首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Although retinal-autoantigen specific T-helper 1 cells have been demonstrated to trigger disease progression and relapses, the molecular processes leading to retinal degeneration and consequent blindness remain unknown. To elucidate such processes, we studied changes in the total retinal proteome of ERU-diseased horses compared to healthy controls. Severe changes in the retinal proteome were found for several markers for blood-retinal barrier breakdown and whose emergence depended upon disease severity. Additionally, uveitic changes in the retina were accompanied by upregulation of aldose 1-epimerase, selenium-binding protein 1, alpha crystallin A chain, phosphatase 2A inhibitor (SET), and glial fibrillary acidic protein (GFAP), the latter indicating an involvement of retinal Mueller glial cells (RMG) in disease process. To confirm this, we screened for additional RMG-specific markers and could demonstrate that, in uveitic retinas, RMG concomitantly upregulate vimentin and GFAP and downregulate glutamine synthetase. These expression patterns suggest for an activated state of RMG, which further downregulate the expression of pigment epithelium-derived factor (PEDF) and begin expressing interferon-gamma, a pro-inflammatory cytokine typical for T-helper 1 cells. We thus propose that RMG may play a fatal role in uveitic disease progression by directly triggering inflammatory processes through the expression and secretion of interferon-gamma.  相似文献   

2.
Spontaneous equine recurrent uveitis (ERU) is an incurable autoimmune disease affecting the eye. Identifying biological markers or pathways associated with this disease may allow the understanding of its pathogenesis at a molecular level. The vitreous is the body fluid closest to the disease-affected tissue and possibly also an effector of pathological processes relevant for ERU. Surgical removal of vitreous leads to cessation of relapses in spontaneous uveitis of both man and horse, therefore vitreous composites are likely to contribute to disease progression. Uveitic vitreous is likely to contain potential biomarkers in relatively undiluted quantities. With the goal to identify these markers, we systematically compared vitreous from healthy and disease-affected eyes by proteomic profiling. Nine differentially expressed proteins were identified, that are functionally related to immune response, inflammation, and maintenance of the blood-retinal barrier. One of these, pigment epithelium-derived factor, a protein involved in maintaining a proper blood-retina barrier as well as protecting from neoangiogenesis was additionally found to be down-regulated within uveitic retinal lesions whereas, conversely, vascular endothelial growth factor was found to be up-regulated at these sites. Together, these changes point to as of yet undiscovered biological pathways involved in the pathogenesis of this autoimmune disease.  相似文献   

3.
Dickkopf‐related protein 3 (DKK3) is an antagonist of Wnt ligand activity. Reduced DKK3 expression has been reported in various types of cancers, but its functions and related molecular mechanisms in breast tumorigenesis remain unclear. We examined the expression and promoter methylation of DKK3 in 10 breast cancer cell lines, 96 primary breast tumours, 43 paired surgical margin tissues and 16 normal breast tissues. DKK3 was frequently silenced in breast cell lines (5/10) by promoter methylation, compared with human normal mammary epithelial cells and tissues. DKK3 methylation was detected in 78% of breast tumour samples, whereas only rarely methylated in normal breast and surgical margin tissues, suggesting tumour‐specific methylation of DKK3 in breast cancer. Ectopic expression of DKK3 suppressed cell colony formation through inducing G0/G1 cell cycle arrest and apoptosis of breast tumour cells. DKK3 also induced changes of cell morphology, and inhibited breast tumour cell migration through reversing epithelial‐mesenchymal transition (EMT) and down‐regulating stem cell markers. DKK3 inhibited canonical Wnt/β‐catenin signalling through mediating β‐catenin translocation from nucleus to cytoplasm and membrane, along with reduced active‐β‐catenin, further activating non‐canonical JNK signalling. Thus, our findings demonstrate that DKK3 could function as a tumour suppressor through inducing apoptosis and regulating Wnt signalling during breast tumorigenesis.  相似文献   

4.

Introduction

Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell regulation remains unclear.

Methods

We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt pathway effects on stem cell activity in vitro.

Results

Wnt pathway signalling increased in cancer compared to normal breast and in both cell lines and patient samples, expression of Wnt pathway genes correlated with estrogen receptor (ER) expression. Furthermore, specific Wnt pathway genes were predictive for recurrence within subtypes of breast cancer. Canonical Wnt pathway genes were increased in breast cancer stem cell-enriched populations in comparison to normal breast stem cell-enriched populations. Furthermore in cell lines, the ligand Wnt3a increased whilst the inhibitor DKK1 reduced mammosphere formation with the greatest inhibitory effects observed in ER+ve breast cancer cell lines. In patient-derived metastatic breast cancer samples, only ER-ve mammospheres were responsive to the ligand Wnt3a. However, the inhibitor DKK1 efficiently inhibited both ER+ve and ER-ve breast cancer but not normal mammosphere formation, suggesting that the Wnt pathway is aberrantly activated in breast cancer mammospheres.

Conclusions

Collectively, these data highlight differential Wnt signalling in breast cancer subtypes and activity in patient-derived metastatic cancer stem-like cells indicating a potential for Wnt-targeted treatment in breast cancers.  相似文献   

5.
Autoimmune uveitis is an intraocular inflammation that arises through autoreactive T-cells attacking the inner eye, eventually leading to blindness. However, the contributing molecular pathomechanisms within the affected tissues remain as yet elusive. The extracellular matrix (ECM) is a highly dynamic structure that varies tremendously and influences the encompassing tissue. In order to assess ECM re-modeling in autoimmune uveitis, we investigated the expression of ECM molecules fibronectin and osteopontin in vitreous and retina samples. This was carried out in the only spontaneous animal model for human autoimmue uveitis, namely equine recurrent uveitis (ERU) that resembles the human disease in clinical as well as in immunopathological aspects. ERU is a naturally occurring autoimmune disease in horses that develops frequently and has already proved its value to study disease-related pathomechanisms. Western blot analysis of fibronectin and osteopontin in healthy and uveitic vitreous revealed significant reduction of both proteins in uveitis. Immunohistochemical expression of fibronectin in healthy retinas was restricted to the inner limiting membrane abutting vimentin positive Müller cell endfeet, while in uveitic sections, a disintegration of the ILM was observed changing the fibronectin expression to a dispersed pattern extending toward the vitreous. Retinal expression of osteopontin in control tissue was found in a characteristic Müller cell pattern illustrated by co-localization with vimentin. In uveitic retinas, the immunoreactivity of osteopontin in gliotic Müller cells was almost absent. The ability of Müller cells to express fibronectin and osteopontin was additionally shown by immunocytochemistry of primary cultured equine Müller cells and the equine Müller cell line eqMC-7. In conclusion, severe ECM re-modeling in autoimmune uveitis reported here, might affect the adhesive function of fibronectin and thus the anchoring of Müller cell endfeet to the ILM. Furthermore, the absence of osteopontin in gliotic Müller cells might represent reduced neuroprotection, an osteopontin attribute that is intensively discussed.  相似文献   

6.
In the developing zebrafish retina, neurogenesis is initiated in cells adjacent to the optic stalk and progresses to the entire neural retina. It has been reported that hedgehog (Hh) signalling mediates the progression of the differentiation of retinal ganglion cells (RGCs) in zebrafish. However, the progression of neurogenesis seems to be only mildly delayed by genetic or chemical blockade of the Hh signalling pathway. Here, we show that cAMP-dependent protein kinase (PKA) effectively inhibits the progression of retinal neurogenesis in zebrafish. Almost all retinal cells continue to proliferate when PKA is activated, suggesting that PKA inhibits the cell-cycle exit of retinoblasts. A cyclin-dependent kinase (cdk) inhibitor p27 inhibits the PKA-induced proliferation, suggesting that PKA functions upstream of cyclins and cdk inhibitors. Activation of the Wnt signalling pathway induces the hyperproliferation of retinal cells in zebrafish. The blockade of Wnt signalling inhibits the PKA-induced proliferation, but the activation of Wnt signalling promotes proliferation even in the absence of PKA activity. These observations suggest that PKA inhibits exit from the Wnt-mediated cell cycle rather than stimulates Wnt-mediated cell-cycle progression. PKA is an inhibitor of Hh signalling, and Hh signalling molecule morphants show severe defects in cell-cycle exit of retinoblasts. Together, these data suggest that Hh acts as a short-range signal to induce the cell-cycle exit of retinoblasts. The pulse inhibition of Hh signalling revealed that Hh signalling regulates at least two distinct steps of RGC differentiation: the cell-cycle exit of retinoblasts and RGC maturation. This dual requirement of Hh signalling in RGC differentiation implies that the regulation of a neurogenic wave is more complex in the zebrafish retina than in the Drosophila eye.  相似文献   

7.

Purpose

Human vitreoretinal diseases are due to presumed abnormal mechanical interactions between the vitreous and retina, and translational models are limited. This study determined whether nonstructural proteins and potential retinal biomarkers were expressed by the normal mouse vitreous and retina.

Methods

Vitreous and retina samples from mice were collected by evisceration and analyzed by liquid chromatography-tandem mass spectrometry. Identified proteins were further analyzed for differential expression and functional interactions using bioinformatic software.

Results

We identified 1,680 unique proteins in the retina and 675 unique proteins in the vitreous. Unbiased clustering identified protein pathways that distinguish retina from vitreous including oxidative phosphorylation and neurofilament cytoskeletal remodeling, whereas the vitreous expressed oxidative stress and innate immunology pathways. Some intracellular protein pathways were found in both retina and vitreous, such as glycolysis and gluconeogenesis and neuronal signaling, suggesting proteins might be shuttled between the retina and vitreous. We also identified human disease biomarkers represented in the mouse vitreous and retina, including carbonic anhydrase-2 and 3, crystallins, macrophage inhibitory factor, glutathione peroxidase, peroxiredoxins, S100 precursors, and von Willebrand factor.

Conclusions

Our analysis suggests the vitreous expresses nonstructural proteins that functionally interact with the retina to manage oxidative stress, immune reactions, and intracellular proteins may be exchanged between the retina and vitreous. This novel proteomic dataset can be used for investigating human vitreoretinopathies in mouse models. Validation of vitreoretinal biomarkers for human ocular diseases will provide a critical tool for diagnostics and an avenue for therapeutics.  相似文献   

8.
While the mouse retina has emerged as an important genetic model for inherited retinal disease, the mouse vitreous remains to be explored. The vitreous is a highly aqueous extracellular matrix overlying the retina where intraocular as well as extraocular proteins accumulate during disease.1-3 Abnormal interactions between vitreous and retina underlie several diseases such as retinal detachment, proliferative diabetic retinopathy, uveitis, and proliferative vitreoretinopathy.1,4 The relative mouse vitreous volume is significantly smaller than the human vitreous (Figure 1), since the mouse lens occupies nearly 75% of its eye.5 This has made biochemical studies of mouse vitreous challenging. In this video article, we present a technique to dissect and isolate the mouse vitreous from the retina, which will allow use of transgenic mouse models to more clearly define the role of this extracellular matrix in the development of vitreoretinal diseases.  相似文献   

9.
10.
To study the biology of basal laminae in the developing nervous system the protein composition of the embryonic retinal basal lamina was investigated, the site of synthesis of its proteins in the eye was determined, and basal lamina assembly was studied in vivo in two assay systems. Laminin, nidogen, agrin, collagen IV, and XVIII are major constituents of the retinal basal lamina. However, only agrin is synthesized by the retina, whereas the other matrix constituents originate from cells of the ciliary body, the lens, or the optic disc. The synthesis from extraretinal tissues infers that the retinal basal lamina proteins must be shed from their tissues of origin into the vitreous body and from there bind to receptor proteins provided by the retinal neuroepithelium. The fact that all proteins typical for the retinal basal lamina are abundant in the vitreous body and a new basal lamina is only formed when the vitreous body was directly adjacent to the retina is consistent with the contention of the vitreous body having a function in retinal basal lamina formation. Basal lamina assembly was also studied after disrupting the retinal basal lamina by intraocular injection of collagenase. The basal lamina regenerated after chasing the collagenase with Matrigel, which served as a collagenase inhibitor. The basal lamina was reconstituted within 6 h. However, the regenerated basal lamina was located deeper in the retina than normal by reconstituting along the retracted neuroepithelial endfeet demonstrating that these endfeet are the preferred site of basal lamina assembly.  相似文献   

11.
The R-Spondin (RSpo) family of secreted proteins is implicated in the activation of the Wnt signaling pathway. Despite the high structural homology between the four members, expression patterns and phenotypes in knockout mice have demonstrated striking differences. Here we dissected and compared the molecular and cellular function of all RSpo family members. Although all four RSpo proteins activate the canonical Wnt pathway, RSpo2 and 3 are more potent than RSpo1, whereas RSpo4 is relatively inactive. All RSpo members require Wnt ligands and LRP6 for activity and amplify signaling of Wnt3A, Wnt1, and Wnt7A, suggesting that RSpo proteins are general regulators of canonical Wnt signaling. Like RSpo1, RSpo2-4 antagonize DKK1 activity by interfering with DKK1 mediated LRP6 and Kremen association. Analysis of RSpo deletion mutants indicates that the cysteine-rich furin domains are sufficient and essential for the amplification of Wnt signaling and inhibition of DKK1, suggesting that Wnt amplification by RSpo proteins may be a direct consequence of DKK1 inhibition. Together, these findings indicate that RSpo proteins modulate the Wnt pathway by a common mechanism and suggest that coexpression with specific Wnt ligands and DKK1 may determine their biological specificity in vivo.  相似文献   

12.
Müller cells are the principal glial cells of the retina. Their end-feet form the limits of the retina at the outer and inner limiting membranes (ILM), and in conjunction with astrocytes, pericytes and endothelial cells they establish the blood-retinal barrier (BRB). BRB limits material transport between the bloodstream and the retina while the ILM acts as a basement membrane that defines histologically the border between the retina and the vitreous cavity. Labeling Müller cells is particularly relevant to study the physical state of the retinal barriers, as these cells are an integral part of the BRB and ILM. Both BRB and ILM are frequently altered in retinal disease and are responsible for disease symptoms.There are several well-established methods to study the integrity of the BRB, such as the Evans blue assay or fluorescein angiography. However these methods do not provide information on the extent of BRB permeability to larger molecules, in nanometer range. Furthermore, they do not provide information on the state of other retinal barriers such as the ILM. To study BRB permeability alongside retinal ILM, we used an AAV based method that provides information on permeability of BRB to larger molecules while indicating the state of the ILM and extracellular matrix proteins in disease states. Two AAV variants are useful for such study: AAV5 and ShH10. AAV5 has a natural tropism for photoreceptors but it cannot get across to the outer retina when administered into the vitreous when the ILM is intact (i.e., in wild-type retinas). ShH10 has a strong tropism towards glial cells and will selectively label Müller glia in both healthy and diseased retinas. ShH10 provides more efficient gene delivery in retinas where ILM is compromised. These viral tools coupled with immunohistochemistry and blood-DNA analysis shed light onto the state of retinal barriers in disease.  相似文献   

13.
Subretinal injections with glial cell line‐derived neurotrophic factor (GDNF) rescue morphology as well as function of rod cells in mouse and rat animal models of retinitis pigmentosa. At the same time, it is postulated that this effect is indirect, mediated by activation of retinal Müller glial (RMG) cells. Here, we show that Cyr61/CCN1, one of the secreted proteins up‐regulated in primary RMG after glial cell line‐derived neurotrophic factor stimulation, provides neuroprotective and pro‐survival capacities: Recombinant Cyr61 significantly reduced photoreceptor (PR) cells death in organotypic cultures of Pde6brd1 retinas. To identify stimulated pathways in the retina, we treated Pde6brd1 retinal explants with Cyr61 and observed an overall increase in activated Erk1/2 and Stat3 signalling molecules characterized by activation‐site‐specific phosphorylation. To identify Cyr61 retinal target cells, we isolated primary porcine PR, RMG and retinal pigment epithelium (RPE) cells and exposed them separately to Cyr61. Here, RMG as well as RPE cells responded with induced phosphorylation of Erk1/2, Stat3 and Akt. In PR, no increase in phosphorylation in any of the studied proteins was detected, suggesting an indirect neuroprotective effect of Cyr61. Cyr61 may thus act as an endogenous pro‐survival factor for PR, contributing to the complex repertoire of neuroprotective activities generated by RMG and RPE cells.

  相似文献   


14.
In the developing vertebrate retina, progenitor cells initially proliferate but begin to produce postmitotic neurons when neuronal differentiation occurs. However, the mechanism that determines whether retinal progenitor cells continue to proliferate or exit from the cell cycle and differentiate is largely unknown. Here, we report that histone deacetylase 1 (Hdac1) is required for the switch from proliferation to differentiation in the zebrafish retina. We isolated a zebrafish mutant, ascending and descending (add), in which retinal cells fail to differentiate into neurons and glial cells but instead continue to proliferate. The cloning of the add gene revealed that it encodes Hdac1. Furthermore, the ratio of the number of differentiating cells to that of proliferating cells increases in proportion to Hdac activity, suggesting that Hdac proteins regulate a crucial step of retinal neurogenesis in zebrafish. Canonical Wnt signaling promotes the proliferation of retinal cells in zebrafish, and Notch signaling inhibits neuronal differentiation through the activation of a neurogenic inhibitor, Hairy/Enhancer-of-split (Hes). We found that both the Wnt and Notch/Hes pathways are activated in the add mutant retina. The cell-cycle progression and the upregulation of Hes expression in the add mutant retina can be inhibited by the blockade of Wnt and Notch signaling, respectively. These data suggest that Hdac1 antagonizes these pathways to promote cell-cycle exit and the subsequent neurogenesis in zebrafish retina. Taken together, these data suggest that Hdac1 functions as a dual switch that suppresses both cell-cycle progression and inhibition of neurogenesis in the zebrafish retina.  相似文献   

15.
Microphthalmia, coloboma and persistent fetal vasculature within the vitreous cavity are among the most common human congenital ocular anomalies, and each has been associated with a variety of genetic disorders. Here we show that, in the mouse, loss of frizzled 5 (Fz5) - a putative Wnt receptor expressed in the eye field, optic cup and retina - causes all of these defects with high penetrance. In the developing Fz5(-/-) eye, the sequence of defects, in order of appearance, is: increased cell death in the ventral retina, delayed and/or incomplete closure of the ventral fissure, an excess of mesenchymal cells in the vitreous cavity, an excess of retinal astrocyte precursors and mature astrocytes, and persistence of the hyaloid vasculature in association with a large number of pigment cells. Fz5(-/-) mice also exhibit a late-onset progressive retinal degeneration by approximately 6 months of age, which might be related to the expression of Fz5 in Müller glia in the adult retina. These results demonstrate a central role for frizzled signaling in mammalian eye development and are likely to be relevant to the etiology of congenital human ocular anomalies.  相似文献   

16.
Secreted frizzled-related proteins (Sfrps) are considered Wnt signalling antagonists but recent studies have shown that specific family members enhance Wnt diffusion and thus positively modulate Wnt signalling. Whether this is a general and physiological property of all Sfrps remains unexplored. It is equally unclear whether disruption of Sfrp expression interferes with developmental events mediated by Wnt signalling activation. Here, we have addressed these questions by investigating the functional consequences of Sfrp disruption in the canonical Wnt signalling-dependent specification of the mouse optic cup periphery. We show that compound genetic inactivation of Sfrp1 and Sfrp2 prevents Wnt/β-catenin signalling activation in this structure, which fails to be specified and acquires neural retina characteristics. Consistent with a positive role of Sfrps in signalling activation, Wnt spreading is impaired in the retina of Sfrp1(-/-);Sfrp2(-/-) mice. Conversely, forced expression of Sfrp1 in the wing imaginal disc of Drosophila, the only species in which the endogenous Wnt distribution can be detected, flattens the Wg gradient, suppresses the expression of high-Wg target genes but expands those typically activated by low Wg concentrations. Collectively, these data demonstrate that, in vivo, the levels of Wnt signalling activation strongly depend on the tissue distribution of Sfrps, which should be viewed as multifunctional regulators of Wnt signalling.  相似文献   

17.
Retinal Müller glial cells express the inducible isoform (-2) of nitric oxide (NO) synthase (NOS) in vitro after stimulation by lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) or in vivo in some retinal pathologies. Because NO may have beneficial or detrimental effects in the retina, we have used cocultures of retinal neurons with retinal Müller glial (RMG) cells from mice disrupted for the gene of NOS-2 [NOS-2 (-/-)] to clarify the role of NO in retinal neurotoxicity. We first demonstrated that NO produced by activated RMG cells was not toxic for RMG cells themselves. Second, the NO released from LPS/IFN-gamma-stimulated RMG cells induced neuronal cell death, because no neuronal cell death has been observed in cocultures with RMG cells from NOS-2 (-/-) mice and because inhibition of NOS-2 induction by transforming growth factor-beta or blockade of NO release by different NOS inhibitors prevented neuronal cell death. Addition of urate, a peroxynitrite scavenger, or superoxide dismutase partially prevented neuronal cell death induced by NO, whereas the presence of a poly(ADP-ribose) synthetase inhibitor, caspase inhibitors, or a guanylate cyclase inhibitor had no significant effect on cell death. These results demonstrated that a large release of NO from RMG cells is responsible for retinal neuronal cell death in vitro, suggesting a neurotoxic role for NO and peroxynitrite during retinal inflammatory or degenerative diseases, where RMG cells were activated.  相似文献   

18.
Abstract: Müller glial cells from the rat retina were examined for their capacity to produce nitric oxide (NO). Treatment of retinal Müller glial (RMG) cells with lipopolysaccharide (LPS), interferon-γ, and tumor necrosis factor-α induced NO synthesis as determined by nitrite release in media. Simultaneous addition of LPS, interferon-γ, and tumor necrosis factor-α caused the largest increase in NO synthesis. NO biosynthesis was detected after 12 h and was dependent on the dose of LPS, interferon-γ, and tumor necrosis factor-α. Stereoselective inhibitors of NO synthase (NOS), cycloheximide and transforming growth factor-β, blocked cytokine-induced NO production. Cytosol from LPS/cytokine-treated RMG cultures, but not from unstimulated cultures, produced a calcium/calmodulin-independent conversion of l -arginine to l -citrulline that was completely blocked by NOS inhibitor. The expression of NOS in RMG cells was confirmed by northern blot analysis, in which stimulation of these cells led to an increase in NOS mRNA levels. We conclude that RMG cells can express an inducible form of NOS similar to the macrophage isoform. High NO release from activated RMG cells might represent a protection from infection but may also contribute to the development of retinal pathologies.  相似文献   

19.
Appaloosa horses are predisposed to equine recurrent uveitis (ERU), an immune‐mediated disease characterized by recurring inflammation of the uveal tract in the eye, which is the leading cause of blindness in horses. Nine genetic markers from the ECA1 region responsible for the spotted coat color of Appaloosa horses, and 13 microsatellites spanning the equine major histocompatibility complex (ELA) on ECA20, were evaluated for association with ERU in a group of 53 Appaloosa ERU cases and 43 healthy Appaloosa controls. Three markers were significantly associated (corrected P‐value <0.05): a SNP within intron 11 of the TRPM1 gene on ECA1, an ELA class I microsatellite located near the boundary of the ELA class III and class II regions and an ELA class II microsatellite located in intron 1 of the DRA gene. Association between these three genetic markers and the ERU phenotype was confirmed in a second population of 24 insidious ERU Appaloosa cases and 16 Appaloosa controls. The relative odds of being an ERU case for each allele of these three markers were estimated by fitting a logistic mixed model with each of the associated markers independently and with all three markers simultaneously. The risk model using these markers classified ~80% of ERU cases and 75% of controls in the second population as moderate or high risk, and low risk respectively. Future studies to refine the associations at ECA1 and ELA loci and identify functional variants could uncover alleles conferring susceptibility to ERU in Appaloosa horses.  相似文献   

20.
Continuous neurogenesis in the adult nervous system requires a delicate balance between proliferation and differentiation. Although Wnt/β-catenin and Hedgehog signalling pathways are thought to share a mitogenic function in adult neural stem/progenitor cells, it remains unclear how they interact in this process. Adult amphibians produce retinal neurons from a pool of neural stem cells localised in the ciliary marginal zone (CMZ). Surprisingly, we found that perturbations of the Wnt and Hedgehog pathways result in opposite proliferative outcomes of neural stem/progenitor cells in the CMZ. Additionally, our study revealed that Wnt and Hedgehog morphogens are produced in mutually exclusive territories of the post-embryonic retina. Using genetic and pharmacological tools, we found that the Wnt and Hedgehog pathways exhibit reciprocal inhibition. Our data suggest that Sfrp-1 and Gli3 contribute to this negative cross-regulation. Altogether, our results reveal an unexpected antagonistic interplay of Wnt and Hedgehog signals that may tightly regulate the extent of neural stem/progenitor cell proliferation in the Xenopus retina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号