首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Antiangiogenic drugs are now intensively used in clinical oncology, but some drawbacks still hamper their development. First, it is frequently unclear what patient subpopulation is likely to gain clinical benefit from these expensive therapies; second, there is evidence of (sometimes rapid) development of drug resistance in many patients; third, the results of some preclinical and clinical studies have suggested acceleration of malignant cell aggressiveness when some antiangiogenic therapies are terminated. Here we discuss the role of soluble molecules and cellular markers of neoplastic angiogenesis for patient selection and follow-up during treatment. These markers should help clinicians to decide the right therapy, advise them of the generation of mechanisms of drug resistance during antiangiogenic treatment, and finally suggest the most appropriate next line of therapy according to the new patterns of cancer vascularization induced by antiangiogenic therapies.  相似文献   

3.
An altered metabolism of iron fuels cancer growth, invasion, metastasis, and recurrence. Ongoing research in cancer biology is delineating a complex iron-trafficking program involving both malignant cells and their support network of cancer stem cells, immune cells, and other stromal components in the tumor microenvironment. Iron-binding strategies in anticancer drug discovery are being pursued in clinical trials and in multiple programs at various levels of development. Polypharmacological mechanisms of action, combined with emerging iron-associated biomarkers and companion diagnostics, are poised to offer new therapeutic options. By targeting a fundamental player in cancer progression, iron-binding drug candidates (either alone or in combination therapy) have the potential to impact a broad range of cancer types and to address the major clinical problems of recurrence and resistance to therapy.  相似文献   

4.
Cohen JP 《New biotechnology》2012,29(6):751-756
The number of personalized medicines and companion diagnostics in use in the United States has gradually increased over the past decade, from a handful of medicines and tests in 2001 to several dozen in 2011. However, the numbers have not reached the potential hoped for when the human genome project was completed in 2001. Significant clinical, regulatory, and economic barriers exist and persist. From a regulatory perspective, therapeutics and companion diagnostics are ideally developed simultaneously, with the clinical significance of the diagnostic established using data from the clinical development program of the corresponding therapeutic. Nevertheless, this is not (yet) happening. Most personalized medicines are personalized post hoc, that is, a companion diagnostic is developed separately and approved after the therapeutic. This is due in part to a separate and more complex regulatory process for diagnostics coupled with a lack of clear regulatory guidance. More importantly, payers have placed restrictions on reimbursement of personalized medicines and their companion diagnostics, given the lack of evidence on the clinical utility of many tests. To achieve increased clinical adoption of diagnostics and targeted therapies through more favorable reimbursement and incorporation in clinical practice guidelines, regulators will need to provide unambiguous guidance and manufacturers will need to bring more and better clinical evidence to the market place.  相似文献   

5.
It is well established that lipid metabolism is drastically altered during tumor development and response to therapy. Choline kinase alpha (ChoKα) is a key mediator of these changes, as it represents the first committed step in the Kennedy pathway of phosphatidylcholine biosynthesis and ChoKα expression is upregulated in many human cancers. ChoKα activity is associated with drug resistant, metastatic, and malignant phenotypes, and represents a robust biomarker and therapeutic target in cancer. Effective ChoKα inhibitors have been developed and have recently entered clinical trials. ChoKα's clinical relevance was, until recently, attributed solely to its production of second messenger intermediates of phospholipid synthesis. The recent discovery of a non-catalytic scaffolding function of ChoKα may link growth receptor signaling to lipid biogenesis and requires a reinterpretation of the design and validation of ChoKα inhibitors. Advances in positron emission tomography, magnetic resonance spectroscopy, and optical imaging methods now allow for a comprehensive understanding of ChoKα expression and activity in vivo. We will review the current understanding of ChoKα metabolism, its role in tumor biology and the development and validation of targeted therapies and companion diagnostics for this important regulatory enzyme. This comes at a critical time as ChoKα-targeting programs receive more clinical interest.  相似文献   

6.
Among all the known differences between cancer and normal cells, it is only the genetic differences that unequivocally distinguish the former from the latter. It is therefore not surprising that recent therapeutic advances are based on agents that specifically target the products of the genes that are mutated in cancer cells. The ability to identify the patients most likely to benefit from such therapies is a natural outgrowth of these discoveries. Development of companion diagnostic tests for this identification is proceeding but should receive much more attention than it currently does. These tests can simplify the drug discovery process, make clinical trials more efficient and informative, and be used to individualize the therapy of cancer patients.  相似文献   

7.
Breast cancer is the most common neoplasm affecting women in the Western world. Many studies are still conducted with the purpose of finding markers that could be used for early diagnosis and/or serve as possible reliable prognostic or predictive parameters, but with conflicting results. At present, no markers are available for an early diagnosis of breast cancer For surveillance of patients with diagnosed breast cancer the most widely used serum markers are CA 15-3 and CEA which, in combination with other clinical parameters, could have clinical significance. The most useful and clinically important tissue-based markers in breast cancer are estrogen and progesterone receptors, used as a basis for hormonal therapy, and HER-2 receptors, essential in selecting patients for the treatment with Herceptin. New or potentially new markers for breast cancer include BRCA1 and BRCA2 genes for selecting patients at high risk of developing hereditary breast cancer, as well as urokinase plasminogen activator and inhibitor for assessing prognosis in lymph node-negative patients. Results of tumor and patient genetic analyses including their clinical evaluation will enable application of more individualized and personalized approach in diagnosis and therapy of breast cancer patients.  相似文献   

8.
Herceptin failure is a major clinical problem in breast cancer. A subset of breast cancer patients with high HER-2/neu levels eventually experience metastatic disease progression when treated with Herceptin as a single agent. Mechanistic details of development of this aggressive disease are not clear. Therefore, there is a dire need to better understand the mechanisms by which drug resistance develops and to design new combined treatments that benefit patients with aggressive breast cancer and have minimal toxicity. We hypothesized that 3, 3′-diindolylmethane (DIM), a non-toxic agent can be combined with Herceptin to treat breast cancers with high levels of HER-2/neu. Here, we evaluated the effects of Herceptin alone and in combination with DIM on cell viability, apoptosis and clonogenic assays in SKBR3 (HER-2/neu-expressing) and MDA-MB-468 (HER-2/neu negative) breast cancer cells. We found that DIM could enhance the effectiveness of Herceptin by significantly reducing cell viability, which was associated with apoptosis-induction and significant inhibition of colony formation, compared with single agent treatment. These results were consistent with the down-regulation of Akt and NF-kB p65. Mechanistic investigations revealed a significant upregulation of miR-200 and reduction of FoxM1 expression in DIM and Herceptin-treated breast cancer cells. We, therefore, transfected cells with pre-miR-200 or silenced FoxM1 in these cells for understanding the molecular mechanism involved. These results provide experimental evidence, for the first time, that DIM plus Herceptin therapy could be translated to the clinic as a therapeutic modality to improve treatment outcome of patients with breast cancer, particularly for the patients whose tumors express high levels of HER-2/neu.  相似文献   

9.
The commercial potential of RNAi is assessed on the basis of successful translation of technology into applications in three areas: (1) drug discovery and research-currently the biggest segment; (2) potential therapeutic applications; and (3) the role of microRNA in molecular diagnostics. RNAi is an important method for analyzing gene function and identifying new drug targets that use dsRNA to knock down or silence specific genes. Sets of siRNAs focused on a specific gene class (siRNA libraries) have the capacity to greatly increase the pace of pathway analysis and functional genomics. RNAi plays an important role in drug discovery by facilitating target validation. The discovery of the role of microRNA (miRNAs) in various pathological processes opens up possible applications in molecular diagnostics, particularly that of cancer. The advantages of RNAi-based therapeutics over traditional pharmaceuticals include the capability for more specific therapies with small molecule siRNA. Drawbacks include the development of resistance in cancer and viral infections as well as the interferon effect. RNAi is closely related to gene therapy and the vectors developed for gene therapy are also being used for delivery of siRNAs. RNAi, along with other related technologies, will contribute to the development of personalised medicine. Although none of the RNAi-based drugs is in the market yet, some are in clinical trials. By the year 2010 the market for RNAi-based drugs is expected to be worth 3.5 billion dollars and is expected to expand to 10.5 billion dollars by the year 2015.  相似文献   

10.
Triple-negative breast cancer is difficult to treat because of the lack of rationale-based therapies. There are no established markers and targets that can be used for stratification of patients and targeted therapy. Here we report the identification of novel molecular features, which appear to augment metastasis of triple negative breast tumors. We found that triple-negative breast tumors can be segregated into 2 phenotypes based on their genome-wide protein abundance profiles. The first is characterized by high expression of Stat1, Mx1, and CD74. Seven out of 9 tumors from this group had invaded at least 2 lymph nodes while only 1 out of 10 tumors in group 2 was lymph node positive. In vitro experiments showed that the interferon-induced increase in Stat1 abundance correlates with increased migration and invasion in cultured cells. When CD74 was overexpressed, it increased cell adhesion on matrigel. This effect was accompanied with a marked increase in the membrane expression of beta-catenin, MUC18, plexins, integrins, and other proteins involved in cell adhesion and cancer metastasis. Taken together, our results show that Stat1/CD74 positive triple-negative tumors are more aggressive and suggest an approach for development of better diagnostics and more targeted therapies for triple negative breast cancer. This article is part of a Special Issue entitled: Proteomics: The clinical link.  相似文献   

11.
Nanotechnology is the development of engineered devices at the atomic, molecular and macromolecular level in nanometer range. Nanoparticles have potential application in medical field including diagnostics and therapeutics. Nanotechnology devices are being developed for diagnosis of cancer and infectious diseases which can help in early detection of the disease. Advances in nanotechnology also proved beneficial in therapeutic field such as drug discovery, drug delivery and gene/protein delivery. Nanoparticles can be constructed by various methodology so that effect can be targeted at desired site. In this review, some of the applications of nanoparticles in medicine as diagnostics and therapeutics which can be employed safely at the clinical level have been described. On other hand, as the particles become generally smaller their likehood of causing harm to the lung increases. Therefore, there is a need to study safety of nanoparticles.  相似文献   

12.
Human epidermal growth factor receptor 2 (ErbB2) amplification and overexpression has been seen in many cancer types including non-small cell lung cancer (NSCLC). Thus, ErbB2 is an important target for cancer therapies. Increased ErbB2 expression has been associated with drug resistance in cancer cells. Herceptin is a humanized monoclonal antibody that targets the extracellular domain of ErbB2. In this study, we aimed to block ErbB2 signaling with Herceptin and assess cytotoxicity and effects on apoptosis, oxidative stress, nuclear factor kappa-B (NF-kB), and Survivin expression in Calu-3 cell line. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were used to assess cell viability as a marker of proliferation. Acridine orange/ethidium bromide (AO/EB) staining and caspase 3/7 activity were measured as the markers of apoptosis. The relative expressions of NF-kB-p50 and Survivin mRNAs were evaluated. Activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), and the levels of glutathione (GSH) and reactive oxygen species (ROS) were determined in a time- and dose-dependent manner. Our results show that Herceptin treatment inhibits cell proliferation and activates apoptosis but without effects on Survivin and NF-kB expression in Calu-3 cell line. Intracellular glutathione levels and SOD and CAT activities were decreased in a time- and dose-dependent manner associated with oxidative stress. Also, ROS were increased at 24 h. These results provide evidence that Herceptin can be used as a cytotoxic and apoptotic agent in NSCLC.  相似文献   

13.
The gradual shift from cytotoxic drugs to highly selective, targeted therapeutic agents for cancer requires a parallel effort to characterize cancers at the molecular level to guide the choice of therapy for the individual patient. Here we review the genomic technologies that can be used to develop these drug response indicators, or biomarkers. We also discuss hurdles in their development and the implementation of biomarkers in clinical practice.  相似文献   

14.
《Genomics》2020,112(1):721-728
Personalized medicine, one of the main promises of the Human Genome Project (HGP) that began three decades ago, is now a new therapeutic paradigm. With its arrival the era of developing drugs to suit all patients, yet often having to withdraw a promising new one because a minority of patients was at risk, even though it had proved valuable for the majority was consigned to history as were trial-and-error strategies being the predominant means of tailoring therapy. But how did it originate and the earliest examples emerge? Is it true that the first personalized diagnostic test was the companion test for Herceptin®? This account of a remarkable journey from genomic and translational research to therapeutic and diagnostic innovations, describes how sequencing the human growth hormone (hGH) locus provided proof of principle for HGP-inspired personalized medicine. Sequencing this locus and the resultant biomanufacture of HGH and the development of a test capable of detecting which patients would benefit from its administration helped silence the skeptics who questioned the validity of such an approach. The associated companion diagnostic was created four years before the invention of the HercepTest® (registered as the first companion diagnostics ever developed). By cultivating genomic research with passion and pursuing its applications, we and many others contributed to the emergence of a new diagnostics industry, the discovery of better actionable gene-targets and to a revitalized pharmaceutical industry capable of developing safer and more effective therapies. In combination, these developments are beginning to fulfill the promise of the HGP, offering each patient the opportunity to adopt the right treatment at the correct dosage in an opportune manner.  相似文献   

15.
Predictive biomarkers are discovered and used in oncology research to formulate hypotheses aimed at the identification of patients benefiting from specific therapeutic intervention(s). They pave the way to the development of companion diagnostic tests which are tools readily implemented in the clinic and serve to qualify a patient for treatment with a particular targeted drug or the continued use of a particular drug, thus maximizing the benefit to risk ratio of the medical intervention to the patient. Predictive biomarkers are defined by biological characteristics of the patient's or tumor status that can be measured objectively and correlated with clinical outcome: these can be molecular, cellular or biochemical features. Predictive markers need extensive analytical validation - specific for the tool utilized for their assessment - as well as rigorous clinical qualification in the context of the drug treatment for which they define clinical utility. The process of companion diagnostic development is a highly interdisciplinary and complex one, driven by key crucial milestones and accompanying the same and typical process of a whole drug discovery and development continuum, from marker discovery and validation, assay development, clinical qualification until test approval and commercialization.  相似文献   

16.
恶性肿瘤是严重威胁人类健康和社会发展的疾病。传统的肿瘤治疗方法如手术、放疗、化疗和靶向治疗等不能完全满足临床治疗的需求,新兴的免疫治疗成为了肿瘤治疗领域的研究热点。免疫检查点抑制剂(immune checkpoint inhibitors,ICIs)作为一种肿瘤免疫治疗方法,已获批用于治疗多种肿瘤,如肺癌、肝癌、胃癌和结直肠癌等。然而,ICIs在临床使用过程中,只有少数患者会出现持久反应,一些患者还会出现耐药和不良反应。因此,预测生物标志物的鉴定和开发对提高ICIs的治疗效果至关重要。肿瘤ICIs预测生物标志物主要包括肿瘤生物标志物、肿瘤微环境生物标志物、循环相关生物标志物、宿主环境生物标志物以及组合生物标志物等,对患者筛查、个体化治疗和预后评估具有重要意义。本文就肿瘤ICIs治疗预测生物标志物的前沿进展作一综述。  相似文献   

17.
With ever-increasing molecular information about colorectal cancer (CRC), there is an expectation to detect more sensitive and specific molecular markers for new advanced diagnostic methods that can surpass the limitations of current screening tests. Moreover, enhanced molecular pathology knowledge about cancer has led to the development of targeted therapies, designed to interfere with specific aberrant biological pathways in cancer. Furthermore, biotechnology has opened a new window in CRC diagnosis and treatment by introducing different application of antibodies, antibody fragments, non-Ig scaffold proteins, and aptamers in targeted therapy and drug delivery. This review summarizes the molecular diagnostic and therapeutic approaches in CRC with a focus on genetic and epigenetic alterations, protein and metabolite markers as well as targeted therapy and drug delivery by Ig-scaffold proteins, non-Ig scaffold proteins, nanobodies, and aptamers.  相似文献   

18.
Over the last few years, several newly developed immune-based cancer therapies have been shown to induce clinical responses in significant numbers of patients. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. If there were laboratory parameters that could define patients with improved disease outcomes after immunomodulation, product development would accelerate, optimization of existing immune-based treatments would be facilitated and patient selection for specific interventions might be optimized. Although there are no validated cancer immunologic biomarkers that are predictive of clinical response currently in widespread use, there is much published literature that has informed investigators as to which markers may be the most promising. Population-based studies of endogenous tumor immune infiltrates and gene expression analyses have identified specific cell populations and phenotypes of immune cells that are most likely to mediate anti-tumor immunity. Further, clinical trials of cancer vaccines and other cancer directed immunotherapy have identified candidate immunologic biomarkers that are statistically associated with beneficial clinical outcomes after immune-based cancer therapies. Biomarkers that measure the magnitude of the Type I immune response generated with immune therapy, epitope spreading, and autoimmunity are readily detected in the peripheral blood and, in clinical trials of cancer immunotherapy, have been associated with response to treatment.  相似文献   

19.
The HER-2/neu oncogene, a member of the epidermal growth factor receptor or erb gene family, encodes a transmembrane tyrosine kinase receptor that has been linked to prognosis and response to therapy with the anti-HER-2-humanized monoclonal antibody, trastuzumab (Herceptin, Genentech, South San Francisco, CA) in patients with advanced metastatic breast cancer. HER-2/neu status has also been tested for its ability to predict the response of breast cancer to other therapies including hormonal therapies, topoisomerase inhibitors, and anthracyclines. This review includes an analysis of 80 published studies encompassing more than 25,000 patients designed to consider the relative advantages and disadvantages of the various methods of measuring HER-2/neu in clinical breast cancer specimens. Southern blotting, PCR amplification detection, and fluorescence in situ hybridization assays designed to detect HER-2/neu gene amplification are compared with HER-2/neu protein overexpression assays performed by immunohistochemical techniques applied to frozen and paraffin-embedded tissues and enzyme immunoassays performed on tumor cytosols. The significance of HER-2/neu overexpression in ductal carcinoma in situ and the HER-2/neu status in uncommon female breast conditions and male breast cancer are also considered. The role of HER-2/neu testing for the prediction of response to trastuzumab therapy in breast cancer is reviewed along with the current studies designed to test whether HER-2/neu status can predict the response to standard and newer hormonal therapies, cytotoxic chemotherapy, and radiation. The review will also evaluate the status of serum-based testing for circulating HER-2/neu receptor protein and its ability to predict disease outcome and therapy response.  相似文献   

20.
Rational therapeutic intervention in cancer: kinases as drug targets.   总被引:7,自引:0,他引:7  
Landmark clinical studies of new drugs developed to target specific forms of cancer were reported in 2001. Herceptin, a monoclonal antibody against the Her2/neu receptor tyrosine kinase, prolonged the survival of women with Her-2/neu positive metastatic breast cancer, when combined with chemotherapy. STI-571, a small molecule inhibitor of the Bcr-Abl, c-kit and platelet derived growth factor receptor tyrosine kinases, produced dramatic clinical responses in patients with Bcr-Abl positive chronic myeloid leukemia and c-kit positive gastrointestinal stromal tumors. These examples have galvanized the cancer research community to extend kinase-inhibitor therapy to other cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号