首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Sulfiredoxin (Srx) is an enzyme that catalyzes the reduction of cysteine sulfinic acid of hyperoxidized peroxiredoxins (Prxs). Having high affinity toward H2O2, 2-Cys Prxs can efficiently reduce H2O2 at low concentration. We previously showed that Prx I is hyperoxidized at a rate of 0.072% per turnover even in the presence of low steady-state levels of H2O2. Here we examine the novel role of Srx in cells exposed to low steady-state levels of H2O2, which can be achieved by using glucose oxidase. Exposure of low steady-state levels of H2O2 (10-20 μm) to A549 or wild-type mouse embryonic fibroblast (MEF) cells does not lead to any significant change in oxidative injury because of the maintenance of balance between H2O2 production and elimination. In contrast, loss-of-function studies using Srx-depleted A549 and Srx-/- MEF cells demonstrate a dramatic increase in extra- and intracellular H2O2, sulfinic 2-Cys Prxs, and apoptosis. Concomitant with hyperoxidation of mitochondrial Prx III, Srx-depleted cells show an activation of mitochondria-mediated apoptotic pathways including mitochondria membrane potential collapse, cytochrome c release, and caspase activation. Furthermore, adenoviral re-expression of Srx in Srx-depleted A549 or Srx-/- MEF cells promotes the reactivation of sulfinic 2-Cys Prxs and results in cellular resistance to apoptosis, with enhanced removal of H2O2. These results indicate that Srx functions as a novel component to maintain the balance between H2O2 production and elimination and then protects cells from apoptosis even in the presence of low steady-state levels of H2O2.  相似文献   

2.
Cysteine residues of certain peroxiredoxins (Prxs) undergo reversible oxidation to sulfinic acid (Cys-SO2H) and the reduction reaction is catalyzed by sulfiredoxin (Srx). Specific Cys residues of various other proteins are also oxidized to sulfinic acid, suggesting that formation of Cys-SO2H might be a novel posttranslational modification that contributes to regulation of protein function. To examine the susceptibility of sulfinic forms of proteins to reduction by Srx, we prepared such forms of all six mammalian Prx isoforms and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Purified sulfiredoxin reduced the sulfinic forms of the four 2-Cys members (Prx I to Prx IV) of the Prx family in vitro, but it did not affect those of Prx V, Prx VI, or GAPDH. Furthermore, Srx bound specifically to the four 2-Cys Prxs in vitro and in cells. Sulfinic forms of Prx I and Prx II, but not of Prx VI or GAPDH, present in H2O2-treated A549 cells were gradually reduced after removal of H2O2; overexpression of Srx increased the rate of the reduction of Prx I and Prx II but did not induce that of Prx VI or GAPDH. These results suggest that reduction of Cys-SO2H by Srx is specific to 2-Cys Prx isoforms. For proteins such as Prx VI and GAPDH, sulfinic acid formation might be an irreversible process that causes protein damage.  相似文献   

3.
2-Cys peroxiredoxin (Prx) is the major subgroup of a family of Prx enzymes that reduce peroxide molecules such as hydrogen peroxide (H2O2). 2-Cys Prxs are inactivated when their active site cysteine residue is hyperoxidized to sulfinic acid. Sulfiredoxin (Srx) is an enzyme that catalyzes reduction of hyperoxidized 2-Cys Prxs in the presence of ATP, Mg2+, and thiol equivalent. Therefore, Srx activity is crucial for cellular function of 2-Cys Prxs. The method currently available for the determination of Srx activity relies on immunoblot detection using antibodies to hyperoxidized enzymes. Here we introduce a simple quantitative assay for Srx activity based on the colorimetric determination of inorganic phosphate released in Srx-dependent reduction of hyperoxidized Prx using the malachite green. The colorimetric assay was used for high-throughput screening of 25,000 chemicals to find Srx inhibitors.  相似文献   

4.
Peroxiredoxins (Prxs) are a family of peroxidases that reduce hydroperoxides. The cysteine residue in the active site of certain eukaryotic Prx enzymes undergoes reversible oxidation to sulfinic acid (Cys-SO2H) during catalysis, and sulfiredoxin (Srx) has been identified as responsible for reversal of the resulting enzyme inactivation in yeast. We have now characterized mammalian orthologs of yeast Srx with an assay based on monitoring of the reduction of sulfinic Prx by immunoblot analysis with antibodies specific for the sulfinic state. Sulfinic reduction by mammalian Srx was found to be a slow process (kcat = 0.18/min) that requires ATP hydrolysis. ATP could be efficiently replaced by GTP, dATP, or dGTP but not by CTP, UTP, dCTP, or dTTP. Both glutathione and thioredoxin are potential physiological electron donors for the Srx reaction, given that their Km values (1.8 mM and 1.2 microM, respectively) are in the range of their intracellular concentrations, and the Vmax values obtained with the two reductants were similar. Although its pKa is relatively low (approximately 7.3), the active site cysteine of Srx remained reduced even when the active site cysteine of most Prx molecules became oxidized. Finally, depletion of human Srx by RNA interference suggested that Srx is largely responsible for reduction of the Cys-SO2H of Prx in A549 human cells.  相似文献   

5.
6.
The overoxidation of 2-Cys peroxiredoxins (Prxs) into a sulfinic form was thought to be an irreversible protein inactivation process until sulfiredoxins (Srxs) were discovered. These are enzymes occurring among eukaryotes, which are able to reduce sulfinylated Prxs. Although Prxs are present in the three domains of life, their reduction by Srxs has been described only in eukaryotes so far. Here it was established that the cyanobacterium Anabaena PCC 7120 has a Srx homologue (SrxA), which is able to specifically reduce the sulfinic form of the 2-Cys Prx (PrxA) both in vivo and in vitro. A mutant lacking the srxA gene was found to be more sensitive than the wild type to oxidative stress. Sulfiredoxin homologues are restricted to the cyanobacterial and eukaryotic genomes sequenced so far. The present phylogenetic analysis of Srx and 2-Cys Prx sequences showed a pattern of coevolution of the enzyme and its substrate that must have involved an ancient gene transfer between ancestors of Cyanobacteria and Eukaryotes, followed by a more recent transfer from Cyanobacteria to Plantae through the chloroplastic endosymbiosis. This is the first functional characterization of a Srx enzyme in a prokaryotic organism.  相似文献   

7.
Sulfiredoxin (Srx) catalyzes a novel enzymatic reaction, the reduction of protein cysteine sulfinic acid, Cys-SO(2)(-). This reaction is unique to the typical 2-Cys peroxiredoxins (Prx) and plays a role in peroxide-mediated signaling by regulating the activity of Prxs. Two mechanistic schemes have been proposed that differ regarding the first step of the reaction. This step involves either the direct transfer of the gamma-phosphate of ATP to the Prx molecule or through Srx acting as a phosphorylated intermediary. In an effort to clarify this step of the Srx reaction, we have determined the 1.8A resolution crystal structure of Srx in complex with ATP and Mg(2+). This structure reveals the role of the Mg(2+) ion to position the gamma-phosphate toward solvent, thus preventing an in-line attack by the catalytic residue Cys-99 of Srx. A model of the quaternary complex is consistent with this proposal. Furthermore, phosphorylation studies on several site-directed mutants of Srx and Prx, including the Prx-Asp mimic of the Prx-SO(2)(-) species, support a mechanism where phosphorylation of Prx-SO(2)(-) is the first chemical step.  相似文献   

8.
Sulfiredoxin (Srx) couples the energy of ATP hydrolysis to the energetically unfavorable process of reducing the inactive sulfinic form of 2-cysteine peroxiredoxins (Prxs) to regenerate its active form. In plants, Srx as well as typical 2-cysteine Prx have been considered as enzymes with exclusive chloroplast localization. This work explores the subcellular localization of Srx in pea (Pisum sativum) and Arabidopsis (Arabidopsis thaliana). Immunocytochemistry, analysis of protein extracts from isolated intact organelles, and cell-free posttranslational import assays demonstrated that plant Srx also localizes to the mitochondrion in addition to plastids. The dual localization was in line with the prediction of a signal peptide for dual targeting. Activity tests and microcalorimetric data proved the interaction between Srx and its mitochondrial targets Prx IIF and thioredoxin. Srx catalyzed the retroreduction of the inactive sulfinic form of atypical Prx IIF using thioredoxin as reducing agent. Arabidopsis Srx also reduced overoxidized human Prx V. These results suggest that plant Srx could play a crucial role in the regulation of Prx IIF activity by controlling the regeneration of its overoxidized form in mitochondria, which are sites of efficient reactive oxygen species production in plants.  相似文献   

9.
Sufiredoxins (Srx) repair the inactivated forms of typical two-Cys peroxiredoxins (Prx) implicated in hydrogen peroxide-mediated cell signaling. The reduction of the cysteine sulfinic acid moiety within the active site of the Prx by Srx involves novel sulfur chemistry and the use of ATP and Mg(2+). The 1.65 A crystal structure of human Srx (hSrx) exhibits a new protein fold and a unique nucleotide binding motif containing the Gly98-Cys99-His100-Arg101 sequence at the N-terminus of an alpha-helix. HPLC analysis of the reaction products has confirmed that the site of ATP cleavage is between the beta- and gamma-phosphate groups. Cys99 and the gamma-phosphate of ATP, modeled within the active site of the 2.0 A ADP product complex structure, are adjacent to large surface depressions containing additional conserved residues. These features and the necessity for significant remodeling of the Prx structure suggest that the interactions between hSrx and typical two-Cys Prxs are specific. Moreover, the concave shape of the hSrx active site surface appears to be ideally suited to interacting with the convex surface of the toroidal Prx decamer.  相似文献   

10.
Reactive oxygen species and nitric oxide (NO) are capable of both mediating redox-sensitive signal transduction and eliciting cell injury. The interplay between these messengers is quite complex, and intersection of their signaling pathways as well as regulation of their fluxes requires tight control. In this regard, peroxiredoxins (Prxs), a recently identified family of six thiol peroxidases, are central because they reduce H2O2, organic peroxides, and peroxynitrite. Here we provide evidence that endogenously produced NO participates in protection of murine primary macrophages against oxidative and nitrosative stress by inducing Prx I and VI expression at mRNA and protein levels. We also show that NO prevented the sulfinylation-dependent inactivation of 2-Cys Prxs, a reversible overoxidation that controls H2O2 signaling. In addition, studies using macrophages from sulfiredoxin (Srx)-deficient mice indicated that regeneration of 2-Cys Prxs to the active form was dependent on Srx. Last, we show that NO increased Srx expression and hastened Srx-dependent recovery of 2-Cys Prxs. We therefore propose that modulation by NO of Prx expression and redox state, as well as up-regulation of Srx expression, constitutes a novel pathway that contributes to antioxidant response and control of H2O2-mediated signal transduction in mammals.  相似文献   

11.
The reversible oxidation of the active site cysteine in typical 2-Cys peroxiredoxins (Prx) to sulfinic acid during oxidative stress plays an important role in peroxide-mediated cell signaling. The catalytic retroreduction of Prx-SO(2)(-) by sulfiredoxin (Srx) has been proposed to proceed through two novel reaction intermediates, a sulfinic phosphoryl ester and protein-based thiosulfinate. Two scenarios for the repair mechanism have been suggested that differ in the second step of the reaction. The attack of Srx or GSH on the Prx-SO(2)PO(3)(2-) intermediate would result in either the formation of Prx-Cys-S(=O)-S-Cys-Srx or the formation of Prx-Cys-S(=O)-S-G thiosulfinates, respectively. To elucidate the mechanism of Prx repair, we monitored the reduction of human PrxII-SO(2)(-) using rapid chemical quench methodology and electrospray ionization time-of-flight mass spectrometry. An (18)O exchange study revealed that the Prx sulfinic acid phosphoryl ester is rapidly formed and hydrolyzed (k = 0.35 min(-1)). Furthermore, we observed the exclusive formation of a thiosulfinate linkage between Prx and Srx (k = 1.4 min(-1)) that collapses to the disulfide-bonded Srx-Prx species (k = 0.14 min(-1)). Thus, the kinetic and chemical competences of the first two steps in the Srx reaction have been demonstrated. It is clear, however, that GSH may influence thiosulfinate formation and that GSH and Srx may play additional roles in the resolution of the thiosulfinate intermediate.  相似文献   

12.
Sufiredoxin (Srx) is a sulfinic acid reductase, a recently identified eukaryotic enzyme, which is involved in the reduction of the hyperoxidized sulfinic acid form of the catalytic cysteine of 2-Cys peroxiredoxins (Prx). This reaction contributes to the oxidative stress response and H202 mediated signaling. We show that Srx has significant sequence and structural similarity to a functionally unrelated protein, ParB, a DNA-binding protein with a helix-turn-helix (HTH) domain which is involved in chromosome partitioning in bacteria. Sequence comparison and phylogenetic analysis of the Srx and ParB protein families suggest that Srx evolved via truncation of ParB, which removed the entire C-terminal half of the protein, including the HTH domain, and a substitution of cysteine for a glutamic acid in a highly conserved structural motif of ParB. The latter substitution apparently created the sulfinic acid reductase catalytic site. Evolution of a redox enzyme from a DNA-binding protein, with retention of highly significant sequence similarity, is unusual, even when compared to functional switches accompanying recruitment of other prokaryotic proteins for new functions in eukaryotes.  相似文献   

13.
The observation that purified yeast glutamine synthetase is rapidly inactivated in a thiol-containing buffer yet retains activity in crude extracts containing the same thiol led to our discovery of an enzyme that protects against oxidation in a thiol-containing system. This novel antioxidant enzyme was shown to reduce hydroperoxides and, more recently, peroxynitrite with the use of electrons provided by a physiological thiol like thioredoxin. It defined a family of proteins, present in organisms from all kingdoms, that was named peroxiredoxin (Prx). All Prx enzymes contain a conserved Cys residue that undergoes a cycle of peroxide-dependent oxidation and thiol-dependent reduction during catalysis. Mammalian cells express six isoforms of Prx (Prx I to VI), which are classified into three subgroups (2-Cys, atypical 2-Cys, and 1-Cys) based on the number and position of Cys residues that participate in catalysis. The relative abundance of Prx enzymes in mammalian cells appears to protect cellular components by removing the low levels of peroxides produced as a result of normal cellular metabolism. During catalysis, the active site cysteine is occasionally overoxidized to cysteine sulfinic acid. Contrary to the general belief that oxidation to the sulfinic state is an irreversible process in cells, studies on the fate of the overoxidized Prx species revealed a mechanism by which the catalytically active thiol form is recovered. This sulfinic reduction is a slow, ATP-dependent process that is specific to 2-Cys Prx isoforms. This reversible overoxidation may represent an adaptation unique to eukaryotic cells that accommodates the intracellular messenger function of H2O2, but experimental validation of such speculation is yet to come.  相似文献   

14.
Peroxiredoxins (Prxs) detoxify peroxides and modulate H2O2-mediated cell signaling in normal and numerous pathophysiological contexts. The typical 2-Cys subclass of Prxs (human Prx1–4) utilizes a Cys sulfenic acid (Cys-SOH) intermediate and disulfide bond formation across two subunits during catalysis. During oxidative stress, however, the Cys-SOH moiety can react with H2O2 to form Cys sulfinic acid (Cys-SO2H), resulting in inactivation. The propensity to hyperoxidize varies greatly among human Prxs. Mitochondrial Prx3 is the most resistant to inactivation, but the molecular basis for this property is unknown. A panel of chimeras and Cys variants of Prx2 and Prx3 were treated with H2O2 and analyzed by rapid chemical quench and time-resolved electrospray ionization-TOF mass spectrometry. The latter utilized an on-line rapid-mixing setup to collect data on the low seconds time scale. These approaches enabled the first direct observation of the Cys-SOH intermediate and a putative Cys sulfenamide (Cys-SN) for Prx2 and Prx3 during catalysis. The substitution of C-terminal residues in Prx3, residues adjacent to the resolving Cys residue, resulted in a Prx2-like protein with increased sensitivity to hyperoxidation and decreased ability to form the intermolecular disulfide bond between subunits. The corresponding Prx2 chimera became more resistant to hyperoxidation. Taken together, the results of this study support that the kinetics of the Cys-SOH intermediate is key to determine the probability of hyperoxidation or disulfide formation. Given the oxidizing environment of the mitochondrion, it makes sense that Prx3 would favor disulfide bond formation as a protection mechanism against hyperoxidation and inactivation.  相似文献   

15.
1-Cys peroxiredoxins (1-Cys Prxs) are antioxidant enzymes that catalyze the reduction of hydroperoxides into alcohols using a strictly conserved cysteine. 1-Cys B-Prxs, homologous to human PrxVI, were recently shown to be reactivated by glutathione S-transferase (GST) pi via the formation of a GST-Prx heterodimer and Prx glutathionylation. In contrast, 1-Cys D-Prxs, homologous to human PrxV, are reactivated by the glutaredoxin-glutathione system through an unknown mechanism. To investigate the mechanistic events that mediate the 1-Cys D-Prx regeneration, interaction of the Prx with glutathione was studied by mass spectrometry and NMR. This work reveals that the Prx can be glutathionylated on its active site cysteine. Evidences are reported that the glutathionylation of 1-Cys D-Prx induces the dissociation of the Prx non-covalent homodimer, which can be recovered by reduction with dithiothreitol. This work demonstrates for the first time the existence of a redox-dependent dimer-monomer switch in the Prx family, similar to the decamer-dimer switch for the 2-Cys Prxs.  相似文献   

16.
The 2-cysteine peroxiredoxins (2-Cys-Prxs) are antioxidants that reduce peroxides through a thiol-based mechanism. During catalysis, these ubiquitous enzymes are occasionally inactivated by the substrate-dependent oxidation of the catalytic cysteine to the sulfinic acid (-SO2H) form, and are reactivated by reduction by sulfiredoxin (Srx), an enzyme recently identified in yeast and in mammal cells. In plants, 2-Cys-Prxs constitute the most abundant Prxs and are located in chloroplasts. Here we have characterized the unique Srx gene in Arabidopsis thaliana (AtSrx) from a functional point of view, and analyzed the phenotype of two AtSrx knockout (AtSrx-) mutant lines. AtSrx is a chloroplastic enzyme displaying sulfinic acid reductase activity, as shown by the ability of the recombinant AtSrx to reduce the overoxidized 2-Cys-Prx form in vitro, and by the accumulation of the overoxidized Prx in mutant lines lacking Srx in vivo. Furthermore, AtSrx mutants exhibit an increased tolerance to photooxidative stress generated by high light combined with low temperature. These data establish that, as in yeast and in mammals, plant 2-Cys-Prxs are subject to substrate-mediated inactivation reversed by Srx, and suggest that the 2-Cys-Prx redox status and sulfiredoxin are parts of a signaling mechanism participating in plant responses to oxidative stress.  相似文献   

17.
Peroxiredoxins are ubiquitously expressed proteins that reduce hydroperoxides using disulfur-reducing compounds as electron donors. Peroxiredoxins (Prxs) have been classified in two groups dependent on the presence of either one (1-Cys Prx) or two (2-Cys Prx) conserved cysteine residues. Moreover, 2-Cys Prxs, also named thioredoxin peroxidases, have peroxide reductase activity with the use of thioredoxin as biological electron donor. However, the biological reducing agent for the 1-Cys Prx has not yet been identified. We report here the characterization of a 1-Cys Prx from yeast Saccharomyces cerevisiae that we have named Prx1p. Prx1p is located in mitochondria, and it is overexpressed when cells use the respiratory pathway, as well as in response to oxidative stress conditions. We show also that Prx1p has peroxide reductase activity in vitro using the yeast mitochondrial thioredoxin system as electron donor. In addition, a mutated form of Prx1p containing the absolutely conserved cysteine as the only cysteine residue also shows thioredoxin-dependent peroxide reductase activity. This is the first example of 1-Cys Prx that has thioredoxin peroxidase activity. Finally, exposure of null Prx1p mutant cells to oxidant conditions reveals an important role of the mitochondrial 1-Cys Prx in protection against oxidative stress.  相似文献   

18.
Structure,mechanism and regulation of peroxiredoxins   总被引:39,自引:0,他引:39  
Peroxiredoxins (Prxs) are a ubiquitous family of antioxidant enzymes that also control cytokine-induced peroxide levels which mediate signal transduction in mammalian cells. Prxs can be regulated by changes to phosphorylation, redox and possibly oligomerization states. Prxs are divided into three classes: typical 2-Cys Prxs; atypical 2-Cys Prxs; and 1-Cys Prxs. All Prxs share the same basic catalytic mechanism, in which an active-site cysteine (the peroxidatic cysteine) is oxidized to a sulfenic acid by the peroxide substrate. The recycling of the sulfenic acid back to a thiol is what distinguishes the three enzyme classes. Using crystal structures, a detailed catalytic cycle has been derived for typical 2-Cys Prxs, including a model for the redox-regulated oligomeric state proposed to control enzyme activity.  相似文献   

19.
Peroxiredoxins (Prxs) are a group of thiol containing proteins that participate both in signal transduction and in the breakdown of hydrogen peroxide (H(2)O(2)) during oxidative stress. Six distinct Prxs have been characterized in human cells (Prxs I-VI). Prxs I-IV form dimers held together by disulfide bonds, Prx V forms intramolecular bond, but the mechanism of Prx VI, so-called 1-Cys Prx, is still unclear. Here we describe the regulation of all six Prxs in cultured human lung A549 and BEAS-2B cells. The cells were exposed to variable concentrations of H(2)O(2), menadione, tumor necrosis factor-alpha or transforming growth factor-beta. To evoke glutathione depletion, the cells were furthermore treated with buthionine sulfoximine. Only high concentrations (300 microM) of H(2)O(2) caused a minor increase (<28%, 4 h) in the expression of Prxs I, IV, and VI. Severe oxidant stress (250-500 microM H(2)O(2)) caused a significant increase in the proportion of the monomeric forms of Prxs I-IV; this was reversible at lower H(2)O(2) concentrations (< or =250 microM). This recovery of Prx overoxidation differed among the various Prxs; Prx I was recovered within 24 h, but recovery required 48 h for Prx III. Overall, Prxs are not significantly modulated by mild oxidant stress or cytokines, but there is variable, though reversible, overoxidation in these proteins during severe oxidant exposure.  相似文献   

20.
Among many proteins with cysteine sulfinic acid (Cys-SO2H) residues, the sulfinic forms of certain peroxiredoxins (Prxs) are selectively reduced by sulfiredoxin (Srx) in the presence of ATP. All Srx enzymes contain a conserved cysteine residue. To elucidate the mechanism of the Srx-catalyzed reaction, we generated various mutants of Srx and examined their interaction with PrxI, their ATPase activity, and their ability to reduce sulfinic PrxI. Our results suggest that three surface-exposed amino acid residues, corresponding to Arg50, Asp57, and Asp79 of rat Srx, are critical for substrate recognition. The presence of the sulfinic form (but not the reduced form) of PrxI induces the conserved cysteine of Srx to take the gamma-phosphate of ATP and then immediately transfers the phosphate to the sulfinic moiety of PrxI to generate a sulfinic acid phosphoryl ester (Prx-Cys-S(=O)OPO3(2-)). This ester is reductively cleaved by a thiol molecule (RSH) such as GSH, thioredoxin, and dithiothreitol to produce a disulfide-S-monoxide (Prx-Cys-S(=O)-S-R). The disulfide-S-monoxide is further reduced through the oxidation of three thiol equivalents to complete the catalytic cycle and regenerate Prx-Cys-SH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号