by toxin-binding assays, light-scattering assays, and lectin blotting with SBA. These results are evidence that a dramatic reduction in toxin binding is responsible for the increased resistance and cross-resistance to Cry1 toxins observed in the YHD2 strain of H. virescens and that this trait correlates with altered glycosylation of specific brush border membrane glycoproteins.  相似文献   

13.
An expression system designed for cell surface display of hybrid proteins on Staphylococcus carnosus has been evaluated for the display of Staphylococcus aureus protein A (SpA) domains, normally binding to immunoglobulin G (IgG) Fc but here engineered by combinatorial protein chemistry to yield SpA domains, denoted affibodies, with new binding specificities. Such affibodies, with human IgA or IgE binding activity, have previously been selected from a phage library, based on an SpA domain. In this study, these affibodies have been genetically introduced in monomeric or dimeric forms into chimeric proteins expressed on the surface of S. carnosus by using translocation signals from a Staphylococcus hyicus lipase construct together with surface-anchoring regions of SpA. The recombinant surface proteins, containing the IgA- or IgE-specific affibodies, were demonstrated to be expressed as full-length proteins, localized and properly exposed at the cell surface of S. carnosus. Furthermore, these chimeric receptors were found to be functional, since recombinant S. carnosus cells were shown to have gained IgA and IgE binding capacity, respectively. In addition, a positive effect in terms of IgA and IgE reactivity was observed when dimeric versions of the affibodies were present. Potential applications for recombinant bacteria with redirected binding specificity in their surface proteins are discussed.  相似文献   

14.
Although Cks proteins were the first identified binding partners of cyclin-dependent protein kinases (cdks), their cell cycle functions have remained unclear. To help elucidate the function of Cks proteins, we examined whether their binding to p34cdc2 (the mitotic cdk) varies during the cell cycle in Xenopus egg extracts. We observed that binding of human CksHs2 to p34cdc2 was stimulated by cyclin B. This stimulation was dependent on the activating phosphorylation of p34cdc2 on Thr-161, which follows cyclin binding and is mediated by the cdk-activating kinase. Neither the inhibitory phosphorylations of p34cdc2 nor the catalytic activity of p34cdc2 was required for this stimulation. Stimulated binding of CksHs2 to another cdk, p33cdk2, required both cyclin A and activating phosphorylation. Our findings support recent models that suggest that Cks proteins target active forms of p34cdc2 to substrates.  相似文献   

15.
16.
The possibility of occurrence of laminin binding proteins in cardiac tissue under different stages of growth was examined by affinity chromatography of the soluble fraction of human fetal myocardial plasma membrane over Ln-Sepharose. A 67 kDa protein was isolated by elution with glycine/HCl buffer containing 1 M NaCl and visualized as a coomassie stainable band on SDS gel electrophoresis under reducing conditions. Dot blot assays of the radioiodinated protein revealed the binding of 67 kDa protein with high affinity to laminin in a cation independent manner. This protein appears to be present in relatively higher amounts in tissues from early stage fetus. The occurrence of cation dependent laminin binding proteins was also examined by affinity chromatography. Electrophoresis of the EDTA eluate under reducing conditions followed by silver staining showed two prominent bands with average molecular size 130 and 174 kDa which under non-reducing conditions appeared as two bands with average molecular weight of 115 and 135 kDa. Using radioiodinated protein in dot blot assays, its binding to Ln was found to be maximum in the presence of Mn++ ions. Immunoblotting using anti-β1 integrin antibodies showed that 115 kDa protein is a β1 integrin suggesting the possibility of this protein belonging to the integrin group of receptors. The occurrence of multiple laminin binding proteins and the relative abundance of one of these proteins viz. the 67 kDa protein during early stages than in late stage tussue suggest a possible role for these proteins in cellular interactions with laminin during myocardial tissue development.  相似文献   

17.
A plant-pathogen system consisting of a Chinese cabbage cultivar and two isolates of Plasmodiophora brassicae was developed for analysing root proteins accumulated in susceptible and resistant responses to the fungus. Proteins extracted at pH 2.8 were analysed by two-dimensional gel electrophoresis. More than 150 protein spots were resolved. Spots indicating changes in the intensity by the infection of P. brassicae were classified into six types: class 1 contains proteins enhanced in susceptible response; class 2, proteins unique to susceptible response; class 3, proteins repressed in susceptible response: class 4, proteins enhanced in resistant response; class 5, proteins unique to resistant response; and class 6, proteins repressed in resistant response. Two proteins from class 1 and one protein from class 4 were subjected to an N-terminal amino acid sequencing. One of the class 1 protein (25 kDa, pl 7.0) revealed high homology with pathogenesis-related protein group 5.  相似文献   

18.
Most proteins must remain soluble in the cytosol in order to perform their biological functions. To protect against undesired protein aggregation, living cells maintain a population of molecular chaperones that ensure the solubility of the proteome. Here we report simulations of a lattice model of interacting proteins to understand how low concentrations of passive molecular chaperones, such as small heat-shock proteins, suppress thermodynamic instabilities in protein solutions. Given fixed concentrations of chaperones and client proteins, the solubility of the proteome can be increased by tuning the chaperone–client binding strength. Surprisingly, we find that the binding strength that optimizes solubility while preventing irreversible chaperone binding also promotes the formation of weakly bound chaperone oligomers, although the presence of these oligomers does not significantly affect the thermodynamic stability of the solution. Such oligomers are commonly observed in experiments on small heat-shock proteins, but their connection to the biological function of these chaperones has remained unclear. Our simulations suggest that this clustering may not have any essential biological function, but rather emerges as a natural side-effect of optimizing the thermodynamic stability of the proteome.  相似文献   

19.
Autophagy is a cellular catabolic process responsible for the degradation of cytoplasmic constituents, including organelles and long-lived proteins, that helps maintain cellular homeostasis and protect against various cellular stresses. Verteporfin is a benzoporphyrin derivative used clinically in photodynamic therapy to treat macular degeneration. Verteporfin was recently found to inhibit autophagosome formation by an unknown mechanism that does not require exposure to light. We report that verteporfin directly targets and modifies p62, a scaffold and adaptor protein that binds both polyubiquitinated proteins destined for degradation and LC3 on autophagosomal membranes. Western blotting experiments revealed that exposure of cells or purified p62 to verteporfin causes the formation of covalently crosslinked p62 oligomers by a mechanism involving low-level singlet oxygen production. Rose bengal, a singlet oxygen producer structurally unrelated to verteporfin, also produced crosslinked p62 oligomers and inhibited autophagosome formation. Co-immunoprecipitation experiments demonstrated that crosslinked p62 oligomers retain their ability to bind to LC3 but show defective binding to polyubiquitinated proteins. Mutations in the p62 PB1 domain that abolish self-oligomerization also abolished crosslinked oligomer formation. Interestingly, small amounts of crosslinked p62 oligomers were detected in untreated cells, and other groups noted the accumulation of p62 forms with reduced SDS-PAGE mobility in cellular and animal models of oxidative stress and aging. These data indicate that p62 is particularly susceptible to oxidative crosslinking and lead us to propose a model whereby oxidized crosslinked p62 oligomers generated rapidly by drugs like verteporfin or over time during the aging process interfere with autophagy.  相似文献   

20.
Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson’s disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号