首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the structural change in a double-stranded DNA helix caused by covalent addition of a psoralen. A synthetic double-stranded DNA was constructed to contain either a psoralen furan-side monoadduct or an interstrand diadduct at a specific site. When the unmodified and psoralen modified DNAs were examined by electron microscopy in the presence of distamycin, which stiffens the DNA helix, the DNA containing the psoralen interstrand diadduct appeared bent (or kinked), whereas the furan-side monoadducted DNA appeared similar to the unmodified DNA. RecA protein from E. coli has been shown to preferentially bind UV (ultra violet) irradiated DNA presumably due to alterations in the normal DNA helical structure. Using a nitrocellulose filter binding assay, we have found that the psoralen interstrand diadduct enhances the binding of recA protein to the double-stranded DNA, whereas a furan-side monoadduct has little effect. Thus both the recA protein binding and the electron microscopic data suggest that a psoralen diadduct causes deformation of a DNA helix, most likely by kinking the helix, and that a monoadduct has little effect on the DNA helix structure.  相似文献   

2.
3.
4.
A T Yeung  W J Dinehart  B K Jones 《Biochemistry》1988,27(17):6332-6338
Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. We used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90 degrees C (BCR). The BCR reaction is more efficient than the photoreversal reaction. We show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine base freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, we have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site.  相似文献   

5.
Series of sulfonated polymers were evaluated as additives in cell culture media. Some of the compounds, such as sulfated polyvinyl alcohol (PVA), prevented denaturation and loss of basic fibroblast growth factor during cell culture and enhanced human mesenchymal stem cell proliferation. These compounds are xeno-free alternatives of heparin, an animal-derived sulfated saccharide, often used as an additive. To the best our knowledge, this study is the first to show that chemically defined synthetic chemicals, such as sulfated polyvinyl alcohol, can be used for this purpose.  相似文献   

6.
Triple helix-forming oligonucleotides may be useful as gene-targeting reagents in vivo, for applications such as gene knockout. One important property of these complexes is their often remarkable stability, as demonstrated in solution and in cells following transfection. Although encouraging, these measurements do not necessarily report triplex stability in cellular compartments that support DNA functions such as replication and mutagenesis. We have devised a shuttle vector plasmid assay that reports the stability of triplexes on DNA that undergoes replication and mutagenesis. The assay is based on plasmids with novel variant supF tRNA genes containing embedded sequences for triplex formation and psoralen cross-linking. Triple helix-forming oligonucleotides were linked to psoralen and used to form triplexes on the plasmids. At various times after introduction into cells, the psoralen was activated by exposure to long wave ultraviolet light (UVA). After time for replication and mutagenesis, progeny plasmids were recovered and the frequency of plasmids with mutations in the supF gene determined. Site-specific mutagenesis by psoralen cross-links was dependent on precise placement of the psoralen by the triple helix-forming oligonucleotide at the time of UVA treatment. The results indicated that both pyrimidine and purine motif triplexes were much less stable on replicated DNA than on DNA in vitro or in total transfected DNA. Incubation of cells with amidoanthraquinone-based triplex stabilizing compounds enhanced the stability of the pyrimidine triplex.  相似文献   

7.
DNA interstrand crosslinks (ICLs) present formidable blocks to DNA metabolic processes and must be repaired for cell survival. ICLs are induced in DNA by intercalating compounds such as the widely used therapeutic agent psoralen. In bacteria, both nucleotide excision repair (NER) and homologous recombination are required for the repair of ICLs. The processing of ICLs in mammalian cells is not clearly understood. However, it is known that processing can occur by NER, which for psoralen ICLs can be an error-generating process conducive to mutagenesis. We show here that another repair pathway, mismatch repair (MMR), is also involved in eliminating psoralen ICLs in human cells. MMR deficiency renders cells hypersensitive to psoralen ICLs without diminishing their mutagenic potential, suggesting that MMR does not contribute to error-generating repair, and that MMR may represent a relatively error-free mechanism for processing these lesions in human cells. Thus, enhancement of MMR relative to NER may reduce the mutagenesis caused by DNA ICLs in humans.  相似文献   

8.
Natural DNA was introduced to thin layer chromatography (TLC) with an aim to separate chemicals like DNA-affinity compounds and enantiomers. By cross-linking polyvinyl alcohol (PVA) with glutaraldehyde (GA) and subsequent cross-linking DNA with a UV irradiation, a DNA/PVA interpenetrating polymer network (IPN) is formed and was used to coat the surface of the porous silica particles of the TLC. Three typical DNA-binding compounds and eight amino acid enantiomers were used as model chemicals to investigate the chromatographic behavior of the modified TLC, and high separation efficiency was observed in both classes of the chemicals. On the practical side, the DNA-modified TLC have high prospects in diverse applications, including efficacy evaluation of a medicine, toxicity assessment of a pollutant at the molecular level, as well as separation of enantiomers such as dyes, amino acids, peptides, proteins, nucleotides, and drugs.  相似文献   

9.
10.
Y Shi  J E Hearst 《Biochemistry》1986,25(20):5895-5902
We have carried out a thermodynamic study on the effects of covalent additions of the psoralen derivative HMT, 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen, on the stability of double-stranded deoxyoligonucleotides. This was done with two systems. The first was a double-stranded DNA formed by two non-self-complementary oligonucleotides, 5'-GAAGCTACGAGC-3' and 5'-GCTCGTAGCTTC-3', where we site specifically placed an HMT molecule on the thymidine residue in oligonucleotide 5'-GAAGCTACGAGC-3' as either a furan-side monoadduct or a pyrone-side monoadduct. The second was a double-stranded DNA formed by a self-complementary oligonucleotide, 5'-GGGTACCC-3', where we placed an HMT molecule on the thymidine residue of each strand as a furan-side monoadduct or cross-linked the two strands with an HMT molecule linked to the two thymidines. We found that HMT cross-linking of the two strands stabilizes the double helix formed by 5'-GGGTACCC-3', as one might expect. Less predictable results were that the monoaddition of a psoralen stabilizes the double helix formed by the two non-self-complementary oligonucleotides by as much as 1.3 kcal/mol as a furan-side monoadduct and 0.7 kcal/mol as a pyrone-side monoadduct at 25 degrees C in 50 mM NaCl. In contrast, the monoaddition of a psoralen on each of the two thymidines in the double helix formed by 5'-GGGTACCC-3' destabilizes the helix by 1.8 kcal/mol at 25 degrees C in 1 M NaCl. This destabilization arises from an unfavorable enthalpy change (8.6 kcal/mol) and a favorable entropy change (23 cal/K X mol) due to the two HMT molecules at the centers of each strand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
12.
T Kodadek  H Gamper 《Biochemistry》1988,27(9):3210-3215
We report a simple method for the in vitro synthesis of large quantities of site specifically modified DNA. The protocol involves extension of an oligonucleotide primer annealed to M13 single-stranded DNA using part of the T4 DNA polymerase holoenzyme. The resulting nicked double-stranded circles are ligated and supercoiled in the same tube, producing good yields of form I DNA. When the oligonucleotide primer is chemically modified, the resultant product contains a site-specific lesion. In this study, we report the synthesis of an M13 mp19 form I DNA which contains a psoralen monoadduct or cross-link at the KpnI site. We demonstrate the utility of these modified substrates by assessing the ability of the bacteriophage T4 DNA replication complex to bypass the damage and show that the psoralen monoadduct poses a severe block to the holoenzyme when attached to the template strand.  相似文献   

13.
The chemical synthesis and some of the properties of poly(9-vinylpurine-6-thiol), a polyvinyl derivative of 6-mercaptopurine, are described. Analogous to some other polyvinyl compounds, this polymer interacts with polyribonucleotides by formation of double-stranded complexes. Its antiviral and cytostatic properties are currently under investigation.  相似文献   

14.
15.
The in vivo association with proteins of HeLa cell mitochondrial DNA (mtDNA) has been investigated by analyzing the pattern of in situ crosslinking of the DNA by 4'-hydroxymethyl-4, 5',8-trimethylpsoralen (HMT). Either isolated mitochondria or whole cells were irradiated with long wavelength UV light in the presence of ths psoralen derivative, and the mtDNA was then isolated and analyzed in the electron microscope under totally denaturing conditions. No evidence of nucleosomal structure was found. The great majority of the molecules (approximately 90%) had a double-stranded DNA appearance over most of their contour length, with one to several bubbles occupying the rest of the contour, while the remaining 10% of the molecules appeared to be double-stranded over their entire length. Analysis of restriction fragments indicated the presence, in approximately 80% of the molecules, of a protected segment (300 to 1500 bp long) in a region which was centered asymmetrically around the origin of replication so as to overlap extensively the D-loop. Control experiments showed that at most 30% of the bubbles found near the origin could represent D-loops or expanded D-loops: furthermore, it could be excluded that some sequence peculiarity would account for the preferential location of bubbles near the origin of replication. The data have been interpreted to indicate that, in at least 55% of HeLa cell mtDNA molecules, the region around the origin is protected from in situ psoralen crosslinking by proteins or protein complexes which are associated in vivo with the DNA.  相似文献   

16.
The newly synthesized psoralen derivatives, 4' hydroxymethyl 4,5',8 trimethylpsoralen, 4' methoxymethyl 4,5',8 trimethylpsoralen, and 4' aminomethyl 4,5',8 trimethylpsoralen hydrochloride photoreact with the single-stranded RNA animal virus, Vesicular Stomatitis virus, VSV. This virus is inactivated 10(3) times more effectively by photoreaction with these compounds than when photoreacted with 4,5',8 trimethylpsoralen. Under these conditions the RNA virus remains more than 10(3) times less sensitive to inactivation by these new photoreagents than were two double-stranded DNA viruses, Herpes Simplex type 2 (HSV-2) and Vaccinia. Preliminary evidence for the generality of this result is discussed.  相似文献   

17.
By electron microscopic visualisation of totally denatured DNA, we have detected photochemically induced 8-methoxypsoralen crosslinks in vitro after irradiation at 360 nm. The amount of crosslinks was expressed as the percentage of DNA length which was kept in double-stranded appearance by closely situated crosslinks. This percentage correlated well with irradiation time, irradiation intensity, and the concentration of 8-methoxypsoralen. These parameters have also been correlated with the mean size and the size distribution of non-crosslinked regions of DNA, so called bubbles. For a comparison with another psoralen type, we have carried out a similar set of experiments using 4,5,8-trimethylpsoralen.  相似文献   

18.
We studied the structure of viral nucleoprotein complexes extracted from the nuclei of mouse cells infected with the immunosuppressive strain of the minute virus of mice (MVMi). Two types of complex were detected, with sedimentation coefficients of about 110 and 40S. The complexes sedimenting at 110S contained single-stranded MVMi DNA as well as a second form of viral DNA which apparently had a heat-sensitive secondary structure. The 110S peak also contained proteins which coelectrophoresed with the MVMi capsid proteins. Complexes sedimenting at 40S contained the double-stranded replicative form of MVMi DNA. These complexes sedimented faster than did the pure replicative form DNA (15S), but more slowly than cellular chromatin fragments containing DNA of the same length. They incorporated labeled deoxynucleoside triphosphate in vitro into the replicative form DNA. We investigated the structure of MVMi nucleoprotein complexes in the following ways. Nuclei of MVMi-infected cells were digested with staphylococcal nuclease, and the resulting DNA fragments were electrophoresed, transferred to nitrocellulose, and hybridized first with labeled MVMi DNA and then with cellular DNA. A nucleosomal repeat pattern was seen with the cellular DNA probe but not with the MVMi DNA probe. The DNA in MVMi nucleoprotein complexes was cross-linked with psoralen, purified, denatured, and examined with an electron microscope. Bubbles, indicating the presence of proteins, were seen in the MVMi DNA. The length of the DNA in the bubbles was 90 +/- 29 nucleotides. On the other hand, nucleosomes protected 160 base pairs from cross-linking by psoralen. The MVMi nucleoprotein complexes thus have a distinct structure which is different from that of chromatin.  相似文献   

19.
A new procedure for the photochemical functionalization and the subsequent nonradioactive labeling of synthetic oligonucleotides with psoralen derivatives was developed where a double-stranded poly(A-T) tail is attached to the 5'- or 3'-end of the oligonucleotide to be labeled. The double-stranded poly(A-T) tail is covalently crosslinked by psoralen molecules which carry reactive thiol or amino groups for the attachment of labels. A NH2-specific terbium chelate exhibiting long-lived fluorescence was attached to the functional groups of the intercalated psoralen molecules. Oligonucleotides substituted in this way hybridize readily and can be sensitively detected by time-resolved fluorescence measurements.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号