首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C K Barlowe  D R Appling 《Biochemistry》1990,29(30):7089-7094
An NAD(+)-dependent 5,10-methylenetetrahydrofolate (THF) dehydrogenase has been purified to homogeneity from the yeast Saccharomyces cerevisiae. The purified enzyme exhibits a final specific activity of 5.4 units mg-1 and is represented by a single protein of apparent Mr = 33,000-38,000 as determined by sodium dodecyl sulfate gel electrophoresis. A native Mr = 64,000 was determined by gel filtration, suggesting a homodimer subunit structure. Cross-linking experiments with dimethyl suberimidate confirmed the dimeric structure. The enzyme is specific for NAD+ and is not dependent on Mg2+ for activity. The forward reaction initial velocity kinetics are consistent with a sequential reaction mechanism. With this model, Km values for NAD+ and (6R,S)-5,10-methylene-THF are 1.6 and 0.06 mM, respectively. In contrast to all other previously described eukaryotic 5,10-methylene-THF dehydrogenases, the purified enzyme is apparently monofunctional, with undetectable 5,10-methenyl-THF cyclohydrolase and 10-formyl-THF synthetase activities. Subcellular fractionation of yeast indicates the enzyme is cytoplasmic, with no NAD(+)-dependent 5,10-methylene-THF dehydrogenase detectable in mitochondria. The activity was found in all yeast strains examined, at all stages of growth from the lag phase through the stationary phase.  相似文献   

2.
Three alcohol dehydrogenases have been identified in Acinetobacter calcoaceticus sp. strain HO1-N: an NAD(+)-dependent enzyme and two NADP(+)-dependent enzymes. One of the NADP(+)-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent Km value of 5.2 microM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD(+)-dependent enzyme, an NADP(+)-dependent enzyme and one which was nucleotide independent. The NAD(+)-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP(+)-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent Km value of 0.2 microM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster's Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent Km of 0.36 mM for decanal.  相似文献   

3.
Subcellular fractionation of bovine thyroid tissue by differential pelleting and isopycnic gradient centrifugation in a zonal rotor indicated that NAD(+) glycohydrolase is predominantly located and rather uniformly distributed in the plasma membrane. Comparison of NAD(+) glycohydrolase activities of intact thyroid tissue slices, functional rat thyroid cells in culture (FRT(l)) and their respective homogenates indicated that most if not all of the enzyme (catalytic site) is accessible to extracellular NAD(+). The reaction product nicotinamide was predominantly recovered from the extracellular medium. The diazonium salt of sulphanilic acid, not penetrating into intact cells, was able to decrease the activity of intact thyroid tissue slices to the same extent as in the homogenate. Under the same conditions this reagent almost completely abolished NAD(+) glycohydrolase activity associated with intact thyroid cells in culture. The triazine dye Cibacron Blue F3GA and its high-M(r) derivative Blue Dextran respectively completely eliminated or caused a severe depression in the NAD(+) glycohydrolase activity of FRT(l) cells. The enzyme could be readily solubilized from bovine thyroid membranes by detergent extraction, and was further purified by gel filtration and affinity chromatography on Blue Sepharose CL-6B. The overall procedure resulted in a 1940-fold purification (specific activity 77.6mumol of nicotinamide released/h per mg). The purified enzyme displays a K(m) of 0.40mm for beta-NAD(+), a broad pH optimum around pH7.2 (0.1 m-potassium phosphate buffer) and an apparent M(r) of 120000. Nicotinamide is an inhibitor (K(i) 1.9mm) of the non-competitive type. The second reaction product ADP-ribose acts as a competitive inhibitor (K(i) 2.7mm). The purified enzyme splits beta-NAD(+), beta-NADP(+), beta-NADH and alpha-NAD(+) at rates in the relative proportions 1:0.75:<0.02:<0.02 and exhibits transglycosidase (pyridine-base exchange) activity. Anionic phospholipids such as phosphatidylinositol and phosphatidylserine inhibit the partially purified enzyme. A stimulating effect was observed upon the addition of histones.  相似文献   

4.
The enzyme NAD(+) synthetase (NadE) catalyzes the last step of NAD biosynthesis. Given NAD vital role in cell metabolism, the enzyme represents a valid target for the development of new antimycobacterial agents. In the present study we expressed and purified two putative forms of Mycobacterium tuberculosis NAD(+) synthetase, differing in the polypeptide chain length (NadE-738 and NadE-679). Furthermore, we evaluated several systems for the heterologous expression and large scale purification of the enzyme. In particular, we compared the efficiency of production, the yield of purification, and the catalytic activity of recombinant enzyme in different hosts, ranging from Escherichia coli strains to cultured High Five (Trichoplusia ni BTI-TN-5B1-4) insect cells. Among the systems assayed, we found that the expression of a thioredoxin-NadE fusion protein in E. coli Origami(DE3) is the best system in obtaining highly pure, active NAD(+) synthetase. The recombinant enzyme maintained its activity even after proteolytic cleavage of thioredoxin moiety. Biochemical evidence suggests that the shorter form (NadE-679) may be the real M. tuberculosis NAD(+) synthetase. These results enable us to obtain a purified product for structure-function analysis and high throughput assays for rapid screening of compounds which inhibit enzymatic activity.  相似文献   

5.
Aminopropionaldehyde dehydrogenase was purified to apparent homogeneity from 1,3-diaminopropane-grown cells of Arthrobacter sp. TMP-1. The native molecular mass and the subunit molecular mass of the enzyme were approximately 20,5000 and 52,000, respectively, suggesting that the enzyme is a tetramer of identical subunits. The apparent Michaelis constant (K(m)) for 1,3-diaminopropane was approximately 3 microM. The enzyme equally used both NAD(+) and NADP(+) as coenzymes. The apparent K(m) values for NAD(+) and NADP(+) were 255 microM and 108 microM, respectively. The maximum reaction rates (V(max)) for NAD(+) and NADP(+) were 102 and 83.3 micromol min(-1) mg(-1), respectively. Some tested aliphatic aldehydes and aromatic aldehydes were inert as substrates. The optimum pH was 8.0-8.5. The enzyme was sensitive to sulfhydryl group-modifying reagents.  相似文献   

6.
1. A ;malic' enzyme [l-malate-NAD oxidoreductase (decarboxylating), EC 1.1.1.39] has been isolated from cauliflower bud mitochondria and partially purified. 2. The enzyme is specific for l-malate and has an absolute requirement for either Mn(2+), Co(2+) or Mg(2+). 3. The enzyme shows activity with both NAD(+) and NADP(+), but NAD(+) is the preferred cofactor. 4. No appreciable oxaloacetate decarboxylase activity is present in the enzyme preparations even at low pH values. 5. The enzyme is inhibited by NADH and by oxaloacetate and stimulated by SO(4) (2-) and by low concentrations of CoA. 6. The regulatory properties of the enzyme support the proposed role of the enzyme in the utilization of tricarboxylic acid-cycle acids for energy production when glycolysis is suppressed.  相似文献   

7.
Aspartic acid 244 that occurs at the putative NAD(+)-binding site of rat liver S-adenosylhomocysteinase was replaced by glutamic acid by oligonucleotide-directed mutagenesis. The mutant enzyme was purified to homogeneity as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Gel permeation chromatography showed that the purified mutant enzyme was a tetramer as is the wild-type enzyme. In contrast to the wild-type enzyme, which possesses 1 mol of tightly bound NAD+ per mol of enzyme subunit, the mutant enzyme had only 0.05 mol of NAD+ but contained about 0.6 mol each of NADH and adenine per mol of subunit. The mutant enzyme, after removal of the bound compounds by acid-ammonium sulfate treatment, exhibited S-adenosylhomocysteinase activity when assayed in the presence of NAD+. From the appearance of activity as a function of NAD+ concentration, the enzyme was shown to bind NAD+ with a Kd of 23.0 microM at 25 degrees C, a value greater than 280-fold greater than that of the wild-type enzyme. In the presence of a saturating concentration of NAD+, the mutant enzyme showed apparent Km values for substrates similar to those of the wild-type enzyme. Moderate decreases of 8- and 15-fold were observed in Vmax values for the synthetic and hydrolytic directions, respectively. These results indicate the importance of Asp-244 in binding NAD+, and are consistent with the idea that the region of S-adenosylhomocysteinase from residues 213 to 244 is part of the NAD+ binding site. This region has structural features characteristic of the dinucleotide-binding domains of NAD(+)- and FAD-binding proteins (Ogawa, H., Gomi, T., Mueckler, M. M., Fujioka, M., Backlund, P.S., Jr., Aksamit, R.R., Unson, C.G., and Cantoni, G.L. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 719-723).  相似文献   

8.
Pyridine Nucleotide Transhydrogenase from Azotobacter vinelandii   总被引:5,自引:0,他引:5       下载免费PDF全文
A method is described for the partial purification of pyridine nucleotide transhydrogenase from Azotobacter vinelandii (ATCC 9104) cells. The most highly purified preparation catalyzes the reduction of 300 mumoles of nicotinamide adenine dinucleotide (NAD(+)) per min per mg of protein under the assay conditions employed. The enzyme catalyzes the reduction of NAD(+), deamino-NAD(+), and thio-NAD(+) with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as hydrogen donor, and the reduction of nicotinamide adenine dinucleotide phosphate (NADP(+)) and thio-NAD(+) with reduced NAD (NADH) as hydrogen donor. The reduction of acetylpyridine AD(+), pyridinealdehyde AD(+), acetylpyridine deamino AD(+), and pyridinealdehydedeamino AD(+) with NADPH as hydrogen donor was not catalyzed. The enzyme catalyzes the transfer of hydrogen more readily from NADPH than from NADH with different hydrogen acceptors. The transfer of hydrogen from NADH to NADP(+) and thio-NAD(+) was markedly stimulated by 2'-adenosine monophosphate (2'-AMP) and inhibited by adenosine diphosphate (ADP), adenosine triphosphate (ATP), and phosphate ions. The transfer of hydrogen from NADPH to NAD(+) was only slightly affected by phosphate ions and 2'-AMP, except at very high concentrations of the latter reagent. In addition, the transfer of hydrogen from NADPH to thio-NAD(+) was only slightly influenced by 2'-AMP, ADP, ATP, and other nucleotides. The kinetics of the transhydrogenase reactions which utilized thio-NAD(+) as hydrogen acceptor and NADH or NADPH as hydrogen donor were studied in some detail. The results suggest that there are distinct binding sites for NADH and NAD(+) and perhaps a third regulator site for NADP(+) or 2'-AMP. The heats of activation for the transhydrogenase reactions were determined. The properties of this enzyme are compared with those of other partially purified transhydrogenases with respect to the regulatory functions of 2'-AMP and other nucleotides on the direction of flow of hydrogen between NAD(+) and NADP(+).  相似文献   

9.
S-Adenosylhomocysteine (AdoHcy) hydrolase has emerged as an attractive target for antiparasitic drug design because of its role in the regulation of all S-adenosylmethionine-dependent transmethylation reactions, including those reactions crucial for parasite replication. From a genomic DNA library of Trypanosoma cruzi, we have isolated a gene that encodes a polypeptide containing a highly conserved AdoHcy hydrolase consensus sequence. The recombinant T. cruzi enzyme was overexpressed in Escherichia coli and purified as a homotetramer. At pH 7.2 and 37 degrees C, the purified enzyme hydrolyzes AdoHcy to adenosine and homocysteine with a first-order rate constant of 1 s(-1) and synthesizes AdoHcy from adenosine and homocysteine with a pseudo-first-order rate constant of 3 s(-1) in the presence of 1 mM homocysteine. The reversible catalysis depends on the binding of NAD(+) to the enzyme. In spite of the significant structural homology between the parasitic and human AdoHcy hydrolase, the K(d) of 1.3 microM for NAD(+) binding to the T. cruzi enzyme is approximately 11-fold higher than the K(d) (0.12 microM) for NAD(+) binding to the human enzyme.  相似文献   

10.
ADP-L-glycero-D-mannoheptose 6-epimerase is required for lipopolysaccharide inner core biosynthesis in several genera of Gram-negative bacteria. The enzyme contains both fingerprint sequences Gly-X-Gly-X-X-Gly and Gly-X-X-Gly-X-X-Gly near its N terminus, which is indicative of an ADP binding fold. Previous studies of this ADP-l-glycero-D-mannoheptose 6-epimerase (ADP-hep 6-epimerase) were consistent with an NAD(+) cofactor. However, the crystal structure of this ADP-hep 6-epimerase showed bound NADP (Deacon, A. M., Ni, Y. S., Coleman, W. G., Jr., and Ealick, S. E. (2000) Structure 5, 453-462). In present studies, apo-ADP-hep 6-epimerase was reconstituted with NAD(+), NADP(+), and FAD. In this report we provide data that shows NAD(+) and NADP(+) both restored enzymatic activity, but FAD could not. Furthermore, ADP-hep 6-epimerase exhibited a preference for binding of NADP(+) over NAD(+). The K(d) value for NADP(+) was 26 microm whereas that for NAD(+) was 45 microm. Ultraviolet circular dichroism spectra showed that apo-ADP-hep 6-epimerase reconstituted with NADP(+) had more secondary structure than apo-ADP-hep 6-epimerase reconstituted with NAD(+). Perchloric acid extracts of the purified enzyme were assayed with NAD(+)-specific alcohol dehydrogenase and NADP(+)-specific isocitric dehydrogenase. A sample of the same perchloric acid extract was analyzed in chromatographic studies, which demonstrated that ADP-hep 6-epimerase binds NADP(+) in vivo. A structural comparison of ADP-hep 6-epimerase with UDP-galactose 4-epimerase, which utilizes an NAD(+) cofactor, has identified the regions of ADP-hep 6-epimerase, which defines its specificity for NADP(+).  相似文献   

11.
Clostridial glutamate dehydrogenase mutants, designed to accommodate the 2'-phosphate of disfavoured NADPH, showed the expected large specificity shifts with NAD(P)H. Puzzlingly, similar assays with oxidized cofactors initially revealed little improvement with NADP(+) , although rates with NAD(+) were markedly diminished. This article reveals that the enzyme's discrimination in favour of NAD(+) and against NADP(+) had been greatly underestimated and has indeed been abated by a factor of >?16,000 by the mutagenesis. Initially, stopped-flow studies of the wild-type enzyme showed a burst increase of A(340) with NADP(+) but not NAD(+), with amplitude depending on the concentration of the coenzyme, rather than enzyme. Amplitude also varied with the commercial source of the NADP(+). FPLC, HPLC and mass spectrometry identified NAD(+) contamination ranging from 0.04 to 0.37% in different commercial samples. It is now clear that apparent rates of NADP(+) utilization mainly reflected the reduction of contaminating NAD(+), creating an entirely false view of the initial coenzyme specificity and also of the effects of mutagenesis. Purification of the NADP(+) eliminated the burst. With freshly purified NADP(+), the NAD(+) : NADP(+) activity ratio under standard conditions, previously estimated as 300 : 1, is 11,000. The catalytic efficiency ratio is even higher at 80,000. Retested with pure cofactor, mutants showed marked specificity shifts in the expected direction, for example, 16 200 fold change in catalytic efficiency ratio for the mutant F238S/P262S, confirming that the key structural determinants of specificity have been successfully identified. Of wider significance, these results underline that, without purification, even the best commercial coenzyme preparations are inadequate for such studies.  相似文献   

12.
NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase.  相似文献   

13.
The lymphatic filarial parasite, Brugia malayi contains Wolbachia endobacteria that are essential for development, viability and fertility of the parasite. Therefore, wolbachial proteins have been currently seen as the potential antifilarial drug targets. NAD(+)-dependent DNA ligase is characterized as a promising drug target in several organisms due to its crucial, indispensable role in DNA replication, recombination and DNA repair. We report here the cloning, expression and purification of NAD(+)-dependent DNA ligase of Wolbachia endosymbiont of B. malayi (wBm-LigA) for its molecular characterization. wBm-LigA has all the domains that are present in nearly all the eubacterial NAD(+)-dependent DNA ligases such as N-terminal adenylation domain, OB fold, helix-hairpin-helix (HhH) and BRCT domain except zinc-binding tetracysteine domain. The purified recombinant protein (683-amino acid) was found to be biochemically active and was present in its native form as revealed by the circular dichroism and fluorescence spectra. The purified recombinant enzyme was able to catalyze intramolecular strand joining on a nicked DNA as well as intermolecular joining of the cohesive ends of BstEII restricted lamda DNA in an in vitro assay. The enzyme was localized in the various life-stages of B. malayi parasites by immunoblotting and high enzyme expression was observed in Wolbachia within B. malayi microfilariae and female adult parasites along the hypodermal chords and in the gravid portion as evident by the confocal microscopy. Ours is the first report on this enzyme of Wolbachia and these findings would assist in validating the antifilarial drug target potential of wBm-LigA in future studies.  相似文献   

14.
1. Kinetic experiments suggested the possible existence of at least two different NAD(+)-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP(+)-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The K(m) for acetaldehyde was apparently less than 10mum for enzyme I and 0.9-1.7mm for enzyme II. The K(m) for NAD(+) was similar for both enzymes (20-30mum). The K(m) for NADP(+) was 2-3mm and for acetaldehyde 0.5-0.7mm for the NADP(+)-dependent activity. 4. The NAD(+)-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources.  相似文献   

15.
Heterotetrameric (alphabetagammadelta) sarcosine oxidase from Corynebacterium sp. P-1 (cTSOX) contains noncovalently bound FAD and NAD(+) and covalently bound FMN, attached to beta(His173). The beta(His173Asn) mutant is expressed as a catalytically inactive, labile heterotetramer. The beta and delta subunits are lost during mutant enzyme purification, which yields a stable alphagamma complex. Addition of stabilizing agents prevents loss of the delta but not the beta subunit. The covalent flavin link is clearly a critical structural element and essential for TSOX activity or preventing FMN loss. The alpha subunit was expressed by itself and purified by affinity chromatography. The alpha and beta subunits each contain an NH(2)-terminal ADP-binding motif that could serve as part of the binding site for NAD(+) or FAD. The alpha subunit and the alphagamma complex were each found to contain 1 mol of NAD(+) but no FAD. Since NAD(+) binds to alpha, FAD probably binds to beta. The latter could not be directly demonstrated since it was not possible to express beta by itself. However, FAD in TSOX from Pseudomonas maltophilia (pTSOX) exhibits properties similar to those observed for the covalently bound FAD in monomeric sarcosine oxidase and N-methyltryptophan oxidase, enzymes that exhibit sequence homology with beta. A highly conserved glycine in the ADP-binding motif of the alpha(Gly139) or beta(Gly30) subunit was mutated in an attempt to generate NAD(+)- or FAD-free cTSOX, respectively. The alpha(Gly139Ala) mutant is expressed only at low temperature (t(optimum) = 15 degrees C), but the purified enzyme exhibited properties indistinguishable from the wild-type enzyme. The much larger barrier to NAD(+) binding in the case of the alpha(Gly139Val) mutant could not be overcome even by growth at 3 degrees C, suggesting that NAD(+) binding is required for TSOX expression. The beta(Gly30Ala) mutant exhibited subunit expression levels similar to those of the wild-type enzyme, but the mutation blocked subunit assembly and covalent attachment of FMN, suggesting that both processes require a conformational change in beta that is induced upon FAD binding. About half of the covalent FMN in recombinant preparations of cTSOX or pTSOX is present as a reversible covalent 4a-adduct with a cysteine residue. Adduct formation is not prevented by mutating any of the three cysteine residues in the beta subunit of cTSOX to Ser or Ala. Since FMN is attached via its 8-methyl group to the beta subunit, the FMN ring must be located at the interface between beta and another subunit that contains the reactive cysteine residue.  相似文献   

16.
A synchronous enzyme-reaction system using water-soluble formazan and a non-enzymatic electron mediator was developed and applied to an enzyme immunoassay (EIA). The reaction system consists of four steps: (I) dephosphorylation of NADP(+) to produce NAD(+) by alkaline phosphatase (ALP), (II) reduction of NAD(+) to produce NADH with oxidation of ethanol to yield acetaldehyde by alcohol dehydrogenase (ADH), (III) reduction of water-soluble tetrazolium salt (WST-1) to produce formazan by NADH via 1-methoxy-5-methyl-phenazinium methyl sulfate (PMS), and (IV) re-reduction of NAD(+) to produce NADH by ADH. During each cycle, one molecule of tetrazolium is converted to one molecule of formazan. The concentration of formazan during the reaction was given by second-order polynomials of the reaction time. Kinetic studies strongly suggested that the synchronous enzyme-reaction system had the potential to detect an analyte at the attomole level in EIA. On the basis of the kinetic studies, optimal conditions for EIA incorporating the synchronous system were examined. NADP(+) was purified thoroughly to remove minor traces of NAD(+) in the preparation, and an ADH preparation contaminated with the lowest level of ALP activity was used. When the synchronous system was applied to a sandwich-type EIA for human C-reactive protein, the protein was detected with a sensitivity of 50 attomole per well of a micro-titer plate (0.1 ml) in a 1-h reaction. In addition, EIA with water-soluble formazan showed a more quantitative and sensitive result than that with insoluble formazan. These findings indicated that the (WST-1)-PMS system introduced in this study has a great potential for highly sensitive enzyme immunoassay.  相似文献   

17.
The NADP(+)-preferring glucose dehydrogenase from thermoacidophilic archaeon Thermoplasma acidophilum has been characterized, and its crystal structure has been determined (Structure, 2:385-393, 1994). Its sequence and structure are not homologous to bacterial NAD(P)(+)-dependent glucose dehydrogenases, and its molecular weight is also quite defferent. On the other hand, three functionally unknown genes with homologies to bacterial NAD(P)(+)-dependent glucose dehydrogenases have been sequenced as part of the T. acidophilum genome project (gene names: Ta0191, Ta0747, and Ta0754 respectively). We expressed two genes of three, Ta0191 and Ta0754, in Escherichia coli, and purified the gene products to homogeneity. Dehydrogenase activities were thereby detected from the purified proteins. The Ta0754 gene product exhibited aldohexose dehydrogenase activity, and the Ta0191 gene product exhibited weak 2-deoxyglucose dehydrogenase activity. No aldohexose dehydrogenase gene has been isolated, while the enzyme was reported in 1968. This is the first report of the gene and primary structure. The purified Ta0754 gene product, designated AldT, was characterized. The enzyme AldT effectively catalyzed the oxidation of various aldohexoses, especially D-mannose. Lower activities on D-2-deoxyglucose, D-xylose, D-glucose, and D-fucose were detected although no activities were shown on other aldohexoses or additional sugars. As a cofactor, NAD(+) was much more suitable for the activity than NADP(+). The NAD(+)-preferring dehydrogenase most effectively reacting to D-mannose is for the first time. AldT was most active at pH 10 and above 70 degrees C, and completely stable up to 60 degrees C after incubation for 15 min. Other enzymatic properties were also investigated.  相似文献   

18.
Mitochondrial NAD(+)-dependent malic enzyme (EC 1.1.1.40) is expressed in rapidly proliferating cells and tumor cells, where it is probably linked to the conversion of amino acid carbon to pyruvate. In this paper, we report the cDNA cloning, amino acid sequence, and expression in Escherichia coli of functional human NAD(+)-dependent mitochondrial malic enzyme. The cDNA is 1,923 base pairs long and contains an open reading frame coding for a 584-amino acid protein. The molecular mass is 65.4 kDa for the unprocessed precursor protein. Comparison of the amino acid sequence of the human protein with the published NADP(+)-dependent mammalian cytosolic or plant chloroplast malic enzymes reveals highly conserved regions interrupted with long stretches of amino acids without significant homology. Expression of the processed protein in E. coli yielded an enzyme with the same kinetic and allosteric properties as malic enzyme purified from human cells.  相似文献   

19.
The Wood-Ljungdahl pathway of anaerobic CO(2) fixation with hydrogen as reductant is considered a candidate for the first life-sustaining pathway on earth because it combines carbon dioxide fixation with the synthesis of ATP via a chemiosmotic mechanism. The acetogenic bacterium Acetobacterium woodii uses an ancient version of the pathway that has only one site to generate the electrochemical ion potential used to drive ATP synthesis, the ferredoxin-fueled, sodium-motive Rnf complex. However, hydrogen-based ferredoxin reduction is endergonic, and how the steep energy barrier is overcome has been an enigma for a long time. We have purified a multimeric [FeFe]-hydrogenase from A. woodii containing four subunits (HydABCD) which is predicted to have one [H]-cluster, three [2Fe2S]-, and six [4Fe4S]-clusters consistent with the experimental determination of 32 mol of Fe and 30 mol of acid-labile sulfur. The enzyme indeed catalyzed hydrogen-based ferredoxin reduction, but required NAD(+) for this reaction. NAD(+) was also reduced but only in the presence of ferredoxin. NAD(+) and ferredoxin reduction both required flavin. Spectroscopic analyses revealed that NAD(+) and ferredoxin reduction are strictly coupled and that they are reduced in a 1:1 stoichiometry. Apparently, the multimeric hydrogenase of A. woodii is a soluble energy-converting hydrogenase that uses electron bifurcation to drive the endergonic ferredoxin reduction by coupling it to the exergonic NAD(+) reduction.  相似文献   

20.
d-Glucose-6-phosphate nicotinamide adenine dinucleotide phosphate (NADP) oxidoreductase (EC 1.1.1.49) from Bacillus licheniformis has been purified approximately 600-fold. The enzyme appears to be constitutive and exhibits activity with either oxidized NAD (NAD(+)) or oxidized NADP (NADP(+)) as electron acceptor. The enzyme has a pH optimum of 9.0 and has an absolute requirement for cations, either monovalent or divalent. The enzyme exhibits a K(m) of approximately 5 muM for NADP(+), 3 mM for NAD(+), and 0.2 mM for glucose-6-phosphate. Reduced NADP (NADPH) is a competitive inhibitor with respect to NADP(+) (K(m) = 10 muM). Phosphoenolpyruvate (K(m) = 1.6 mM), adenosine 5'-triphosphate (K(m) = 0.5 mM), adenosine diphosphate (K(m) = 1.5 mM), and adenosine 5'-monophosphate (K(m) = 3.0 mM) are competitive inhibitors with respect to NAD(+). The molecular weight as estimated from sucrose density centrifugation and molecular sieve chromatography is 1.1 x 10(5). Sodium dodecyl sulfate gel electrophoresis indicates that the enzyme is composed of two similar subunits of approximately 6 x 10(4) molecular weight. The intracellular levels of glucose-6-phosphate, NAD(+), and NADP(+) were measured and found to be approximately 1 mM, 0.9 mM, and 0.2 mM, respectively, during logarithmic growth. From a consideration of the substrate pool sizes and types of inhibitors, we conclude that this single constitutive enzyme may function in two roles in the cell-NADH production for energetics and NADPH production for reductive biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号