首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hypoxia can act as an initial trigger to induce erythrocyte sickling and eventual end organ damage in sickle cell disease (SCD). Many factors and metabolites are altered in response to hypoxia and may contribute to the pathogenesis of the disease. Using metabolomic profiling, we found that the steady-state concentration of adenosine in the blood was elevated in a transgenic mouse model of SCD. Adenosine concentrations were similarly elevated in the blood of humans with SCD. Increased adenosine levels promoted sickling, hemolysis and damage to multiple tissues in SCD transgenic mice and promoted sickling of human erythrocytes. Using biochemical, genetic and pharmacological approaches, we showed that adenosine A(2B) receptor (A(2B)R)-mediated induction of 2,3-diphosphoglycerate, an erythrocyte-specific metabolite that decreases the oxygen binding affinity of hemoglobin, underlies the induction of erythrocyte sickling by excess adenosine both in cultured human red blood cells and in SCD transgenic mice. Thus, excessive adenosine signaling through the A(2B)R has a pathological role in SCD. These findings may provide new therapeutic possibilities for this disease.  相似文献   

2.
Hypoxia drives aging and promotes age-related cognition and hearing functional decline. Despite the role of erythrocytes in oxygen (O2) transport, their role in the onset of aging and age-related cognitive decline and hearing loss (HL) remains undetermined. Recent studies revealed that signaling through the erythrocyte adenosine A2B receptor (ADORA2B) promotes O2 release to counteract hypoxia at high altitude. However, nothing is known about a role for erythrocyte ADORA2B in age-related functional decline. Here, we report that loss of murine erythrocyte–specific ADORA2B (eAdora2b−/−) accelerates early onset of age-related impairments in spatial learning, memory, and hearing ability. eAdora2b-/- mice display the early aging-like cellular and molecular features including the proliferation and activation of microglia and macrophages, elevation of pro-inflammatory cytokines, and attenuation of hypoxia-induced glycolytic gene expression to counteract hypoxia in the hippocampus (HIP), cortex, or cochlea. Hypoxia sufficiently accelerates early onset of cognitive and cochlear functional decline and inflammatory response in eAdora2b−/− mice. Mechanistically, erythrocyte ADORA2B-mediated activation of AMP-activated protein kinase (AMPK) and bisphosphoglycerate mutase (BPGM) promotes hypoxic and metabolic reprogramming to enhance production of 2,3-bisphosphoglycerate (2,3-BPG), an erythrocyte-specific metabolite triggering O2 delivery. Significantly, this finding led us to further discover that murine erythroblast ADORA2B and BPGM mRNA levels and erythrocyte BPGM activity are reduced during normal aging. Overall, we determined that erythrocyte ADORA2B–BPGM axis is a key component for anti-aging and anti-age–related functional decline.

Hypoxia drives aging and promotes age-related functional decline in cognition and hearing. This study shows that signaling through the erythrocyte adenosine A2B receptor promotes metabolic reprogramming, leading to increased production of 2,3-bisphosphoglycerate and lowering hypoxia-induced inflammatory responses in the hippocampus, cortex and cochlea during aging.  相似文献   

3.
4.
Ovarian steroids appear to influence the manifestations of sickle cell disease (SCD); oestrogens can adversely affect erythrocyte function, whereas progestogens may inhibit sickling and decrease the osmotic fragility of erythrocytes. The aims of the present studies were: (i) to characterise the binding of oestradiol and progesterone to erythrocytes from women with HbSS, HbSC and HbAA genotypes; (ii) to investigate whether steroids modulate susceptibility to sickling or osmotic fragility of HbSS and HbAA erythrocytes. Erythrocytes were incubated for 1h with [3H]-steroids at 4 and 37 degrees C. Binding of both oestradiol and progesterone was independent of temperature and steroid concentration, but was decreased by sequential "washing" of erythrocytes in fresh incubation buffer. Binding capacity was 80 +/- 6% greater for oestradiol (versus progesterone) in all three genotypes, and binding of both steroids was decreased by > or = 70% in HbSS erythrocytes compared to HbSC or HbAA erythrocytes. Pre-incubation of erythrocytes with 35 microM oestradiol or 30 microM progesterone had no significant effect on susceptibility of HbSS and HbAA erythrocytes to sickling, or on osmotic fragility. We conclude that both oestradiol and progesterone bind in a low affinity, non-saturable manner to erythrocytes with decreased binding in cells from women with HbSS. However, steroid binding does not affect susceptibility to sickling or osmotic fragility irrespective of haemoglobin genotype.  相似文献   

5.
Incubation of human erythrocytes in medium containing inosine (10 mM), pyruvate (10 mM), phosphate (50 mM) and NaCl (75 mM) at pH 6.6 leads to a more than 1000-fold increase in the concentration of 5-phosphoribosyl 1-pyrophosphate (PRPP), as identified and quantified by 31P-n.m.r. spectroscopy. The accumulation is highly pH-dependent, with a maximum at extracellular pH 6.60, and the maximum value of 1.3-1.6 mmol/l of erythrocytes is attained within 1 h at 37 degrees C. PRPP was accumulated despite high concentrations of 2,3-bisphosphoglycerate (2,3-BPG), an inhibitor of PRPP synthetase. The concentration of PRPP correlated with the intracellular concentration of inorganic phosphate (Pi). Substitution of either adenosine or adenosine plus inosine for inosine in the medium did not lead to 31P-n.m.r.-detectable accumulation of PRPP. These results show that neither 2,3-BPG nor PRPP itself inhibits the synthesis of PRPP in the human erythrocyte. Adenosine, however, prevents the inosine-stimulated accumulation of PRPP.  相似文献   

6.
Prostaglandin E2 has previously been shown to enhance the shape transformation of sickle prone erythrocytes (8) and to reduce the oxygen resaturation of Hemoglobin SS within intact sickle cell erythrocytes after deoxygenation (15). In view of the recent importance attributed to calcium transport in maintaining erythrocyte shape and viability (10) and the suggestion that prostaglandins may act via a calcium ionophore mechanism (9) on cell membranes, erythrocyte ghosts were prepared following the method of Lepke and Passow (12) from normal and sickle cell anemia erythrocytes. These two classes of ghosts are shown to display differing patterns of sodium and calcium transport, whith calcium influx being preferentially stimulated by prostaglandin E2 in sickle cell ghosts. It is suggested that in hypoxic, stasis conditions in vivo, prostaglandins may play a role in accelerating sickling of sickle prone erythrocytes via stimulation of calcium influx.  相似文献   

7.
Induction of fetal hemoglobin (HbF) has therapeutic importance for patients with sickle cell disease (SCD) and the beta-thalassemias. It was recently reported that increased expression of LIN28 proteins or decreased expression of its target let-7 miRNAs enhances HbF levels in cultured primary human erythroblasts from adult healthy donors. Here LIN28A effects were studied further using erythrocytes cultured from peripheral blood progenitor cells of pediatric subjects with SCD. Transgenic expression of LIN28A was accomplished by lentiviral transduction in CD34(+) sickle cells cultivated ex vivo in serum-free medium. LIN28A over-expression (LIN28A-OE) increased HbF, reduced beta (sickle)-globin, and strongly suppressed all members of the let-7 family of miRNAs. LIN28A-OE did not affect erythroblast differentiation or prevent enucleation, but it significantly reduced or ameliorated the sickling morphologies of the enucleated erythrocytes.  相似文献   

8.
Prostaglandin E2 has previously been shown to enhance the shape transformation of sickle prone erythrocytes (8) and to reduce the oxygen resaturation of Hemoglobin SS within intact sickle cell erythrocytes after deoxygenation (15). In view of the recent importance attributed to calcium transport in maintaining erythrocyte shape and viability (10) and the suggestion that prostaglandins may act via a calcium ionophore mechanism (9) on cell membranes, erythrocyte ghosts were prepared following the method of Lepke and Passow (12) from normal and sickle cell anemia erythrocytes. These two classes of ghosts are shown to display differing patterns of sodium and calcium transport, with calcium influx being preferentially stimulated by prostaglandin E2 in sickle cell ghosts. It is suggested that in hypoxic, stasis conditions , prostaglandins may play a role in accelerating sickling of sickle prone erythrocytes via stimulation of calcium influx.  相似文献   

9.
G protein-coupled receptors (GPCRs) have been suggested as new drug targets to treat a variety of diseases. In sickle cell disease (SCD), the LW erythrocyte adhesion receptor can be activated by stimulation of β2 adrenergic receptors (β2ARs), to mediate sickle erythrocyte (SSRBC) adhesion to endothelium. However, the involvement of tyrosine protein kinases in β2AR signaling to activate SSRBC adhesion to endothelium has not been thoroughly elucidated. Either direct activation with Cholera toxin of Gαs protein, which acts downstream of β2ARs, or inhibition with Pertussis toxin of Gαi, mediating suppression of adenylyl cyclase, increased SSRBC adhesion to endothelium over baseline adhesion. This effect involved the non-receptor tyrosine kinases, p72Syk and p60-c-Src, which were more abundant in SSRBCs than in normal erythrocytes. In contrast, Pertussis toxin and Cholera toxin failed to increase adhesion of normal erythrocytes. SSRBC Gαi inhibition also increased phosphorylation of p72Syk and p60-c-Src. Further, we investigated the relevance of activation of p72Syk and p60-c-Src, and identified LW (ICAM-4, CD242) and CD44 as the erythroid adhesion molecules both physically interacting with activated p60-c-Src. As a result, SSRBC LW underwent increased tyrosine phosphorylation, leading to SSRBC LW and CD44 binding to endothelial αvβ3 integrin and CD44, respectively. These data provide in vitro mechanistic evidence that p60-c-Src, which could act downstream of Gαs/p72Syk, associates with LW and CD44 on SSRBCs leading to their interactions with endothelial αvβ3 and CD44, respectively. Thus, increased activation of these signaling mechanisms in SSRBCs could initiate or exacerbate vascular occlusion, the hallmark of SCD.  相似文献   

10.
People with sickle cell disease (SCD) suffer from numerous acute complications that can result in multiple hospitalizations and emergency department (ED) and outpatient care visits. Priapism, a prolonged unwanted erection of the penis not due to sexual stimulation, is a serious complication among males with SCD. Variations in estimates of prevalence make it difficult to accurately assess the burden of this complication of SCD. We analyzed data from the Nationwide Emergency Department Sample (NEDS), a product of the Healthcare Cost and Utilization Project, for the years 2006 through 2010 to measure the numbers of ED visits and to examine patterns of subsequent hospitalizations associated with priapism among male patients with SCD. We find that among ED visits associated with males with SCD, those prompted by priapism are more likely to result in hospitalization than are those associated with pain.  相似文献   

11.
12.
In addition to its mediation of vascular relaxation and neurotransmission, nitric oxide (*NO) potently modulates oxygen radical reactions and inflammatory signaling. This participation of *NO in free radical and oxidative reactions will yield secondary oxides of nitrogen that display frequently-undefined reactivities and unique signaling properties. In sickle cell disease (SCD) inflammatory-derived oxidative reactions impair *NO-dependent vascular function. A combination of clinical and knockout-transgenic SCD mouse studies show increased rates of xanthine oxidase-dependent superoxide (O2*-) production and reveal the presence of an oxidative and nitrative inflammatory milieu in the sickle cell vasculature, kidney and liver. Considering the critical role of endothelial *NO production in regulating endothelial adhesion molecule expression, platelet aggregation, and both basal and stress-mediated vasodilation, the O2*- mediated reduction in *NO bioavailability can significantly contribute to the vascular dysfunction and organ injury associated with SCD.  相似文献   

13.
Erythrocytes are both an important source and target of reactive oxygen species in sickle cell disease. Levels of glutathione, a major antioxidant, have been shown to be decreased in sickle erythrocytes and the mechanism leading to this deficiency is not known yet. Detoxification of reactive oxygen species involves the oxidation of reduced glutathione (GSH) into glutathione-disulfide (GSSG) which is actively transported out of erythrocyte. We questioned whether under oxidative conditions, GSSG efflux is increased in sickle erythrocytes. Erythrocytes of 18 homozygous sickle cell patients and 9 race-matched healthy controls were treated with 2,3-dimethoxy-l,4-naphthoquinone, which induces intracellular reactive oxygen species generation, to stimulate GSSG production. Intra- and extracellular concentrations of GSH and GSSG were measured at baseline and during 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation. While comparable at baseline, intracellular and extracellular GSSG concentrations were significantly higher in sickle erythrocytes than in healthy erythrocyte after 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation (69.9 ± 3.7 μmol/l vs. 40.6 ± 6.9 μmol/l and 25.8 ± 2.7 μmol/l vs. 13.6 ± 1.7 μmol/l respectively, P<0.002). In contrast to control erythrocytes, where GSH concentrations remained unchanged (176 ± 8.4 μmol/l vs. 163 ± 13.6 μmol/l, NS), GSH in sickle erythrocytes decreased significantly (from 167 ± 8.8 μmol/l to 111 ± 11.8 μmol/l, P<0.01) after 210-minute 2,3-dimethoxy-l,4-naphthoquinone stimulation. Adding multidrug resistance-associated protein-1 inhibitor (MK571) to erythrocytes blocked GSSG efflux in both sickle and normal erythrocytes. GSSG efflux, mediated by multidrug resistance-associated protein-1, is increased in sickle erythrocytes, resulting in net loss of intracellular glutathione and possibly higher susceptibility to oxidative stress.  相似文献   

14.

Background

Deoxygenation of sickle erythrocytes activates a cation permeability of unknown molecular identity (Psickle), leading to elevated intracellular [Ca2+] ([Ca2+]i) and subsequent activation of KCa 3.1. The resulting erythrocyte volume decrease elevates intracellular hemoglobin S (HbSS) concentration, accelerates deoxygenation-induced HbSS polymerization, and increases the likelihood of cell sickling. Deoxygenation-induced currents sharing some properties of Psickle have been recorded from sickle erythrocytes in whole cell configuration.

Methodology/Principal Findings

We now show by cell-attached and nystatin-permeabilized patch clamp recording from sickle erythrocytes of mouse and human that deoxygenation reversibly activates a Ca2+- and cation-permeable conductance sensitive to inhibition by Grammastola spatulata mechanotoxin-4 (GsMTx-4; 1 µM), dipyridamole (100 µM), DIDS (100 µM), and carbon monoxide (25 ppm pretreatment). Deoxygenation also elevates sickle erythrocyte [Ca2+]i, in a manner similarly inhibited by GsMTx-4 and by carbon monoxide. Normal human and mouse erythrocytes do not exhibit these responses to deoxygenation. Deoxygenation-induced elevation of [Ca2+]i in mouse sickle erythrocytes did not require KCa3.1 activity.

Conclusions/Significance

The electrophysiological and fluorimetric data provide compelling evidence in sickle erythrocytes of mouse and human for a deoxygenation-induced, reversible, Ca2+-permeable cation conductance blocked by inhibition of HbSS polymerization and by an inhibitor of strctch-activated cation channels. This cation permeability pathway is likely an important source of intracellular Ca2+ for pathologic activation of KCa3.1 in sickle erythrocytes. Blockade of this pathway represents a novel therapeutic approach for treatment of sickle disease.  相似文献   

15.
The amount and activity of superoxide dismutase (SOD) (EC 1.15.1.1) were measured in red cells collected from 50 white controls, 101 black controls, 50 patients with sickle hemoglobin (SS Hb), 12 with sickle trait, and 11 with other sickling hemoglobinopathies. Red cells from normal black subjects had more SOD amount and activity than normal whites (1.77 U/mg Hb and 2.96 micrograms/mg Hb vs. 1.47 U/mg Hb and 2.64 micrograms/mg Hb, respectively) or blacks with SS Hb or other sickling hemoglobinopathies. Patients with more severe manifestations of SS Hb had lower levels of SOD activity than those with milder symptoms but had the same amount of enzyme protein. Individuals with sickle trait had amounts and activities of SOD comparable to black controls. An alteration in defense to free radical oxygen may play a role in the severity of symptoms experienced by patients with homozygous sickle cell disease.  相似文献   

16.
Sickle cell disease vasculopathy: a state of nitric oxide resistance   总被引:5,自引:0,他引:5  
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by microvascular vaso-occlusion with erythrocytes containing polymerized sickle (S) hemoglobin, erythrocyte hemolysis, vasculopathy, and both acute and chronic multiorgan injury. It is associated with steady state increases in plasma cell-free hemoglobin and overproduction of reactive oxygen species (ROS). Hereditary and acquired hemolytic conditions release into plasma hemoglobin and other erythrocyte components that scavenge endothelium-derived NO and metabolize its precursor arginine, impairing NO homeostasis. Overproduction of ROS, such as superoxide, by enzymatic (xanthine oxidase, NADPH oxidase, uncoupled eNOS) and nonenzymatic pathways (Fenton chemistry), promotes intravascular oxidant stress that can likewise disrupt NO homeostasis. The synergistic bioinactivation of NO by dioxygenation and oxidation reactions with cell-free plasma hemoglobin and ROS, respectively, is discussed as a mechanism for NO resistance in SCD vasculopathy. Human physiological and transgenic animal studies provide experimental evidence of cardiovascular and pulmonary resistance to NO donors and reduced NO bioavailability that is associated with vasoconstriction, decreased blood flow, platelet activation, increased endothelin-1 expression, and end-organ injury. Emerging epidemiological data now suggest that chronic intravascular hemolysis is associated with certain clinical complications: pulmonary hypertension, cutaneous leg ulcerations, priapism, and possibly stroke. New therapeutic strategies to limit intravascular hemolysis and ROS generation and increase NO bioavailability are discussed.  相似文献   

17.
Human healthy (wild-type (WT)) and homozygous sickle (SS) red blood cells (RBCs) express a large number of surface receptors that mediate cell adhesion between RBCs, and between RBCs and white blood cells, platelets, and the endothelium. In sickle cell disease (SCD), abnormal adhesion of RBCs to endothelial cells is mediated by the intercellular adhesion molecule-4 (ICAM-4), which appears on the RBC membrane and binds to the endothelial αvβ3 integrin. This is a key factor in the initiation of vaso-occlusive episodes, the hallmark of SCD. A better understanding of the mechanisms that control RBC adhesion to endothelium may lead to novel approaches to both prevention and treatment of vaso-occlusive episodes in SCD. One important mechanism of ICAM-4 activation occurs via the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA)-dependent signaling pathway. Here, we employed an in vitro technique called single-molecule force spectroscopy to study the effect of modulation of the cAMP-PKA-dependent pathway on ICAM-4 receptor activation. We quantified the frequency of active ICAM-4 receptors on WT-RBC and SS-RBC membranes, as well as the median unbinding force between ICAM-4 and αvβ3. We showed that the collective frequency of unbinding events in WT-RBCs is not significantly different from that of SS-RBCs. This result was confirmed by confocal microscopy experiments. In addition, we showed that incubation of normal RBCs and SS-RBCs with epinephrine, a catecholamine that binds to the β-adrenergic receptor and activates the cAMP-PKA-dependent pathway, caused a significant increase in the frequency of active ICAM-4 receptors in both normal RBCs and SS-RBCs. However, the unbinding force between ICAM-4 and the corresponding ligand αvβ3 remained the same. Furthermore, we demonstrated that forskolin, an adenylyl cyclase activator, significantly increased the frequency of ICAM-4 receptors in WT-RBCs and SS-RBCs, confirming that the activation of ICAM-4 is regulated by the cAMP-PKA pathway. Finally, we showed that A-kinase anchoring proteins play an essential role in ICAM-4 activation.  相似文献   

18.
Experiments in which phospholipase A2 has been used to examine the accessibility of phospholipids on the surface of sickled erythrocytes and of spectrin-free spicules derived from these cells have shown that accessibility is essentially unchanged compared with oxygenated sickle or normal erythrocytes. These results conflict with the claims of other workers that sickling is accompanied by loss of lipid asymmetry and that spectrin is important in maintaining the normal distribution of phospholipids in the erythrocyte membrane.  相似文献   

19.
Oswaldo Castro 《Cryobiology》1982,19(4):339-345
Metabolic features and in vivo recovery of cryopreserved cyanate-treated erythrocytes from patients with sickle cell anemia were studied. Red cells were treated with the anti-sickling agent sodium cyanate, glycerolized, and frozen at ?80 °C. Cyanate increased post-thaw hemolysis of both normal and sickle erythrocytes. The thawed carbamylated sickle erythrocytes maintained high oxygen affinity but lost more than half of their ATP content. Addition of the metabolic nutrients adenine, pyruvate, and inosine (rejuvenation) during cyanate incubation prevented ATP loss. Rejuvenation also increased red cell 2,3-DPG and opposed the cyanate effect by lowering oxygen affinity. Yet cyanate improved by nearly 50% the intravascular recovery of thawed rejuvenated sickle erythrocytes in a rat transfusion model. Cryopreservation of autologous cyanate-treated erythrocytes could lead to their use as an extracorporeal treatment of sickle cell disease.  相似文献   

20.
The molecular basis of sickle cell disease (SCD) is well known but the pathophysiology is poorly understood. It remains intractable to therapy. Hyperactivity of several membrane transport systems, including the K+-Cl- cotransporter (termed KCC), cause HbS-containing red cells (termed HbS cells) to dehydrate and sickle, leading to the development of sickle cell crises (SCCs). Contrary to normal red cells (HbA cells), KCC in HbS cells is active at low O2 tensions (PO2s), remaining responsive to low pH or urea. Since these stimuli are usually encountered in hypoxic regions, the abnormal O2 dependence increases the contribution of KCC to dehydration, and hence development of SCCs. These differences with HbA cells may be due to the younger population of cells or to polymerization of HbS. We used 86Rb+ as a K+ congener to investigate the activity of KCC at different PO2s, and density gradient separation to investigate different red cell fractions. We found no correlation of O2 dependence with cell fractions. We also used the substituted benzaldehyde 12C79 to increase the O2 affinity of HbS and found that its effect on HbS O2 saturation and cell sickling correlated with that on both Cl--independent and Cl--dependent K+ transport, implying that, at low PO2s, KCC activity correlated with HbS polymerization. The importance of these results to understanding the pathophysiology of SCD, and for the design of chemotherapeutic agents to ameliorate or prevent SCC, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号