首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histamine release in acute anaphylactic enteropathy of the rat   总被引:1,自引:0,他引:1  
Investigations into the role of allergic enteropathy in acute and chronic intestinal inflammation have been hampered by the lack of objective confirmation for intestinal mast cell activation. Utilizing an established model of acute allergic enteropathy in the rat, we report the enhanced intraluminal recovery of the mast cell mediator histamine after in vivo antigen challenge in sensitized animals. The enhanced histamine recovery is dose dependent, antigen-specific, and restricted to that segment of bowel challenged, thus confirming local intestinal anaphylaxis. The progression of histologic enteropathy is documented and shown to correlate with the entry of mast cells into the intestinal lumen during, but not before, the anaphylactic response. Pretreatment of the sensitized animal with prostaglandin E2 or doxantrazole, but not cromolyn, significantly inhibits the anaphylactic response.  相似文献   

2.
Radiation enteropathy is a common complication in cancer patients. The aim of this study was to investigate whether radiation-induced intestinal injury could be alleviated by coniferyl aldehyde (CA), an HSF1-inducing agent that increases cellular HSP70 expression. We systemically administered CA to mice with radiation enteropathy following abdominal irradiation (IR) to demonstrate the protective effects of CA against radiation-induced gastrointestinal injury. CA clearly alleviated acute radiation-induced intestinal damage, as reflected by the histopathological data and it also attenuated sub-acute enteritis. CA prevented intestinal crypt cell death and protected the microvasculature in the lamina propria during the acute and sub-acute phases of damage. CA induced HSF1 and HSP70 expression in both intestinal epithelial cells and endothelial cells in vitro. Additionally, CA protected against not only the apoptotic cell death of both endothelial and epithelial cells but also the loss of endothelial cell function following IR, indicating that CA has beneficial effects on the intestine. Our results provide novel insight into the effects of CA and suggest its role as a therapeutic candidate for radiation-induced enteropathy due to its ability to promote rapid re-proliferation of the intestinal epithelium by the synergic effects of the inhibition of cell death and the promotion of endothelial cell function.  相似文献   

3.
BACKGROUND: Malabsorption and diarrhea are common, serious problems in AIDS patients, and are in part due to the incompletely understood entity HIV enteropathy. Our prior in vitro work has shown that increased transepithelial permeability and glucose malabsorption, similar to HIV enteropathy, are caused by HIV surface protein gp120, although the mechanism remains unclear. RESULTS: We studied the effects of HIV surface protein gp120 on the differentiated intestinal cell line HT-29-D4, specifically the effects on microtubules, transepithelial resistance, and sodium glucose cotransport. gp120 induced extensive microtubule depolymerization, an 80% decrease in transepithelial resistance, and a 70% decrease in sodium-dependent glucose transport, changes closely paralleling those of HIV enteropathy. The effects on transepithelial resistance were used to study potential inhibitors. Neutralizing antibodies to GPR15/Bob but not to CXCR4 (the coreceptor allowing infection with these HIV strains) inhibited these effects. Antibodies to galactosylceramide (GalCer) and a synthetic analog of GalCer also inhibited the gp120-induced changes, suggesting the involvement of GalCer-enriched lipid rafts in gp120 binding to intestinal epithelial cells. CONCLUSION: We conclude that direct HIV infection and gp120-induced cytopathic effects are distinct phenomena. While in vivo confirmation is needed to prove this, gp120 could be a virotoxin significantly contributing to HIV enteropathy.  相似文献   

4.
Although radiotherapy is effective in managing abdominal and pelvic malignant tumors, radiation enteropathy is still unavoidable. This disease severely affects the quality of life of cancer patients due to some refractory lesions, such as intestinal ischemia, mucositis, ulcer, necrosis or even perforation. Current drugs or prevailing therapies are committed to alleviating the symptoms induced by above lesions. But the efficacies achieved by these interventions are still not satisfactory, because the milieus for tissue regeneration are not distinctly improved. In recent years, regenerative therapy for radiation enteropathy by using mesenchymal stem cells is of public interests. Relevant results of preclinical and clinical studies suggest that this regenerative therapy will become an attractive tool in managing radiation enteropathy, because mesenchymal stem cells exhibit their pro-regenerative potentials for healing the injuries in both epithelium and endothelium, minimizing inflammation and protecting irradiated intestine against fibrogenesis through activating intrinsic repair actions. In spite of these encouraging results, whether mesenchymal stem cells promote tumor growth is still an issue of debate. On this basis, we will discuss the advances in anticancer therapy by using mesenchymal stem cells in this review after analyzing the pathogenesis of radiation enteropathy, introducing the advances in managing radiation enteropathy using regenerative therapy and exploring the putative actions by which mesenchymal stem cells repair intestinal injuries. At last, insights gained from the potential risks of mesenchymal stem cell-based therapy for radiation enteropathy patients may provide clinicians with an improved awareness in carrying out their studies.  相似文献   

5.
Celiac disease (CD) is a small intestinal enteropathy, triggered in susceptible individuals by the ingestion of dietary gluten.  相似文献   

6.

Background and Objective

To improve the efficacy and safety of tolerance induction for food allergies, identifying the tissues responsible for inducing intestinal inflammation and subsequent oral tolerance is important. We used OVA23-3 mice, which express an ovalbumin-specific T-cell receptor, to elucidate the roles of local and systemic immune tissues in intestinal inflammation.

Methods and Results

OVA23-3 mice developed marked enteropathy after consuming a diet containing egg white (EW diet) for 10 days but overcame the enteropathy (despite continued moderate inflammation) after receiving EW diet for a total of 28 days. Injecting mice with anti-IL-4 antibody or cyclosporine A confirmed the involvement of Th2 cells in the development of the enteropathy. To assess the individual contributions of Peyer’s patches (PPs), mesenteric lymph nodes (MLNs), and the spleen to the generation of effector CD4+ T-cells, we analyzed the IL-4 production, proliferation in response to ovalbumin, and CD4+ T-cell numbers of these tissues. EW feeding for 10 days induced significant IL-4 production in PPs, the infiltration of numerous CD4+ T-cells into MLNs, and a decrease in CD4+ T-cell numbers in spleen. On day 28, CD4+ T-cells from all tissues had attenuated responses to ovalbumin, suggesting tolerance acquisition, although MLN CD4+ T-cells still maintained IL-4 production with proliferation. In addition, removal of MLNs but not the spleen decreased the severity of enteropathy and PP-disrupted mice showed delayed onset of EW-induced inflammatory responses. Disruption of peripheral lymphoid tissues or of both PPs and MLNs almost completely prevented the enteropathy.

Conclusions

PPs and MLNs coordinately promote enteropathy by generating effector T-cells during the initial and exacerbated phases, respectively; the spleen is dispensable for enteropathy and shows tolerogenic responses throughout EW-feeding. The regulation of PPs may suppress the initiation of intestinal inflammation, subsequently restricting MLNs and inhibiting the progression of food-allergic enteropathy.  相似文献   

7.
The relationship between intestinal pathology and immune expulsion of gastrointestinal (GI) nematodes remains controversial. Although immune expulsion of GI helminth parasites is usually associated with Th2 responses, the effector mechanisms directly responsible for parasite loss have not been identified. We have previously shown that while the intestinal pathology accompanying the expulsion of the GI parasite Trichinella spiralis may be dependent on IL-4 and mediated by TNF, parasite loss is independent of TNF. In contrast, intestinal pathology in other disease models has been attributed to Th1 cytokines, although it closely resembles that seen in helminth infections. Whereas production of inducible NO synthase (iNOS) in the gut is important for both homeostasis of the epithelial layer and in protection against pathogenic microorganisms, overproduction of NO has been implicated in the pathogenesis of a number of inflammatory conditions. We therefore investigated the role of NO in T. spiralis infection using iNOS-deficient mice. iNOS-/- and iNOS-/+ mice were infected with T. spiralis, and parasite expulsion and intestinal pathology were followed. Parasite expulsion proceeded similarly in both groups of animals, but significant intestinal pathology was only observed in the heterozygous mice. Thus it appears that, although the protective effects of Th2 responses in GI helminth infection do not require NO, this mediator contributes substantially to the associated enteropathy. NO may therefore be an important mediator of enteropathy in both Th1- and Th2-inducing conditions.  相似文献   

8.
We have previously reported that a nonapeptide thymic hormone, facteur thymique serique (FTS), is involved in the differentiation and activation of intestinal intraepithelial lymphocytes (i-IEL) in mice. In this study, we examined the effect of FTS treatment on enteropathy in a murine model for acute graft-vs.-host disease (GVHD) induced by injection of parental C57BL/6 splenocytes into unirradiated (C57BL/6XDBA/2) F1 hybrids. FTS treatment significantly protected mice from developing acute GVHD as assessed by mortality rate, splenomegaly and enteropathy. The infiltration of donor-derived TCRαβ i-IEL bearing CD8αβ was significantly inhibited in the small intestine of FTS-treated mice, and the frequencies of apoptosis of crypt cells in the intestinal mucosa were decreased in these mice during acute GVHD. These results suggest that FTS treatment contributes to protection against enteropathy of acute GVHD. Thus, FTS may provide a useful approach to control acute GVHD after blood transfusion or bone marrow transplantation.  相似文献   

9.
BackgroudExposure to high-dose radiation, such as after a nuclear accident or radiotherapy, elicits severe intestinal damage and is associated with a high mortality rate. In treating patients exhibiting radiation-induced intestinal dysfunction, countermeasures to radiation are required. In principle, the cellular event underlying radiation-induced gastrointestinal syndrome is intestinal stem cell (ISC) apoptosis in the crypts. High-dose irradiation induces the loss of ISCs and impairs intestinal barrier function, including epithelial regeneration and integrity. Notch signaling plays a critical role in the maintenance of the intestinal epithelium and regulates ISC self-renewal. Ghrelin, a hormone produced mainly by enteroendocrine cells in the gastrointestinal tract, has diverse physiological and biological functions.PurposeWe investigate whether ghrelin mitigates radiation-induced enteropathy, focusing on its role in maintaining epithelial function.MethodsTo investigate the effect of ghrelin in radiation-induced epithelial damage, we analyzed proliferation and Notch signaling in human intestinal epithelial cell. And we performed histological analysis, inflammatory response, barrier functional assays, and expression of notch related gene and epithelial stem cell using a mouse model of radiation-induced enteritis.ResultsIn this study, we found that ghrelin treatment accelerated the reversal of radiation-induced epithelial damage including barrier dysfunction and defective self-renewing property of ISCs by activating Notch signaling. Exogenous injection of ghrelin also attenuated the severity of radiation-induced intestinal injury in a mouse model.ConclusionThese data suggest that ghrelin may be used as a potential therapeutic agent for radiation-induced enteropathy.  相似文献   

10.
Protein-losing enteropathy (PLE), the loss of plasma proteins through the intestine, is a life-threatening symptom associated with seemingly unrelated conditions including Crohn's disease, congenital disorder of glycosylation, or Fontan surgery to correct univentricular hearts. Emerging commonalities between these and other disorders led us to hypothesize that PLE develops when genetic insufficiencies collide with simultaneous or sequential environmental insults. Most intriguing is the loss of heparan sulfate (HS) proteoglycans (HSPG) specifically from the basolateral surface of intestinal epithelial cells only during PLE episodes suggesting a direct link to protein leakage. Reasons for HSPG loss are unknown, but genetic insufficiencies affecting HSPG biosynthesis, trafficking, or degradation may be involved. Here, we describe cell-based assays we devised to identify key players contributing to protein leakage. Results from these assays confirm that HS loss directly causes protein leakage, but more importantly, it amplifies the effects of other factors, e.g., cytokines and increased pressure. Thus, HS loss appears to play a central role for PLE. To transfer our in vitro results back to the in vivo situation, we established methods to assess enteric protein leakage in mice and present several genetically deficient strains mimicking intestinal HS loss observed in PLE patients. Preliminary results indicate that mice with haploinsufficient genes involved in HS biosynthesis or HSPG trafficking develop intestinal protein leakage upon additional environmental stress. Our goal is to model PLE in vitro and in vivo to unravel the pathomechanisms underlying PLE, identify patients at risk, and provide them with a safe and effective therapy.  相似文献   

11.
Protein-losing enteropathy (PLE), the loss of plasma proteins through the intestine, is a life-threatening symptom associated with seemingly unrelated conditions including Crohn's disease, congenital disorder of glycosylation, or Fontan surgery to correct univentricular hearts. Emerging commonalities between these and other disorders led us to hypothesize that PLE develops when genetic insufficiencies collide with simultaneous or sequential environmental insults. Most intriguing is the loss of heparan sulfate (HS) proteoglycans (HSPG) specifically from the basolateral surface of intestinal epithelial cells only during PLE episodes suggesting a direct link to protein leakage. Reasons for HSPG loss are unknown, but genetic insufficiencies affecting HSPG biosynthesis, trafficking, or degradation may be involved. Here, we describe cell-based assays we devised to identify key players contributing to protein leakage. Results from these assays confirm that HS loss directly causes protein leakage, but more importantly, it amplifies the effects of other factors, e.g., cytokines and increased pressure. Thus, HS loss appears to play a central role for PLE. To transfer our in vitro results back to the in vivo situation, we established methods to assess enteric protein leakage in mice and present several genetically deficient strains mimicking intestinal HS loss observed in PLE patients. Preliminary results indicate that mice with haploinsufficient genes involved in HS biosynthesis or HSPG trafficking develop intestinal protein leakage upon additional environmental stress. Our goal is to model PLE in vitro and in vivo to unravel the pathomechanisms underlying PLE, identify patients at risk, and provide them with a safe and effective therapy.  相似文献   

12.
We encountered an indigenous case of intestinal capillariasis with protein-losing enteropathy in the Republic of Korea. A 37-year-old man, residing in Sacheon-si, Gyeongsangnam-do, admitted to the Gyeongsang National University Hospital (GNUH) due to long-lasting diarrhea, abdominal pain, anasarca, and weight loss. He recalled that he frequently ate raw fish, especially the common blackish goby (Acanthogobius flavimanus) and has never been abroad. Under the suspicion of protein-losing enteropathy, he received various kinds of medical examinations, and was diagnosed as intestinal capillariasis based on characteristic sectional findings of nematode worms in the biopsied small intestine. Adults, juvenile worms, and eggs were also detected in the diarrheic stools collected before and after medication. The clinical symptoms became much better after treatment with albendazole 400 mg daily for 3 days, and all findings were in normal range in laboratory examinations performed after 1 month. The present study is the 6th Korean case of intestinal capillariasis and the 3rd indigenous one in the Republic of Korea.  相似文献   

13.
The infectious diarrhea in AIDS is principaly due to Cryptosporidium. The study of the inflammatory and humoral immunity proteins reveal a high exudative enteropathy associated with an IgA, IgG and IgM intestinal immune response. However, this barrier of defence is not sufficient to eradicate the infectious agent.  相似文献   

14.
An inflammatory etiopathogeny can be suggested in portal hypertensive enteropathy since infiltration of the intestinal wall by mononuclear cells has been described in this condition. This work was carried out with the intention of shedding light on this matter. Male Wistar rats were divided into 4 control groups and 4 groups with partial portal vein ligation at 1, 2, 3 and 15 months. TNF-alpha, IL-1beta and IL-10 were quantified in liver and ileum by ELISA. CO and NO were measured in splanchnic and systemic vein by spectrophotometry and Griess reaction, respectively. Expression of constitutive and inducible isoforms of NO and HO were assayed by Western blot in liver and ileum. An increased hepatic release of proinflammatory mediators (TNF-alpha, IL-1beta and NO) associated with intestinal release of anti-inflammatory mediators (IL-10, CO) occurs in an early evolutive phase (1 month) of experimental portal hypertension. On the contrary, in the long-term (15 months), the increase in the intestinal release of proinflammatory mediators (TNF-alpha, IL-1beta) is associated with an increase in the hepatic release of anti-inflammatory mediators (IL-10, CO). These results suggest that experimental prehepatic portal hypertension presents changes in the serum and tissular (liver and small bowel) concentrations of mediators which are considered as pro- and anti-inflammatory.  相似文献   

15.
Pan D  Das A  Liu D  Veazey RS  Pahar B 《PloS one》2012,7(1):e30247
Impairment of intestinal epithelial barriers contributes to the progression of HIV/SIV infection and leads to generalized HIV-induced immune-cell activation during chronic infection. Rhesus macaques are the major animal model for studying HIV pathogenesis. However, detailed characterization of isolated rhesus epithelial cells (ECs) from intestinal tissues is not well defined. It is also not well documented whether isolated ECs had any other cell contaminants from intestinal tissues during the time of processing that might hamper interpretation of EC preparations or cultures. In this study, we identify and characterize ECs based on flow cytometry and immunohistochemistry methods using various enzymatic and mechanical isolation techniques to enrich ECs from intestinal tissues. This study shows that normal healthy ECs differentially express HLA-DR, CD23, CD27, CD90, CD95 and IL-10R markers. Early apoptosis and upregulation of ICAM-1 and HLA-DR in intestinal ECs are thought to be the key features in SIV mediated enteropathy. The data suggest that intestinal ECs might be playing an important role in mucosal immune responses by regulating the expression of different important regulatory and adhesion molecules and their function.  相似文献   

16.
BackgroundPrevious studies have suggested the existence of enteropathy in cystic fibrosis (CF), which may contribute to intestinal function impairment, a poor nutritional status and decline in lung function. This study evaluated enterocyte damage and intestinal inflammation in CF and studied its associations with nutritional status, CF-related morbidities such as impaired lung function and diabetes, and medication use.MethodsSixty-eight CF patients and 107 controls were studied. Levels of serum intestinal-fatty acid binding protein (I-FABP), a specific marker for enterocyte damage, were retrospectively determined. The faecal intestinal inflammation marker calprotectin was prospectively studied. Nutritional status, lung function (FEV1), exocrine pancreatic insufficiency (EPI), CF-related diabetes (CFRD) and use of proton pump inhibitors (PPI) were obtained from the medical charts.ResultsSerum I-FABP levels were elevated in CF patients as compared with controls (p<0.001), and correlated negatively with FEV1 predicted value in children (r-.734, p<0.05). Faecal calprotectin level was elevated in 93% of CF patients, and correlated negatively with FEV1 predicted value in adults (r-.484, p<0.05). No correlation was found between calprotectin levels in faeces and sputum. Faecal calprotectin level was significantly associated with the presence of CFRD, EPI, and PPI use.ConclusionThis study demonstrated enterocyte damage and intestinal inflammation in CF patients, and provides evidence for an inverse correlation between enteropathy and lung function. The presented associations of enteropathy with important CF-related morbidities further emphasize the clinical relevance.  相似文献   

17.
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical “button” because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.  相似文献   

18.

Background and Objectives

Anti-hypertensive treatment with the angiotensin II receptor antagonist olmesartan is a rare cause of severe Sprue-like enteropathy. To substantiate the hypothesis that olmesartan interferes with gut immune homeostasis, clinical, histopathological and immune features were compared in olmesartan-induced-enteropathy (OIE) and in autoimmune enteropathy (AIE).

Methods

Medical files of seven patients with OIE and 4 patients with AIE enrolled during the same period were retrospectively reviewed. Intestinal biopsies were collected for central histopathological review, T cell Receptor clonality and flow cytometric analysis of isolated intestinal lymphocytes.

Results

Among seven olmesartan-treated patients who developed villous atrophy refractory to a gluten free diet, three had extra-intestinal autoimmune diseases, two had antibodies reacting with the 75 kilodalton antigen characteristic of AIE and one had serum anti-goblet cell antibodies. Small intestinal lesions and signs of intestinal lymphocyte activation were thus reminiscent of the four cases of AIE diagnosed during the same period. Before olmesartan discontinuation, remission was induced in all patients (7/7) by immunosuppressive drugs. After interruption of both olmesartan and immunosuppressive drugs in six patients, remission was maintained in 4 but anti-TNF-α therapy was needed in two.

Conclusion

This case-series shows that olmesartan can induce intestinal damage mimicking AIE. OIE usually resolved after olmesartan interruption but immunosuppressive drugs may be necessary to achieve remission. Our data sustain the hypothesis that olmesartan interferes with intestinal immuno regulation in predisposed individuals.  相似文献   

19.
Host responses to primary infections with Heligmosomoides polygyrus were studied in fast responding FVB mice (H-2(q)). Pathological changes in the intestinal mucosa, mesenteric lymph nodes and spleen were examined. Features of the fast response were typical: low effectiveness of infection and limiting of parasite survival and egg production, with worm expulsion occurring about 60 days post-infection. The intestinal inflammatory response involved infiltration by different cells into the intestinal mucosa and granulomata formation. As is typical for intestinal nematode infection enteropathy, decreased villus:crypt ratio and hyperplasia of goblet and Paneth cells were also present. Reactions of the intestinal mucosa, mesenteric lymph nodes and spleen increased over time post-infection and after worm expulsion. Enteropathy may help worm expulsion by creating an unfavourable environment for H. polygyrus. The implications of these findings and the potential role of intestinal intraepithelial lymphocytes in the pathogenesis of generated lesions are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号