首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pigeons were tested for their ability to report the location they recently pecked, without prior experience having to do so. They were first pretrained to report the location that they had just pecked. They were then trained on a conditional discrimination to associate yellow and blue samples with vertical and horizontal comparisons, respectively, independent of comparison location. On probe trials in testing, when after choosing a vertical or horizontal line following the yellow or blue sample, the pigeons were ‘asked’ which location they had just pecked, they showed a significant tendency to choose correctly in spite of the fact that location of the correct comparison was incidental to the task. Performing on probe trials is analogous to asking the pigeons an unexpected question about their recent behavior and it is similar to the episodic memory question asked of humans, “What did you have for breakfast this morning?”.  相似文献   

2.
Humans have the ability to mentally recreate past events (using episodic memory) and imagine future events (by planning). The best evidence for such mental time travel is personal and thus subjective. For this reason, it is particularly difficult to study such behavior in animals. There is some indirect evidence, however, that animals have both episodic memory and the ability to plan for the future. When unexpectedly asked to do so, animals can report about their recent past experiences (episodic memory) and they also appear to be able to use the anticipation of a future event as the basis for a present action (planning). Thus, the ability to imagine past and future events may not be uniquely human.  相似文献   

3.
Elements of episodic-like memory in animals   总被引:6,自引:0,他引:6  
A number of psychologists have suggested that episodic memory is a uniquely human phenomenon and, until recently, there was little evidence that animals could recall a unique past experience and respond appropriately. Experiments on food-caching memory in scrub jays question this assumption. On the basis of a single caching episode, scrub jays can remember when and where they cached a variety of foods that differ in the rate at which they degrade, in a way that is inexplicable by relative familiarity. They can update their memory of the contents of a cache depending on whether or not they have emptied the cache site, and can also remember where another bird has hidden caches, suggesting that they encode rich representations of the caching event. They make temporal generalizations about when perishable items should degrade and also remember the relative time since caching when the same food is cached in distinct sites at different times. These results show that jays form integrated memories for the location, content and time of caching. This memory capability fulfils Tulving's behavioural criteria for episodic memory and is thus termed 'episodic-like'. We suggest that several features of episodic memory may not be unique to humans.  相似文献   

4.
The question of whether any non-human species displays episodic memory is controversial. Associative accounts of animal learning recognize that behaviour can change in response to single events but this does not imply that animals need or are later able to recall representations of unique events at a different time and place. The lack of language is also relevant, being the usual medium for communicating about the world, but whether it is critical for the capacity to represent and recall events is a separate matter. One reason for suspecting that certain animals possess an episodic-like memory system is that a variety of learning and memory tasks have been developed that, even though they do not meet the strict criteria required for episodic memory, have an 'episodic-like' character. These include certain one-trial learning tasks, scene-specific discrimination learning, multiple reversal learning, delayed matching and non-matching tasks and, most recently, tasks demanding recollection of 'what, where and when' an event happened. Another reason is that the neuronal architecture of brain areas thought to be involved in episodic memory (including the hippocampal formation) are substantially similar in mammals and, arguably, all vertebrates. Third, our developing understanding of activity-dependent synaptic plasticity (which is a candidate neuronal mechanism for encoding memory traces) suggests that its expression reflects certain physiological characteristics that are ideal components of a neuronal episodic memory system. These include the apparently digital character of synaptic change at individual terminals and the variable persistence of potentiation accounted for by the synaptic tag hypothesis. A further value of studying episodic-like memory in animals is the opportunity it affords to model certain kinds of neurodegenerative disease that, in humans, affect episodic memory. An example is recent work on a transgenic mouse that over-expresses a mutation of human amyloid precursor protein (APP) that occurs in familial Alzheimer's disease, under the control of platelet derived (PD) growth factor promoter (the PDAPP mouse). A striking age- and amyloid plaque-related deficit is seen using a task in which the mice have to keep changing their memory representation of the world rather than learn a single fact.  相似文献   

5.
Beran MJ 《Current biology : CB》2012,22(12):R491-R493
A new study has found that rats are able to answer, in a hippocampus-dependent manner, unexpected questions about whether they recently ate food or not. The results highlight potential shared mechanisms for remembering personal events in rats and humans, and offer new insights into the nature of animal memory.  相似文献   

6.
Theories of episodic memory need to specify the encoding (representing), storage, and retrieval processes that underlie this form of memory and indicate the brain regions that mediate these processes and how they do so. Representation and re-representation (retrieval) of the spatiotemporally linked series of scenes, which constitute an episode, are probably mediated primarily by those parts of the posterior neocortex that process perceptual and semantic information. However, some role of the frontal neocortex and medial temporal lobes in representing aspects of context and high-level visual object information at encoding and retrieval cannot currently be excluded. Nevertheless, it is widely believed that the frontal neocortex is mainly involved in coordinating episodic encoding and retrieval and that the medial temporal lobes store aspects of episodic information. Establishing where storage is located is very difficult and disagreement remains about the role of the posterior neocortex in episodic memory storage. One view is that this region stores all aspects of episodic memory ab initio for as long as memory lasts. This is compatible with evidence that the amygdala, basal forebrain, and midbrain modulate neocortical storage. Another view is that the posterior neocortex only gradually develops the ability to store some aspects of episodic information as a function of rehearsal over time and that this information is initially stored by the medial temporal lobes. A third view is that the posterior neocortex never stores these aspects of episodic information because the medial temporal lobes store them for as long as memory lasts in an increasingly redundant fashion. The last two views both postulate that the medial temporal lobes initially store contextual markers that serve to cohere featural information stored in the neocortex. Lesion and functional neuroimaging evidence still does not clearly distinguish between these views. Whether the feeling that an episodic memory is familiar depends on retrieving an association between a retrieved episode and this feeling, or by an attribution triggered by a priming process, is unclear. Evidence about whether the hippocampus and medial temporal lobe cortices play different roles in episodic memory is conflicting. Identifying similarities and differences between episodic memory and both semantic memory and priming will require careful componential analysis of episodic memory.  相似文献   

7.
The neural basis of episodic memory: evidence from functional neuroimaging   总被引:11,自引:0,他引:11  
We review some of our recent research using functional neuroimaging to investigate neural activity supporting the encoding and retrieval of episodic memories, that is, memories for unique events. Findings from studies of encoding indicate that, at the cortical level, the regions responsible for the effective encoding of a stimulus event as an episodic memory include some of the regions that are also engaged to process the event 'online'. Thus, it appears that there is no single cortical site or circuit responsible for episodic encoding. The results of retrieval studies indicate that successful recollection of episodic information is associated with activation of lateral parietal cortex, along with more variable patterns of activity in dorsolateral and anterior prefrontal cortex. Whereas parietal regions may play a part in the representation of retrieved information, prefrontal areas appear to support processes that act on the products of retrieval to align behaviour with the demands of the retrieval task.  相似文献   

8.
A fundamental question in comparative cognition is whether animals remember unique, personal past experiences. It has long been argued that memories for specific events (referred to as episodic memory) are unique to humans. Recently, considerable evidence has accumulated to show that food-storing birds possess critical behavioral elements of episodic memory, referred to as episodic-like memory in acknowledgment of the fact that behavioral criteria do not assess subjective experiences. Here we show that rats have a detailed representation of remembered events and meet behavioral criteria for episodic-like memory. We provided rats with access to locations baited with distinctive (e.g., grape and raspberry) or nondistinctive (regular chow) flavors. Locations with a distinctive flavor replenished after a long but not a short delay, and locations with the nondistinctive flavor never replenished. One distinctive flavor was devalued after encoding its location by prefeeding that flavor (satiation) or by pairing it with lithium chloride (acquired taste aversion), while the other distinctive flavor was not devalued. The rats selectively decreased revisits to the devalued distinctive flavor but not to the nondevalued distinctive flavor. The present studies demonstrate that rats selectively encode the content of episodic-like memories.  相似文献   

9.
Human emotion and memory: interactions of the amygdala and hippocampal complex   总被引:14,自引:0,他引:14  
The amygdala and hippocampal complex, two medial temporal lobe structures, are linked to two independent memory systems, each with unique characteristic functions. In emotional situations, these two systems interact in subtle but important ways. Specifically, the amygdala can modulate both the encoding and the storage of hippocampal-dependent memories. The hippocampal complex, by forming episodic representations of the emotional significance and interpretation of events, can influence the amygdala response when emotional stimuli are encountered. Although these are independent memory systems, they act in concert when emotion meets memory.  相似文献   

10.
Gottfried JA  Smith AP  Rugg MD  Dolan RJ 《Neuron》2004,42(4):687-695
Episodic memory is often imbued with multisensory richness, such that the recall of an event can be endowed with the sights, sounds, and smells of its prior occurrence. While hippocampus and related medial temporal structures are implicated in episodic memory retrieval, the participation of sensory-specific cortex in representing the qualities of an episode is less well established. We combined functional magnetic resonance imaging (fMRI) with a cross-modal paradigm, where objects were presented with odors during memory encoding. We then examined the effect of odor context on neural responses at retrieval when these same objects were presented alone. Primary olfactory (piriform) cortex, as well as anterior hippocampus, was activated during the successful retrieval of old (compared to new) objects. Our findings indicate that sensory features of the original engram are preserved in unimodal olfactory cortex. We suggest that reactivation of memory traces distributed across modality-specific brain areas underpins the sensory qualities of episodic memories.  相似文献   

11.
Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. We here present an incidental finding from a simultaneous EEG-TMS experiment as well as a replication of this unexpected effect. Our results reveal that stimulating the left dorsolateral prefrontal cortex (DLPFC) with slow repetitive transcranial magnetic stimulation (rTMS) leads to enhanced word memory performance. A total of 40 healthy human participants engaged in a list learning paradigm. Half of the participants (N = 20) received 1 Hz rTMS to the left DLPFC, while the other half (N = 20) received 1 Hz rTMS to the vertex and served as a control group. Participants receiving left DLPFC stimulation demonstrated enhanced memory performance compared to the control group. This effect was replicated in a within-subjects experiment where 24 participants received 1 Hz rTMS to the left DLPFC and vertex. In this second experiment, DLPFC stimulation also induced better memory performance compared to vertex stimulation. In addition to these behavioural effects, we found that 1 Hz rTMS to DLPFC induced stronger beta power modulation in posterior areas, a state that is known to be beneficial for memory encoding. Further analysis indicated that beta modulations did not have an oscillatory origin. Instead, the observed beta modulations were a result of a spectral tilt, suggesting inhibition of these parietal regions. These results show that applying 1 Hz rTMS to DLPFC, an area involved in episodic memory formation, improves memory performance via modulating neural activity in parietal regions.

Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. An incidental finding from a simultaneous EEG-TMS experiment reveals that applying 1-Hz repetitive transcranial magnetic stimulation to this area of the brain improves memory performance by modulating neural activity in parietal regions.  相似文献   

12.
Oşan R  Chen G  Feng R  Tsien JZ 《PloS one》2011,6(2):e16507
One hallmark feature of consolidation of episodic memory is that only a fraction of original information, which is usually in a more abstract form, is selected for long-term memory storage. How does the brain perform these differential memory consolidations? To investigate the neural network mechanism that governs this selective consolidation process, we use a set of distinct fearful events to study if and how hippocampal CA1 cells engage in selective memory encoding and consolidation. We show that these distinct episodes activate a unique assembly of CA1 episodic cells, or neural cliques, whose response-selectivity ranges from general-to-specific features. A series of parametric analyses further reveal that post-learning CA1 episodic pattern replays or reverberations are mostly mediated by cells exhibiting event intensity-invariant responses, not by the intensity-sensitive cells. More importantly, reactivation cross-correlations displayed by intensity-invariant cells encoding general episodic features during immediate post-learning period tend to be stronger than those displayed by invariant cells encoding specific features. These differential reactivations within the CA1 episodic cell populations can thus provide the hippocampus with a selection mechanism to consolidate preferentially more generalized knowledge for long-term memory storage.  相似文献   

13.
Elements of episodic-like memory in animal models   总被引:1,自引:0,他引:1  
Representations of unique events from one’s past constitute the content of episodic memories. A number of studies with non-human animals have revealed that animals remember specific episodes from their past (referred to as episodic-like memory). The development of animal models of memory holds enormous potential for gaining insight into the biological bases of human memory. Specifically, given the extensive knowledge of the rodent brain, the development of rodent models of episodic memory would open new opportunities to explore the neuroanatomical, neurochemical, neurophysiological, and molecular mechanisms of memory. Development of such animal models holds enormous potential for studying functional changes in episodic memory in animal models of Alzheimer’s disease, amnesia, and other human memory pathologies. This article reviews several approaches that have been used to assess episodic-like memory in animals. The approaches reviewed include the discrimination of what, where, and when in a radial arm maze, dissociation of recollection and familiarity, object recognition, binding, unexpected questions, and anticipation of a reproductive state. The diversity of approaches may promote the development of converging lines of evidence on the difficult problem of assessing episodic-like memory in animals.  相似文献   

14.
The question of whether ovarian hormone therapy can prevent or reduce age-related memory decline in menopausal women has been the subject of much recent debate. Although numerous studies have demonstrated a beneficial effect of estrogen and/or progestin therapy for certain types of memory in menopausal women, recent clinical trials suggest that such therapy actually increases the risk of cognitive decline and dementia. Because rodent models have been frequently used to examine the effects of age and/or ovarian hormone deficiency on mnemonic function, rodent models of age-related hormone and memory decline may be useful in helping to resolve this issue. This review will focus on evidence suggesting that estradiol modulates memory, particularly hippocampal-dependent memory, in young and aging female rats and mice. Various factors affecting the mnemonic response to estradiol in aging females will be highlighted to illustrate the complications inherent to studies of estrogen therapy in aging females. Avenues for future development of estradiol-based therapies will also be discussed, and it is argued that an approach to drug development based on identifying the molecular mechanisms underlying estrogenic modulation of memory may lead to promising future treatments for reducing age-related mnemonic decline.  相似文献   

15.
This study investigated whether "intentional" instructions could improve older adults' object memory and object-location memory about a scene by promoting object-oriented viewing. Eye movements of younger and older adults were recorded while they viewed a photograph depicting 12 household objects in a cubicle with or without the knowledge that memory about these objects and their locations would be tested (intentional vs. incidental encoding). After viewing, participants completed recognition and relocation tasks. Both instructions and age affected viewing behaviors and memory. Relative to incidental instructions, intentional instructions resulted in more accurate memory about object identity and object-location binding, but did not affect memory accuracy about overall positional configuration. More importantly, older adults exhibited more object-oriented viewing in the intentional than incidental condition, supporting the environmental support hypothesis.  相似文献   

16.
Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE.  相似文献   

17.
Brain-derived neurotrophic factor (BDNF) modulates hippocampal plasticity and hippocampal-dependent memory in cell models and in animals. We examined the effects of a valine (val) to methionine (met) substitution in the 5' pro-region of the human BDNF protein. In human subjects, the met allele was associated with poorer episodic memory, abnormal hippocampal activation assayed with fMRI, and lower hippocampal n-acetyl aspartate (NAA), assayed with MRI spectroscopy. Neurons transfected with met-BDNF-GFP showed lower depolarization-induced secretion, while constitutive secretion was unchanged. Furthermore, met-BDNF-GFP failed to localize to secretory granules or synapses. These results demonstrate a role for BDNF and its val/met polymorphism in human memory and hippocampal function and suggest val/met exerts these effects by impacting intracellular trafficking and activity-dependent secretion of BDNF.  相似文献   

18.
Allocentric spatial learning can sometimes occur in one trial. The incorporation of information into a spatial representation may, therefore, obey a one-trial correlational learning rule rather than a multi-trial error-correcting rule. It has been suggested that physiological implementation of such a rule could be mediated by N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) in the hippocampus, as its induction obeys a correlational type of synaptic learning rule. Support for this idea came originally from the finding that intracerebral infusion of the NMDA antagonist AP5 impairs spatial learning, but studies summarized in the first part of this paper have called it into question. First, rats previously given experience of spatial learning in a watermaze can learn a new spatial reference memory task at a normal rate despite an appreciable NMDA receptor blockade. Second, the classical phenomenon of ''blocking'' occurs in spatial learning. The latter finding implies that spatial learning can also be sensitive to an animal''s expectations about reward and so depend on more than the detection of simple spatial correlations. In this paper a new hypothesis is proposed about the function of hippocampal LTP. This hypothesis retains the idea that LTP subserves rapid one-trial memory, but abandons the notion that it serves any specific role in the geometric aspects of spatial learning. It is suggested that LTP participates in the automatic recording of attended experience'': a subsystem of episodic memory in which events are temporarily remembered in association with the contexts in which they occur. An automatic correlational form of synaptic plasticity is ideally suited to the online registration of context event associations. In support, it is reported that the ability of rats to remember the most recent place they have visited in a familiar environment is exquisitely sensitive to AP5 in a delay-dependent manner. Moreover, new studies of the lasting persistence of NMDA-dependent LTP, known to require protein synthesis, point to intracellular mechanisms that enable transient synaptic changes to be stabilized if they occur in close temporal proximity to important events. This new property of hippocampal LTP is a desirable characteristic of an event memory system.  相似文献   

19.
Source memory represents the origin (source) of information. Recently, we proposed that rats (Rattus norvegicus) remember the source of information. However, an alternative to source memory is the possibility that rats selectively encoded some, but not all, information rather than retrieving an episodic memory. We directly tested this ‘encoding failure’ hypothesis. Here, we show that rats remember the source of information, under conditions that cannot be attributed to encoding failure. Moreover, source memory lasted at least seven days but was no longer present 14 days after studying. Our findings suggest that long-lasting source memory may be modelled in non-humans. Our model should facilitate attempts to elucidate the biological underpinnings of source memory impairments in human memory disorders such as Alzheimer''s disease.  相似文献   

20.
Baxter MG 《Neuron》2003,40(4):669-670
Aging impairs multiple memory systems. The neurochemical substrates of normal memory differ between memory systems. In this issue of Neuron, Ramos et al. find that activation of protein kinase A, which has been reported to improve hippocampal-dependent spatial memory in aged animals, has the opposite effect on prefrontal cortex-dependent working memory in aged animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号