首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genetics and genomics of Candida albicans biofilm formation   总被引:1,自引:0,他引:1  
Biofilm formation by the opportunistic fungal pathogen Candida albicans is a complex process with significant consequences for human health: it contributes to implanted medical device-associated infections. Recent advances in gene expression profiling and genetic analysis have begun to clarify the mechanisms that govern C. albicans biofilm development and acquisition of unique biofilm phenotypes. Such studies have identified candidate adhesin genes, and have revealed that biofilm drug resistance is multifactorial. Newly defined cell-cell communication pathways also have profound effects on biofilm formation. Future challenges include the elucidation of the structure and function of the extracellular exopolymeric substance that surrounds biofilm cells, and the extension of in vitro biofilm observations to newly developed in vivo biofilm models.  相似文献   

3.
The Saccharomyces cerevisiae protein Hsp104, a member of the Hsp100/Clp AAA+ family of ATPases, and its orthologues in plants (Hsp101) and bacteria (ClpB) function to disaggregate and refold thermally denatured proteins following heat shock and play important roles in thermotolerance. The primary sequences of fungal Hsp104's contain a largely acidic C-terminal extension not present in bacterial ClpB's. In this work, deletion mutants were used to determine the role this extension plays in Hsp104 structure and function. Elimination of the C-terminal tetrapeptide DDLD diminishes binding of the tetratricopeptide repeat domain cochaperone Cpr7 but is dispensable for Hsp104-mediated thermotolerance. The acidic region of the extension is also dispensable for thermotolerance and for the stimulation of Hsp104 ATPase activity by poly-l-lysine, but its truncation results in an oligomerization defect and reduced ATPase activity in vitro. Finally, sequence alignments reveal that the C-terminal extension contains a sequence (VLPNH) that is conserved in fungal Hsp104's but not in other orthologues. Hsp104 lacking the entire C-terminal extension including the VLPNH region does not assemble and has very low ATPase activity. In the presence of a molecular crowding agent the ATPase activities of mutants with longer truncations are partially restored possibly through enhanced oligomer formation. However, elimination of the whole C-terminal extension results in an Hsp104 molecule which is unable to assemble and becomes aggregation prone at high temperature, highlighting a novel structural role for this region.  相似文献   

4.
Most cases of candidosis have been attributed to Candida albicans, but recently non-C. albicans Candida species have been identified as frequent human pathogens. Candida pathogenicity has been attributed to several factors, including adhesion to medical devices and/or host cells, biofilm formation, and secretion of hydrolytic enzymes (proteases, phospholipases and haemolysins). Although 'new'Candida species are emerging, there is still a lack of information about their pathogenicity. This review discusses recent advances in our knowledge of Candida glabrata, Candida parapsilosis and Candida tropicalis virulence factors, specifically those of adhesion and biofilm formation, which are key components in Candida pathogenicity.  相似文献   

5.
熊延靖  吴艳红 《菌物学报》2020,39(2):343-351
生物被膜的形成是白色念珠菌产生耐药性的重要原因之一。本研究首先构建白色念珠菌体外生物被膜模型,通过倒置显微镜和甲基四氮盐(XTT)法检测大蒜素对白色念珠菌生物被膜形成的影响,同时采用实时荧光定量PCR法(qRT-PCR)对白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平进行检测。结果显示,当大蒜素浓度≥12.5μg/mL时,白色念珠菌生物被膜的生长被抑制,并且在生物被膜形成的早期,大蒜素干预能有效抑制其形成;大蒜素能下调白色念珠菌生物被膜相关基因ALS1ALS3HWP1MP65SUN41的表达水平。研究结果提示,大蒜素可有效抑制体外白色念珠菌生物被膜的形成,可能与其下调生物被膜相关基因的表达有关。  相似文献   

6.
Hwp1 is a well-characterized Candida albicans cell surface protein, expressed only on hyphae, that mediates tight binding to oral epithelial cells. Prior studies indicate that HWP1 expression is dependent upon Bcr1, a key regulator of biofilm formation. Here we test the hypothesis that Hwp1 is required for biofilm formation. In an in vitro model, the hwp1/hwp1 mutant produces a thin biofilm that lacks much of the hyphal mass found in the hwp1/HWP1 reconstituted strain. In a biofilm cell retention assay, we find that the hwp1/hwp1 mutant is defective in retention of nonadherent bcr1/bcr1 mutant cells. In an in vivo rat venous catheter model, the hwp1/hwp1 mutant has a severe biofilm defect, yielding only yeast microcolonies in the catheter lumen. These properties of the hwp1/hwp1 mutant are consistent with its role as a hypha-specific adhesin and indicate that it is required for normal biofilm formation. Overexpression of HWP1 in a bcr1/bcr1 mutant background improves adherence in the in vivo catheter model. This finding provides additional support for the model that Hwp1 is critical for biofilm adhesion. Hwp1 is the first cell surface protein known to be required for C. albicans biofilm formation in vivo and is thus an excellent therapeutic target.  相似文献   

7.
The cell wall of Candida albicans lies at the crossroads of pathogenicity and therapeutics. It contributes to pathogenicity through adherence and invasion; it is the target of both chemical and immunological antifungal strategies. We have initiated a dissection of cell wall function through targeted insertional mutagenesis of cell wall-related genes. Among 25 such genes, we were unable to generate homozygous mutations in 4, and they may be essential for viability. We created homozygous mutations in the remaining 21 genes. Insertion mutations in SUN41, Orf19.5412, Orf19.1277, MSB2, Orf19.3869, and WSC1 caused hypersensitivity to the cell wall inhibitor caspofungin, while two different ecm33 insertions caused mild caspofungin resistance. Insertion mutations in SUN41 and Orf19.5412 caused biofilm defects. Through analysis of homozygous sun41Delta/sun41Delta deletion mutants and sun41Delta/sun41Delta+pSUN41-complemented strains, we verified that Sun41 is required for biofilm formation and normal caspofungin tolerance. The sun41Delta/sun41Delta mutant had altered expression of four cell wall damage response genes, thus suggesting that it suffers a cell wall structural defect. Sun41 is required for inducing disease, because the mutant was severely attenuated in mouse models of disseminated and oropharyngeal candidiasis. Although the mutant produced aberrant hyphae, it had no defect in damaging endothelial or epithelial cells, unlike many other hypha-defective mutants. We suggest that the sun41Delta/sun41Delta cell wall defect is the primary cause of its attenuated virulence. As a small fungal surface protein with predicted glucosidase activity, Sun41 represents a promising therapeutic target.  相似文献   

8.
Abstract

Candida species are fungal opportunistic pathogens capable of colonizing and infecting various human anatomical sites, where they have to adapt to distinct niche-specific pH conditions. The aim of this study was to analyse the features of Candida albicans and Candida glabrata biofilms developed under neutral and vaginal acidic (pH 4) conditions. C. albicans produced thicker and more filamentous biofilms under neutral than under acidic conditions. On the other hand, the formation of biofilms by C. glabrata was potentiated by the acidic conditions suggesting the high adaptability of this species to the vaginal environment. In general, both species developed biofilms containing higher amounts of matrix components (protein and carbohydrate) under neutral than acidic conditions, although the opposite result was found for one C. glabrata strain. Overall, this study contributes to a better understanding of the modulation of C. albicans and C. glabrata virulence by specific pH conditions.  相似文献   

9.
10.
Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated with various concentrations of farnesol (0, 3, 30, and 300 micro M) and incubated at 37 degrees C for 24 h. The extent and characteristics of biofilm formation were then assessed microscopically and with a semiquantitative colorimetric technique based on the use of 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The results indicated that the effect of farnesol was dependent on the concentration of this compound and the initial adherence time, and preincubation with 300 micro M farnesol completely inhibited biofilm formation. Supernatant media recovered from mature biofilms inhibited the ability of planktonic C. albicans to form filaments, indicating that a morphogenetic autoregulatory compound is produced in situ in biofilms. Northern blot analysis of RNA extracted from cells in biofilms indicated that the levels of expression of HWP1, encoding a hypha-specific wall protein, were decreased in farnesol-treated biofilms compared to the levels in controls. Our results indicate that farnesol acts as a naturally occurring quorum-sensing molecule which inhibits biofilm formation, and we discuss its potential for further development and use as a novel therapeutic agent.  相似文献   

11.
Candida albicans possesses an ability to grow under different host-driven stress conditions by developing robust protective mechanisms. In this investigation the focus was on the impact of osmotic (2M NaCl) and oxidative (5 mM H2O2) stress conditions during C. albicans biofilm formation. Oxidative stress enhanced extracellular DNA secretion into the biofilm matrix, increased the chitin level, and reduced virulence factors, namely phospholipase and proteinase activity, while osmotic stress mainly increased extracellular proteinase and decreased phospholipase activity. Fourier transform infrared and nuclear magnetic resonance spectroscopy analysis of mannan isolated from the C. albicans biofilm cell wall revealed a decrease in mannan content and reduced β-linked mannose moieties under stress conditions. The results demonstrate that C. albicans adapts to oxidative and osmotic stress conditions by inducing biofilm formation with a rich exopolymeric matrix, modulating virulence factors as well as the cell wall composition for its survival in different host niches.  相似文献   

12.
13.
单核细胞增生李斯特菌(Listeria monocytogenes,LM)是重要的革兰氏阳性食源性致病菌,易在食品以及各种食品加工、运输和保藏设备的接触面形成生物被膜,从而具有更强的抗逆性而难以彻底清除,因此成为食品卫生安全的重要隐患.PrfA是LM毒力基因转录表达的重要调控因子,通过比较研究LM野生株(EGD和EGDe)、PrfA缺失株(EGDAprfA和EGDeAprfA)、无害李斯特菌(Listeria innocua,LI),携带组成性表达PrfA蛋白的重组无害李斯特菌(LI-pERL3-prfA*)以及重组单核细胞增生李斯特菌(EGDeΔprfA-pERL3-prfA*)生物被膜形成能力的差异,探讨LM重要的毒力调控蛋白PrfA对生物被膜形成的影响.实验结果显示:LM野生株具有较强的生物被膜形成能力,而LI形成生物被膜的能力最弱;PrfA的缺失能降低LM生物被膜的形成能力;组成性高量表达PrfA蛋白可以回复EGDeΔprfA的生物被膜形成能力,但对LI没有增强作用.以上实验结果表明:PrfA在LM生物被膜形成中具有重要的促进作用.  相似文献   

14.
This report details the efficacy of nitric oxide (NO)-releasing xerogel surfaces composed of N-(6-aminohexyl)aminopropyl trimethoxysilane (AHAP3) and isobutyltrimethoxysilane (BTMOS) against Candida albicans adhesion, viability, and biofilm formation. A parallel plate flow cell assay was used to examine the effect of NO on planktonic fungal cells. Nitric oxide fluxes as low as 14 pmol cm?2 s?1 were sufficient to reduce fungal adhesion by ~49% over the controls after 90 min. By utilizing a fluorescence live/dead assay and replicate plating, NO flux was determined to reduce fungal viability in a dose-dependent manner. The formation of C. albicans biofilms on NO-releasing xerogel-coated silicon rubber (SiR) coupons was impeded when compared to control (non-NO-releasing) and bare SiR surfaces. The synergistic efficacy of NO and silver sulfadiazine against adhered fungal cells and biofilms is reported with increased killing and biofilm inhibition over NO alone.  相似文献   

15.
Rhamnolipids are biodegradable low toxic biosurfactants which exert antimicrobial and anti-biofilm properties. They have attracted much attention recently due to potential applications in areas of bioremediation, therapeutics, cosmetics and agriculture, however, the full potential of these versatile molecules is yet to be explored. Based on the facts that many naturally occurring lipopeptides are potent antimicrobials, our study aimed to explore the potential of replacing rhamnose in rhamnolipids with amino acids thus creating lipopeptides that would mimic or enhance properties of the parent molecule. This would allow not only for more economical and greener production but also, due to the availability of structurally different amino acids, facile manipulation of physico-chemical and biological properties.Our synthetic efforts produced a library of 43 lipopeptides revealing biologically more potent molecules. The structural changes significantly increased, in particular, anti-biofilm properties against Candida albicans, although surface activity of the parent molecule was almost completely abolished. Our findings show that the most active compounds are leucine derivatives of 3-hydroxy acids containing benzylic ester functionality. The SAR study demonstrated a further increase in activity with aliphatic chain elongation. The most promising lipopeptides 15, 23 and 36 at 12.5 µg/mL concentration allowed only 14.3%, 5.1% and 11.2% of biofilm formation, respectively after 24 h. These compounds inhibit biofilm formation by preventing adhesion of C. albicans to abiotic and biotic surfaces.  相似文献   

16.
The dimorphic fungus Candida albicans is a member of the normal flora residing in the intestinal tract of humans. In spite of this, under certain conditions it can induce both superficial and serious systemic diseases, as well as be the cause of gastrointestinal infections. Saccharomyces boulardii is a yeast strain that has been shown to have applications in the prevention and treatment of intestinal infections caused by bacterial pathogens. The purpose of this study was to determine whether S. boulardii affects the virulence factors of C. albicans . We demonstrate the inhibitory effect of live S. boulardii cells on the filamentation (hyphae and pseudohyphae formation) of C. albicans SC5314 strain proportional to the amount of S. boulardii added. An extract from S. boulardii culture has a similar effect. Live S. boulardii and the extract from S. boulardii culture filtrate diminish C. albicans adhesion to and subsequent biofilm formation on polystyrene surfaces under both aerobic and microaerophilic conditions. This effect is very strong and requires lower doses of S. boulardii cells or concentrations of the extract than serum-induced filamentation tests. Saccharomyces boulardii has a strong negative effect on very important virulence factors of C. albicans , i.e. the ability to form filaments and to adhere and form biofilms on plastic surfaces.  相似文献   

17.
The incidence of fluconazole-resistant Candida albicans has been increasing worldwide. Both biofilm and fungal morphogenesis are main virulence factors of C. albicans cells. Extracellular fungal prostaglandins are synthesized during biofilm adhesion and development and through yeast-hypha conversion. Hence, we targeted prostaglandin synthesis with various cyclooxygenase (COX) inhibitors (aspirin, diclofenac, ketoprofen, tenoxicam, and ketorolac) and assessed their effect on fungal adhesion, biofilm formation, and yeast-hypha conversion in clinical isolates of Fluconazole resistant C. albicans. Significant reduction in fungal adhesion and detachment of mature biofilm was attained down to 1 mM concentrations of anti-inflammatory agents. Microscopical examination of fungal cells in the presence of the tested drugs showed significant reduction of germ tube formation. Therefore, COX inhibitors have a significant effect on reduction of Candida adhesion and biofilm development in correlation with fungal morphogenesis. Moreover, inhibition of C. albicans by COX inhibitors gave synergistic activity with fluconazole suggesting that combination therapeutic strategies may be fruitful for management of infection of Fluconazole resistant C. albicans.  相似文献   

18.
doi: 10.1111/j.1741‐2358.2011.00485.x
Candida albicans biofilm formation on soft denture liners and efficacy of cleaning protocols Objective: The aim of this study was to investigate Candida albicans biofilm formation on denture liners and to analyse the efficacy of cleaning protocols. Material and methods: Specimens were prepared from four silicone‐based soft denture liners. After artificial ageing and surface free energy determination, specimens were incubated with saliva (2 h) and Candida albicans ATCC 10231 for either short‐ (2.5 h) or long‐term (24 h) biofilm formation. Adherent cells were determined either after incubation of specimens with Candida albicans or after treatment with different denture cleaning protocols. Statistical analysis was performed using one‐way anova and the Games–Howell test (α = 0.05). Results: For both short‐ and long‐term biofilm formation, similar amounts of Candida albicans cells were found on the surface of the different liners (p = 0.295 and 0.178, respectively). For both short‐ and long‐term biofilm formation, the highest cleaning efficacy was observed for sodium hypochlorite (NaOCl; p < 0.01). The efficacy of the chemical denture cleaner in removing long‐term Candida albicans biofilms was significantly lower than the efficacy of removal by brushing (p < 0.001). Conclusion: Different silicone‐based soft denture liners yield similar Candida albicans biofilm formation on their surface. The highest efficacy for the removal of Candida albicans biofilms was identified for NaOCl. Chemical denture cleaners appear to have rather low efficacy to remove mature Candida albicans biofilms.  相似文献   

19.
20.
Hsp90 has a diverse array of cellular roles including protein folding, stress response and signal transduction. Herein we report a novel function for Hsp90 in the ATP-dependent assembly of the 26S proteasome. Functional loss of Hsp90 using a temperature-sensitive mutant in yeast caused dissociation of the 26S proteasome. Conversely, these dissociated constituents reassembled in Hsp90-dependent fashion both in vivo and in vitro; the process required ATP-hydrolysis and was suppressed by the Hsp90 inhibitor geldanamycin. We also found genetic interactions between Hsp90 and several proteasomal Rpn (Regulatory particle non-ATPase subunit) genes, emphasizing the importance of Hsp90 to the integrity of the 26S proteasome. Our results indicate that Hsp90 interacts with the 26S proteasome and plays a principal role in the assembly and maintenance of the 26S proteasome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号