首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marteilioides chungmuensis is an ovarian parasite that causes nodule-like structures to appear on the gonads of female Pacific oysters, Crassostrea gigas. It is known that the prevalence of infection increases in summer and decreases from autumn to spring. To investigate the decrease in prevalence of infection and pathogenicity of the parasite, a biopsy method was developed to detect infected oysters, which were then monitored to calculate the mortality rate. Mortality of infected oysters was recorded monthly and changes in reproductive development observed histologically. Compared with control groups, a significant difference in mortality was observed in infected oysters in September and October. Histological observations showed that infected oysters produced oocytes continuously, even in autumn when healthy oysters were reproductively inactive. This prolonged spawning activity of infected oysters resulted in nutritional wasting and mortality. From December onwards, however, almost all infected oysters survived, though the infection persisted. Infection intensity decreased gradually from December. Histological observations revealed that, in winter, infected oysters released infected and uninfected oocytes through the genital canal. The gonad subsequently degenerated and was replaced with connective tissue, as in normal, healthy spent oysters. The results revealed that prevalence of infection decreased from September to May. It is hypothesised that the decline in prevalence within the epizootic area in autumn occurred because infected oysters died and that the winter decrease was due to recovery from infection.  相似文献   

2.
The protozoan parasite Marteilioides chungmuensis causes irregular enlargement of the ovary in the Pacific oyster Crassostrea gigas. The parasite invades the oyster through the epithelial tissue of the labial palp, replicates in the connective tissue, and then moves to the gonad, producing spores inside the oocytes. In this study the seasonality and invasion period of the parasite into the host was investigated over a 1 yr cycle. Uninfected 1 and 0 yr old (spat) oysters were placed in an epizootic area every month from July 2004 to July 2005 and September 2005 to March 2006, respectively, and left for 1 mo. Labial palps and gonad were sampled monthly and examined for infection by nested PCR and histological observations. Prevalence of infection detected by PCR was 70% or higher from August to October, but declined sharply in November and reached 7% or lower from February to April. To explain the low detection rate in winter, 1 yr old uninfected oysters were placed in an epizootic area in winter (water temperature: 8 to 10 degrees C) for 2 wk and then transferred to M. chungmuensis-free seawater at 24 degrees C. Although prevalence of infection was ca. 7% before transfer to heated seawater, levels of 87% were detected after 1 wk. After a 3 wk exposure to heated seawater, parasites were found in host oocytes by histological observation. It was concluded that the low prevalence in winter was due to insufficient replication of M. chungmuensis at low seawater temperatures, resulting in levels not detectable by nested PCR, and not to the absence of invasion.  相似文献   

3.
Marteilioides chungmuensis, a protozoan paramyxean parasite, infects the oocytes of the Pacific oyster, Crassostrea gigas. The effects of infection on the reproductive cycle of C. gigas were investigated over two consecutive years at Okayama Prefecture, Japan. In male oysters, gonadal development began during February/March, maturity was achieved in June and spawning activity extended from July to September. In November and December, male oysters were not seen, probably because their gonads regressed to connective tissue and they transformed into undifferentiated oysters. By contrast, female oysters, in which parasite spore formation occurred, were still carrying oocytes until the following March and the spawning process of female oysters took 5 months longer than that of males in epizootic areas. The prevalence of M. chungmuensis infection increased from July to September, when most female oysters had their spawning period, and declined from October to the following April when oysters were at the spent stage. The prevalence of infection increased again in May of the following year and high prevalence was observed in the following July. When prevalence was compared between oysters of different age classes, higher prevalence was detected in older than in younger oysters. Histological examination showed that infected oysters produced oocytes continuously and spawned repeatedly from October to March, during which period healthy oysters were reproductively inactive. Parasites can infect the oocytes of infected oysters throughout the longer spawning period. These observations suggest that M. chungmuensis extends the reproductive period of infected oysters for its own reproductive benefit.  相似文献   

4.
In order to assess changes in the activity of immunecompetency present in Crassostrea gigas infected with Marteilioides chungmuensis (Protozoa), the total hemocyte counts (THC), hemocyte populations, hemocyte viability, and phagocytosis rate were measured in oysters using flow cytometry. THC were increased significantly in oysters infected with M. chungmuensis relative to the healthy appearing oysters (HAO) (P<0.05). Among the total hemocyte composition, granulocyte levels were significantly increased in infected oysters as compared with HAO (P<0.05). In addition, the hyalinocyte was reduced significantly (P<0.05). The hemocyte viability did not differ between infected oysters and HAO. However, the phagocytosis rate was significantly higher in infected oysters relative to HAO (P<0.05). The measurement of alterations in the activity of immunecompetency in oysters, which was conducted via flow cytometry in this study, might be a useful biomarker of the defense system for evaluating the effects of ovarian parasites of C. gigas.  相似文献   

5.
To develop sensitive detection techniques with the aim of elucidating the life cycle of Marteilioides chungmuensis, an intracellular paramyxean infecting the ovary of the Pacific oyster Crassostrea gigas, we isolated the parasite at the sporont stage from infected oysters using a freeze-thaw procedure at -20 degrees C and differential centrifugations in discontinuous sucrose and Percoll gradients. DNA was extracted from the isolated sporonts, and a PCR amplicon of 18S small subunit ribosomal RNA gene DNA was partially sequenced. In situ hybridization using 3 parasite-specific probes designed from the obtained sequence successfully detected parasite cells in infected oysters, and confirmed that the sequenced DNA was derived from M. chungmuensis.  相似文献   

6.
The occurrence of Marteilioides chungmuensis, a protozoan paramyxean parasite in the reproductive system of the Pacific oyster Crassostrea gigas, was observed at Gosung Bay, Korea. Seasonal variation in gonad development was investigated in a suspended cultured oyster population. Gametogenesis began in February and first-spawning was observed between mid and late June when surface water temperature reached 22 to 25 degrees C. Spawning activity extended from mid June to late September, with 2 marked spawning peaks in June and August. Histological examination indicated that gonad development paralleled seasonal fluctuations in water temperature. Spawning in late June was partly associated with a sudden drop in salinity due to large freshwater inputs to the Bay with the summer monsoon. M. chungmuensis occurred in developing and fully mature eggs of spawning oysters in late June to January, but were not observed from February to May. Monthly mean infection intensity was high in late June when most oysters had their first spawning period. The infection level was also relatively high in late August and November, when oysters were spawning or had completed spawning. Several oysters collected in November (11.4%) and December (16.3%) carried a large quantity of ripe but M. chungmuensis-infected eggs, suggesting that infection also causes spawning failure by delaying spawning and destroying ripe oocytes.  相似文献   

7.
A paramyxea, Marteilioides chungmuensis, causes the irregular enlargement of the ovary in the Pacific oyster, Crassostrea gigas in Korea and Japan. The knowledge about the life cycle of the parasite has been limited to the sporulation stages within the oocyte of oysters. In this study, we used the parasite-specific DNA probes and electron microscopy to experimentally infected oysters in a field and successfully clarified early developmental stages of the parasite. The parasite invaded the oysters through the epithelial tissues of the gills, mantle and labial palps. Extrasporogony repeatedly occurred in the connective tissues by binary fusion. The inner cell of the extrasporogonic stage migrated into the gonadal epithelium, invaded the oocyte to start sporulation.  相似文献   

8.
The genes governing mesoderm specification have been extensively studied in vertebrates, arthropods and nematodes. The latter two phyla belong to the Ecdysozoan clade but little is understood of the role that these genes might play in the development of the other major protostomal clade, the Lophotrochozoa. As part of a wider project to analyze the functions associated with transforming growth factor beta superfamily members in Lophotrochozoa, we have cloned a gene encoding a tolloid homologue from the bivalve mollusc Crassostrea gigas. Tolloid is a key developmental protein that regulates the activity of bone morphogenetic proteins (BMPs). We have determined the intron-exon structure of the gene encoding C. gigas tolloid and have compared it with those of homologous genes from both protostomes and deuterostomes. In order to analyze the functionality of oyster tolloid the zebrafish embryo has been employed as a reporter organism and we show that over-expression of this protein results in the ventralization of zebrafish embryos at 24h post fertilization. The expression of the C. gigas tolloid gene during embryonic and larval development as well as in adult tissues is also explored.  相似文献   

9.
10.
11.
High genetic load in the Pacific oyster Crassostrea gigas   总被引:12,自引:0,他引:12  
Launey S  Hedgecock D 《Genetics》2001,159(1):255-265
The causes of inbreeding depression and the converse phenomenon of heterosis or hybrid vigor remain poorly understood despite their scientific and agricultural importance. In bivalve molluscs, related phenomena, marker-associated heterosis and distortion of marker segregation ratios, have been widely reported over the past 25 years. A large load of deleterious recessive mutations could explain both phenomena, according to the dominance hypothesis of heterosis. Using inbred lines derived from a natural population of Pacific oysters and classical crossbreeding experiments, we compare the segregation ratios of microsatellite DNA markers at 6 hr and 2-3 months postfertilization in F(2) or F(3) hybrid families. We find evidence for strong and widespread selection against identical-by-descent marker homozygotes. The marker segregation data, when fit to models of selection against linked deleterious recessive mutations and extrapolated to the whole genome, suggest that the wild founders of inbred lines carried a minimum of 8-14 highly deleterious recessive mutations. This evidence for a high genetic load strongly supports the dominance theory of heterosis and inbreeding depression and establishes the oyster as an animal model for understanding the genetic and physiological causes of these economically important phenomena.  相似文献   

12.
The Pacific oyster, Crassostrea gigas, is known for not having been affected by major epizootics of infectious diseases, unlike many other commercially important oysters worldwide. Nonetheless, review of the scientific literature reveals more than ten infectious diseases of this species including those with viral, bacterial, protozoan, and metazoan etiologies. These include diseases of larval, juvenile, and adult oysters. Diseases such as oyster velar virus disease, herpes-like infection, and ligament disease are known because of their importance in intensive husbandry systems of this bivalve. Nocardiosis, Marteilioides infection, haplosporidiosis, Denman Island disease, and others are primarily known from their effect on extensively cultured populations of the Pacific oyster. These diseases are reviewed in terms of their disease manifestations, etilogy, epizootiology and economic importance, prevention, and management and diagnosis.  相似文献   

13.
Haplosporidan parasites were observed in 10/100 spat and 1/171 adult Pacific oysters, Crassostrea gigas, reared in Matsushima Bay, Japan. Eight of the infected spat contained mild to severe plasmodial infections. The multinucleated plasmodia were 6-12 microm x 7-15 microm and were associated with an infiltration of hemocytes that occurred throughout the vesicular connective tissues of all infected oysters. Two oysters, one adult and one spat, contained advanced sporogonic infections. These were characterized by the presence of sporocysts and immature and mature operculated spores that measured 5.6-6.0 microm x 6.0-8.0 microm and were found exclusively within the digestive tubule epithelium. Electron microscopic examination revealed that mature spores contained a hinge operculum, striated and layered wall, spherule, single nucleus, and haplosporosome formative regions. Parasite morphology and infection pattern closely resemble that of Haplosporidium nelsoni, a pathogen of American oysters (C. virginica).  相似文献   

14.
Summary

In France, national management programs focus research on understanding reproductive factors in Crassostrea gigas to confront problems of the oyster industry. However, little information has been documented in which reproductive patterns include sexual changes. The reproductive cycle of oysters at three sites of the Atlantic coast of France was examined from 1996 to 1998, and the seasonal variations in oocyte size-frequencies, and sex ratio were described. The results showed a synchronism within the population concerning reproductive behavior. Young oocytes are generated after spawning and show no apparent changes during winter. Growth of oocytes begins in spring and cells reach maturity in April-May and are ready for a single spawning season in June-July. Oocytes that were not released during spawning are reabsorbed within the gonad. The significant difference between sites is that spawning occurred 1 month later in the southern area. A modal analysis showed that oocyte populations in the sample individuals are primordially bimodal, but with polymodal occurrences in June-July, in some cases. Irregular alternative sexuality was detected at all sites, and hermaphrodites appear to be a transition phase that allows changes from male to female during early spring. Previous observations, together with the study of the development of oocyte cohorts over time, permit a hypothetical model concerning the kinetics of gametogenesis in C. gigas. The model suggests that primary oocytes are generated from energy supplied from degenerating, as well as young oocytes that do not reach the mature stage within the gonad during autumn-winter. It seems that, during vitellogenesis, there is disintegration of smaller cells coupled with transfer of energy to the larger oocytes, which continue to grow and mature.  相似文献   

15.
Gong N  Yang H  Zhang G  Landau BJ  Guo X 《Heredity》2004,93(5):408-415
Reproduction and chromosome inheritance in triploid Pacific oyster (Crassostrea gigas Thunberg) were studied in diploid female x triploid male (DT) and reciprocal (TD) crosses. Relative fecundity of triploid females was 13.4% of normal diploids. Cumulative survival from fertilized eggs to spat stage was 0.007% for DT crosses and 0.314% for TD crosses. Chromosome number analysis was conducted on surviving progeny from DT and TD crosses at 1 and 4 years of age. At Year 1, oysters from DT crosses consisted of 15% diploids (2n=20) and 85% aneuploids. In contrast, oysters from TD crosses consisted of 57.2% diploids, 30.9% triploids (3n=30) and only 11.9% aneuploids, suggesting that triploid females produced more euploid gametes and viable progeny than triploid males. Viable aneuploid chromosome numbers included 2n+1, 2n+2, 2n+3, 3n-2 and 3n-1. There was little change over time in the overall frequency of diploids, triploids and aneuploids. Among aneuploids, oysters with 2n+3 and 3n-2 chromosomes were observed at Year 1, but absent at Year 4. Triploid progeny were significantly larger than diploids by 79% in whole body weight and 98% in meat weight at 4 years of age. Aneuploids were significantly smaller than normal diploids. This study suggests that triploid Pacific oyster is not completely sterile and cannot offer complete containment of cultured populations.  相似文献   

16.
1. Oyster visceral mass and gill tissues possessed measurable flavin-containing monooxygenase (FMO) activity. 2. FMO activity was confirmed in visceral mass microsomes by oxygen uptake experiments utilizing various nitrogen and sulfur-containing chemicals along with measurement of N,N-dimethylaniline (DMA) N-oxidase and methimazole oxidation activities. DMA N-oxidase and methimazole oxidation activities also were present in gill microsomes. 3. Excluding oyster gill methimazole oxidation, there were no consistent seasonal differences in FMO activity in oyster gill or visceral mass microsomes. 4. Although lacking spectral evidence for cytochrome P-450, a peak at 418 nm was observed along with NADPH-cytochrome c reductase activity in visceral mass and gill microsomes suggesting the presence of a denatured cytochrome P-450 system. 5. NADPH-independent benzo(a)pyrene hydroxylase (BPH) activity was observed in both oyster visceral mass and gill microsomes suggesting a co-oxidation pathway possibly involving a one electron transfer of oxygen from a lipid hydroperoxide.  相似文献   

17.
18.
19.
20.
Summary

The possible relationship between certain oocyte and embryo characteristics and larvae viability was investigated with reference to the following aspects: (1) morphological—oocyte diameter and shape; (2) cytological—overall ultrastructure and membrane integrity; (3) biochemical—content of lipids, proteins and carbohydrates; and (4) physiological—respiration. The rate of survival and incidence of abnormality were estimated 24 h after fertilization. The first results showed that 80–90% of oocytes were cytologically viable before fertilization. Eighty to 90% of oocytes are apparently viable before fertilization on the basis of staining with Trypan blue, but this parameter shows little correlation with larval viability. However, Trypan blue staining is of value in allowing the recognition of oocytes with damaged membranes. Respiration was measured for unfertilized oocytes 5 min after stripping, after 6 h, and for 3-h embryos. Positive correlations were found between the O2-consumption of embryos and both the rate of fertilization and the hatching rate of 24-h larvae. In contrast, no correlation was found between hatching parameters and the O2-consumption of unfertilized oocytes. These results suggest that embryos possess quality indicators, relating to metabolic characteristics, which can be quantified more easily than those of oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号