首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Separations of model proteins obtained under denaturing conditions in the presence of micellar concentrations of ionic surfactants displayed high resolution and efficiency using either bare silica or C18-derivatized silica capillaries. Superior migration time reproducibility was achieved through the use of the C18-derivatized capillaries (run-to-run migration time % RSD = 0.2), relative to that obtained in bare silica capillaries (run-to-run migration time % RSD = 2.2), in the absence of buffer replenishment. The effects of surfactant concentration and pH upon the separation of a mixture of five model proteins of varying ionic and hydrophobic character were investigated, and the application of this technique to the analysis of a recombinant DNA-derived protein in fermentation broth was demonstrated.  相似文献   

2.
The characterization of recombinant human growth hormone (rhGH; somatropin) by capillary electrophoresis (CE) with UV-absorbance and mass spectrometric (MS) detection using capillaries noncovalently coated with polybrene (PB) and poly(vinyl sulfonic acid) (PVS) is demonstrated. Compared with bare fused-silica capillaries, PB-PVS coated capillaries yielded more favorable migration-time reproducibilities and higher separation efficiencies. Optimal separation conditions for the bilayer-coated capillaries comprised a background electrolyte (BGE) of 400 mM Tris phosphate (pH 8.5) yielding migration-time R.S.D.s of less than 1.0% and plate numbers above 300,000 for intact rhGH. The protein was also analyzed using the CE method described in the European Pharmacopoeia (Ph. Eur.) monograph. The pharmacopoeial method gave much longer analysis times (22 min versus 8 min), lower resolution and plate numbers, and consecutive shifts in migration time for rhGH, indicating possible interactions between the protein and the inner capillary wall. Due to stable migration times obtained with the coated capillaries, reliable profiling and quantification of rhGH and its byproducts in time was possible. Analysis of thermally degraded rhGH revealed the formation of two main degradation products. CE-mass spectrometry (MS) of this sample, using a PB-PVS coated capillary and a BGE of 75 mM ammonium formate (pH 8.5), suggests that these products are desamido forms of rhGH. Analyses of expired rhGH preparations with CE-UV and CE-MS indicated the presence of both deamidation and oxidation products.  相似文献   

3.
Non-aqueous capillary electrophoresis was used to study the separation selectivity of positively charged drug substances and negatively charged diuretics. Study was made of the effects of organic solvent composition and the background electrolyte on the separation. The separation selectivity could be altered considerably by varying the methanol/acetonitrile composition. In addition, the migration order and the resolution of the pharmaceuticals could be altered merely by changing the electrolyte cation or the anion. The electrolytes tested were alkali metal acetates, ammonium acetate, ammonium chloride and ammonium bromide. As with aqueous background electrolyte solutions, the electroosmotic flow was decreased with increasing size of the alkali metal cation of the electrolyte in methanol/acetonitrile 50:50 (v/v).  相似文献   

4.
This work describes further improvements of coating fused silica capillaries with 2-hydroxyethyl methacrylate (HEMA) by atom transfer radical polymerization (ATRP). First, endcapping with a sterically less bulky silanyl reagent reduces the electrosmotic flow (EOF) by 25% in addition to the 40% EOF reduction caused by HEMA coating compared to a bare fused silica capillary. An additional hydrolysis step was introduced into the preparation of HEMA coated capillaries and leads to better reproducible migration times. The influence of the solvent during ATRP and the resulting polymer coating was investigated by replacement of DMF with water or water-methanol mixtures. The quality of the optimized coating was characterized by protein separations at pH 3. HEMA coated capillaries reveal up to 746000 plates. The polyvinyl alcohol (PVA) coated capillary provides only half of this efficiency. A long-term test at pH 9 shows good stability of the HEMA coated capillaries in basic medium. Also the numbers of plates in this medium was about 30% higher than for separations with the PVA capillary. In addition, the phosphate buffer was replaced by a volatile ammonium acetate buffer for later use with mass spectrometry (MS).  相似文献   

5.
The use and applicability of silica based capillary monolithic reversed-phase columns in proteomic analysis has been evaluated by liquid chromatography-mass spectrometry (LC-MS). Chromatographic performance of the monolithic capillaries was evaluated with a tryptic digest of cytochrome C showing very good resolution and reproducibility in addition to the known advantages of a low pressure drop over a time period of 6 months. Monoliths were subsequently tested for their suitability to separate proteins and peptides from samples typically encountered in proteomic research such as in-gel digested tryptic peptide mixtures or fractions of proteolytically digested human serum. The monolithic capillaries also proved useful in the analysis of phospholipid species in bronchoalveolar lavage fluid. Compared to particle-filled conventional capillary columns, rapid and highly efficient separation of peptides and proteins was achieved using these bimodal pore size distribution columns, and good quality collision induced dissociation (CID) mass spectra were obtained on an ion trap mass spectrometer. These novel monolithic separation media are thus a promising addition to the methodological toolbox of proteomics research.  相似文献   

6.
Fast and efficient analysis of proteins in physiological fluids is of great interest to researchers and clinicians alike. Capillary electrophoresis (CE) has proven to be a potentially valuable tool for the separation of proteins in specimens. However, a generally acknowledged drawback of this technique is the limited sample volumes which can be loaded onto the CE capillary which results in a poor concentration limit of detection. In addition, matrix components in samples may also interfere with separation and detection of analytes. Membrane preconcentration–CE (mPC–CE) has proved to be effective in overcoming these problems. In this report, we describe the systematic evaluation of parameters affecting on-line preconcentration/clean-up and separation of protein mixtures by mPC–CE. Method development was carried out with a standard mixture of proteins (lysozyme, myoglobin, carbonic anhydrase, and human serum albumin). First, using MALDI-TOF-MS, membrane materials with cation-exchange (R-SO3H) or hydrophobic (C2, C8, C18, SDB) characteristics were evaluated for their potential to retain proteins in mPC cartridges. Hydrophobic membranes were found most suitable for this application. Next, all mPC–CE analysis of protein samples were performed in polybrene coated capillaries and parameters affecting sample loading, washing and elution, such as the composition and volume of the elution solvent were investigated. Furthermore, to achieve optimal mPC–CE performance for the separation of protein mixtures parameters affecting postelution focusing and electrophoresis, including the composition of the background electrolyte and a trailing stacking buffer were varied. Optimal conditions for mPC–CE analysis of proteins using a C2 impregnated membrane preconcentration (mPC) cartridge were achieved with a background electrolyte of 5% acetic acid and 2 mM ammonium acetate, 60 nl of 80% acetonitrile in H2O as an elution solvent, and 60 nl of 0.5% ammonium hydroxide as a trailing stacking buffer. The developed method was used successfully to separate proteins in aqueous humor, which contains numerous proteins in a complex matrix of salts.  相似文献   

7.
Strategies reported for the separation of proteins in capillary zone electrophoresis and capillary isoelectric focusing are reviewed. The strategies are grouped into two categories: coated capillaries and buffer/sample additives. Success attained with each case and also, more importantly, the limitations of the methodology are discussed. Recent results from our own laboratory in the area of capillary isoelectric focusing in uncoated, fused silica capillaries using additives are summarized. The advantages and disadvantages of coated columns vs. additives are delineated.  相似文献   

8.
Capillary zone electrophoresis (CZE) and capillary isotachophoresis (CITP) were applied for the determination of peptide purity degree and counter-ion content in lecirelin, the synthetic analogue of luteinizing hormone-releasing hormone (LHRH). CZE analyses were carried out in acidic background electrolyte (100 mM H3PO4, 50 mM Tris, pH 2.25) in bare fused silica capillary using UV-absorption detection at 206 nm. CITP analyses were performed in the electrophoretic analyzer with column coupling, equipped with contactless conductivity detectors both in preseparation capillary and in analytical capillary, and with UV-absorption detector (220 and 254 nm) in analytical capillary. Determinations of peptide purity were carried out in cationic mode with leading electrolyte (LE), 10 mM KOH/AcOH, pH 4.5, and terminating electrolyte (TE), 10 mM beta-alanine (BALA)/AcOH, pH 4.4. Degree of peptide purity determined by both CZE and CITP was in the range 60.1-80.9% for crude preparations of lecirelin and in the range 96.4-99.9% for HPLC purified batches. Concentrations of contaminating counter-ions, the anions of trifluoromethanesulfonic acid (TFMSA), trifluoroacetic acid (TFA) and acetic acid (AcOH), were determined by CITP analyses in anionic mode with LE 10 mM HCl/His, pH 6.0, and TE 10 mM 2-(N-morpholino)-ethanesulfonic acid (MES), pH 4.0, by the calibration curve method. Mass percentages of the counterion contents in the analyzed lecirelin batches varied from zero to ca. 9% (TFMSA), 3% (TFA) and 11% (AcOH), respectively.  相似文献   

9.
A capillary electrophoresis method has been developed to separate the products of liver microsomal testosterone metabolism. The microsomal mixture undergoes liquid-liquid extraction and pre-concentration, and then electrophoretic analysis takes less than 25 min including capillary conditioning steps. The development of the complex background electrolyte (Tris-HCl and borate buffers, sodium dodecyl sulfate, β-cyclodextrin and ethanol) necessary for this separation is described. A z-type capillary flow cell is used to obtain adequate detection sensitivity. The proportion in which the metabolites are produced as determined by this method allows assignment of the relative activity of cytochrome P-450 enzymes in the microsomes. The technique is useful for comparison of activity in normal and abnormal hepatic microsomes.  相似文献   

10.
The gas chromatographic separation of several monosaccharides and related sugars derivatized by methoxylation and trimethylsilylation reactions was optimized with glass capillary (SP-2250) and fused silica (SP-2100) columns. Individual sugars included aldoses, ketoses, polyols, acidic forms and N-acetylated amino sugars. Peaks were detected by selected ion monitoring (SIM). The fused silica column gave complete resolution of all peaks (two per hexose and one per hexitol) arising from glucose, galactose, mannose, fructose, sorbitol, mannitol and dulcitol. The resolution of these sugars with the glass capillary column was not as good, but full differentiation was possible on the basis of SIM. Because the fused silica column gave a better resolution of 33 sugars tested and was more easily installed than the glass capillary column, it was utilized for quantitative analysis. A deuterated algal sugar mixture used for quantitation by isotope dilution was found to contain glucose, galactose, mannose, xylose, arabinose, ribose and rhamnose. Full recoveries were obtained of various amounts of glucose, galactose, mannose, fructose and xylose added to human serum.  相似文献   

11.
Wang R  Jia ZP  Fan JJ  Hu XL  Li YM  Chen LR  Xie JW  Zhang Q 《Chirality》2004,16(1):45-49
A capillary electrophoresis method was developed to separate the enantiomers of cefoperazone. Different cyclodextrins, including alpha-cyclodextrin (alpha-CD), beta-cyclodextrin (beta-CD), gamma-cyclodextrin (gamma-CD), 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD), and methyl-beta-cyclodextrin (Me-beta-CD), were tested as chiral additives in the running buffer. The effect of various parameters on enantioseparation such as concentration of NaH(2)PO(4), buffer pH, and CD concentration was also studied. The cefoperazone enantiomers were baseline separated under conditions of 0.04 mmol/L beta-CD, 75 mmol/L NaH(2)PO(4) buffer at pH 4.0. A fused silica capillary (40 cm effective length x 75 microm ID) was used. The applied voltage and capillary temperature were 20 kV and 25 degrees C, respectively. Under these conditions, linear calibration curves were obtained in the 5-500 microg/ml range using UV detection at 280 nm. The limit of detection for both isomers was 0.1 microg/ml. The method was used for the analysis of different pharmaceutical preparations (dose) and biological samples containing cefoperazone.  相似文献   

12.
An easy‐to‐prepare chiral CE method for the enantiomeric separation of 13 new amphetamine‐like designer drugs, using CDs as chiral selectors, was developed. Sulfated‐β‐CD was found to be the best chiral selector among the three used (sulfated‐β‐CD, caroboxymethyl‐β‐CD, dimethyl‐β‐CD). The separation of the analytes was achieved in a fused‐silica gel capillary at 20 °C using an applied voltage of +25 kV. The optimized background electrolyte consisted of 63.5 mM H3PO4 and 46.9 mM NaOH in water. Several electrophoretic parameters such as CD type, CD concentration (1 ? 40 mg/mL), buffer pH (2.6, 3.6, 5.0, 6.0), length of the capillary (70 ? 40 cm total length), amount of the organic solvent (methanol and acetonitrile) were investigated and optimized. Chirality 25:617–621, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
We attempted an analysis of naturally occurring polyprenol and dolichol using a monolithic silica capillary column in HPLC. First, the separation of the polyprenol mixture alone was performed using a 250 x 0.2 mm inner diameter (ID) octadecylsilyl (ODS)-monolithic silica capillary column. The resolution of the separation between octadecaprenol (prenol 18) and nonadecaprenol (prenol 19) exceeded by >or=2-fold the level recorded when using a conventional ODS-silica particle-packed column (250 x 4.6 mm ID) under the same elution conditions. Next, the mixture of the prenol type (polyprenol) and dolichol type (dihydropolyprenol) was subjected to this capillary HPLC system, and the separation of each homolog was successfully achieved. During the analysis of polyprenol fraction derived from Eucommia ulmoides leaves, dolichols were found as a single peak, including all-trans-polyprenol and cis-polyprenol previously identified. This sensitive high-resolution system is very useful for the analysis of compounds that are structurally close to polyprenols and dolichols and that have a low content.  相似文献   

14.
Botulinum neurotoxin serotype A (BoNT/A) is a proteolytic enzyme that induces muscle paralysis. It is a cause of food poisoning, a potential bioterrorist threat and, in low doses an emerging pharmaceutical product. No effective treatment is currently available for BoNT intoxication. Previously we developed a BoNT/A light chain enzyme assay using a peptide substrate based on the SNAP-25 protein target, with HPLC separation and UV detection of assay products, and applied the method to screen combinatorial peptide libraries for inhibitory activity to BoNT/A. We now report on development of a capillary electrophoresis laser-induced fluorescence (CE-LIF) method for measuring BoNT/A activity. The enzyme assay products were labeled with CBQCA dye followed by CE separation on a bare fused silica column in a HEPES-based buffer and LIF detection. All assay products were separated in CE within 8 min compared to incomplete separation of assay products within 1h by HPLC. The labeled products showed linear dependence of intensity versus concentration, and quantitative mole-fraction assignments. We used the CE-LIF method to screen combinatorial peptide libraries for potential modulating effects on BoNT/A peptidase activity. With some of the libraries, peptides co-migrated with assay products and interfered with quantitation. In such cases, interference was reduced by substituting sodium dodecyl sulfate (SDS) for Tween-20 in the running buffer. Separation in the capillaries then occurred by micellar electrokinetic chromatography (MEKC). The CE-LIF method is quick and lends itself to high-throughput or microfluidic formats.  相似文献   

15.
In this study capillary zone electrophoresis has been used for the separation of racemic tryptophan derivatives in their enantiomers. The effect of cyclodextrins with different shape, added to the background electrolyte, on the migration time of 10 compounds, including methyl tryptophan, hydroxy tryptophan, and tryptophan ester derivatives, has been studied. Furthermore, the effect of cyclodextrins with different shape and that of the composition of the background electrolyte on the enantiomer resolution are discussed. Among different cyclodextrins used α-cyclodextrin and heptakis(2,6-di-O-methyl)-β-cyclodextrin were found to possess the best complexing capacity and thus the resolution power toward analysed compounds.  相似文献   

16.
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.  相似文献   

17.
This paper describes the fabrication of long alkyl chain methacrylate monolithic materials for using as stationary phases in capillary liquid chromatography. Following deactivation of the capillary surface with 3-(trimethoxysilyl)propyl methacrylate (gamma-MAPS), monoliths were formed by co-polymerisation of stearyl methacrylate (SMA) with ethylene glycol dimethacrylate (EDMA) in the presence of the initiator AIBN and a mixture of porogens including iso-amyl alcohol and 1,4-butanediol. The monoliths were prepared in 100 microm i.d. capillaries and the composition of the polymerisation mixtures were optimised in terms of the ratio of SMA/EDMA, the porogen composition and ratio of porogen to monomers. As the porogen weight fraction decreased, the microglobules became smaller and as expected, the total porosity decreased. In order to determine the usability of such materials, the column permeability K was measured by pumping water through the columns at different linear flow rates. Good results were obtained when these capillaries were used to separate mixtures of weak acids, neutral and basic compounds.  相似文献   

18.
Lee S  Jung S 《Carbohydrate research》2003,338(10):1143-1146
Cyclosophoraoses, cyclic beta-(1-->2)-D-glucans produced by Rhizobium meliloti 2011, were used as a novel chiral additive for the separation of terbutaline, amethopterin, thyroxine and N-acetylphenylalanine enantiomers in aqueous capillary electrophoresis (CE). Enantioseparation took place in the normal- or reversed-polarity mode when a high concentration of neutral (60 mM) or anionic (40 mM) cyclosophoraoses was added to the background electrolyte (BGE).  相似文献   

19.
ABSTRACT

With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.  相似文献   

20.
The performance of capillary electrophoresis (CE) operating with a sulfonated capillary for the separation of protein adducts of anticancer ruthenium(III)-based drugs was evaluated. The coated capillary was shown to yield improved resolution of albumin- and transferrin-bound species of ruthenium compared with that attained with the bare fused-silica capillary. The coating also showed an increased reproducibility of migration times and peak areas and allowed reasonably high efficiency separation of analytes (up to 1300 theoretical plates per meter), which display high affinity toward a fused-silica surface. In addition, due to rather high electroosmotic flow (EOF, > 45 × 10−5 cm2 V−1 s−1) in the coated capillary, it enabled fast counter-EOF monitoring of albumin and transferrin adducts. This benefit, together with requiring only a short flush with the background electrolyte to have migration times reproducible (at < 1.5% relative standard deviation), makes this wall-modified capillary holding promise for CE examination of fast reactions such as those accompanying protein-drug interactions and biotransformations associated with drug delivery via protein binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号