首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
The current paradigm based upon ionizing radiation (IR) studies states that cells deficient in either ataxia-telangiectasia-mutated kinase (ATM) or related phosphatidylinositol 3 (PI 3) -kinases (ATR and DNA-PK) are hypersensitive to DNA strand breaks because they are unable to rapidly activate downstream effectors such as p53. Here we have contrasted cell responses to IR and C-1027, a radiomimetic antibiotic that induces DNA strand breaks. At equal levels of DNA double strand breaks, cell lines with inactive ATM or other phosphatidylinositol 3-kinases displayed classical hypersensitivity to IR but not to C-1027. Moreover, phosphorylation of p53 Ser-15 induced by C-1027 was independent of ATM, ATR, or DNA-PK function. We have concluded that the model based on IR studies cannot always be directly applied to DNA damage induced by other strand-scission agents.  相似文献   

2.
Protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide (tert-BOOH)- and menadione-induced DNA single strand breaks was investigated in Caco-2 cells. Both tert-BOOH and menadione induced DNA single strand breaks in a concentration-dependent manner. Pre-incubation of Caco-2 cells with either quercetin or rutin for 24 h significantly decreased the formation of DNA single strand breaks evoked by tert-BOOH (P <.05). Iron chelators, 1,10-phenanthroline (o-Phen) and deferoxamine mesylate (DFO), also protected against tert-BOOH-induced DNA damage, whereas butylated hydroxytoluene (BHT) had no effect. Quercetin, and not rutin, decreased the extent of menadione-induced DNA single strand breaks. DFO and BHT, and not o-Phen, protected against menadione-induced DNA strand break formation (P <.05). From the results of this study, iron ions were involved in tert-BOOH-induced DNA single strand break formation in Caco-2 cells, whereas DNA damage evoked by menadione was far more complex. We demonstrated that the flavonoids, quercetin and rutin, protected against tert-BOOH-induced DNA strand breaks by way of their metal ion chelating mechanism. However, quercetin, and not rutin, protected against menadione-induced DNA single strand breaks by acting as both a metal chelator and radical scavenger.  相似文献   

3.
Strand breakages of mammalian cellular chromosomal DNA with aromatic reductones were ascertained by use of a cultured cell strain of the rat fetal lung (RFL). The mode of the breakages was investigated by ultracentrifugal analyses. The reductones induced the breakages of the cellular DNA in two different fashions; one is single strand breaks and another double strand breaks. Although the single strand breaks were rapidly repaired, double strand breaks were only partially repaired. Both breaks were not cytocidal. Some physiological alterations were observed to follow the strand breaks.  相似文献   

4.
One of the hallmarks of ionizing radiation exposure is the formation of clustered damage that includes closely opposed lesions. We show that the Ku70/80 complex (Ku) has a role in the repair of closely opposed lesions in DNA. DNA containing a dihydrouracil (DHU) close to an opposing single strand break was used as a model substrate. It was found that Ku has no effect on the enzymatic activity of human endonuclease III when the substrate DNA contains only DHU. However, with DNA containing a DHU that is closely opposed to a single strand break, Ku inhibited the nicking activity of human endonuclease III as well as the amount of free double strand breaks induced by the enzyme. The inhibition on the formation of a free double strand break by Ku was found to be much greater than the inhibition of human endonuclease III-nicking activity by Ku. Furthermore, there was a concomitant increase in the formation of Ku-DNA complexes when endonuclease III was present. Similar results were also observed with Escherichia coli endonuclease III. These results suggest that Ku reduces the formation of endonuclease III-induced free double strand breaks by sequestering the double strand breaks formed as a Ku-DNA complex. In doing so, Ku helps to avoid the formation of the intermediary free double strand breaks, possibly helping to reduce the mutagenic event that might result from the misjoining of frank double strand breaks.  相似文献   

5.
Plant-derived dietary antioxidants have attracted considerable interest in recent past for their ability to induce apoptosis and regression of tumors in animal models. While it is believed that the antioxidant properties of these agents may contribute to lowering the risk of cancer induction by impeding oxidative injury to DNA, it could not account for apoptosis induction and chemotherapeutic observations. In this article, we show that dietary antioxidants can alternatively switch to a prooxidant action in the presence of transition metals such as copper. Such a prooxidant action leads to strand breaks in cellular DNA and growth inhibition in cancer cells. Further, the cellular DNA breakage and anticancer effects were found to be significantly enhanced in the presence of copper ions. Moreover, inhibition of antioxidant-induced DNA strand breaks and oxidative stress by Cu(I)-specific chelators bathocuproine and neocuproine demonstrated the role of endogenous copper in the induction of the prooxidant mechanism. Since it is well established that tissue, cellular, and serum copper levels are considerably elevated in various malignancies, such a prooxidant cytotoxic mechanism better explains the anticancer activity of dietary antioxidants against cancer cells.  相似文献   

6.
Poly(ADP-ribose) polymerase 1 (PARP1), an enzyme activated by DNA strand breaks, synthesizes polymers of poly(ADP-ribose) (PAR) that modify chromatin and other proteins and play a role in DNA repair. Inhibition of PARP1 activity is considered a potentially important strategy in clinical practice, especially to sensitize tumor cells to chemo- and radio-therapy. Here we examined the influence of inhibition of PARP1 on formation of reactive oxygen species (ROS) and on DNA repair in cells exposed to ionizing radiation (IR). K562 (human myelogenous leukaemia) cells were grown and exposed to 4 or 12Gy of ionizing radiation in presence or absence of the PARP inhibitor NU1025 (100μM). Intracellular ROS were assayed using the probe 2,7-dichlorofluorescein with detection by flow cytometry and the rejoining of DNA strand breaks were followed by alkaline single cell gel electrophoresis (comet) assays. In untreated cells a significant increase in PAR formation occurred during the first 5min after IR, followed by a gradual decrease up to 30min. Addition of a PARP inhibitor arrested the production of PAR almost completely and decreased the rate of rejoining of DNA strand breaks significantly; however, 3h after irradiation we observed no difference in the amount of DNA strand breaks between PARP inhibitor-treated and untreated cells. Twelve to 48h after irradiation, an increase of ROS concentration was observed in irradiated cells and ROS levels in PARP inhibitor-treated cells were significantly higher than in cells without inhibitor. Irradiated cells grown in the presence or absence of PARP inhibitor did not differ in the frequencies of apoptotic and necrotic cells or in the activity of caspases at 24, 48 and 72h after irradiation. Poly(ADP-ribosylation) and inhibition of PARP1 appeared to modulate DNA strand break rejoining and influence the concentration of ROS in irradiated cells.  相似文献   

7.
To investigate the mechanism of double strand DNA break formation in mammalian cells, an in vitro assay was established using closed circular DNA containing two uracils on opposite DNA strands (18 and 30 base pairs apart) and extracts prepared from human cells. In this assay, formation of double strand breaks was detected by the conversion of circular DNA to linear DNA. Approximately 4-fold more double strand DNA breaks were produced by extracts from cells deficient in DNA ligase I (46BR) relative to those produced by extracts from control cells (MRC5, derived from a clinically normal individual). In parallel with the amount of double strand DNA breaks, extracts from 46BR cells produced longer repair patches (up to 24 bases in length) than those from MRC5 cells (typically <5 bases long). When purified DNA ligase I was added to 46BR extracts to complement the DNA ligase deficiency, only a negligible difference was found between the amount of doublestrand DNA breaks or the repair patch size generated in the assay relative to MRC5 extracts. Together, our data demonstrate that double strand DNA breaks are produced through formation of DNA repair patches. We refer to this process of double strand break formation as the "DNA repair patch-mediated pathway."  相似文献   

8.
Cultured human fibroblasts were incubated with different aromatic amines in the presence of different activation systems and the induction of strand breaks in fibroblast DNA was studied. In the presence of ram seminal vesicle microsomes and arachidonic acid, DNA strand breaks were induced by 2-naphthylamine, 2,4-diaminotoluene and 4-methoxy-m-phenylenediamine. This effect was decreased when the prostaglandin synthase of the ram seminal vesicle microsomes was inhibited. The data suggest that metabolic activation catalyzed by prostaglandin synthase may be of importance in the formation of genotoxic products by certain urinary tract carcinogens.  相似文献   

9.
Epirubicin fights cancer through topoisomerase II inhibition, hence producing DNA strand breaks that finally lead to cell apoptosis. But anthracyclines produce free radicals that may explain their adverse effects. Dexrazoxane--an iron chelator--was proven to decrease free radical production and anthracycline cardiotoxicity. In this article, we report the concentrations of cellular 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) relative to 2'-deoxyguanosine (dGuo), and comet assay results from a study including 20 cancer patients treated with epirubicin. Plasma concentrations of vitamins A, E, C and carotenoids are also reported. All data were obtained before and immediately after epirubicin infusion. The ratios of 8-Oxo-dGuo to dGuo were measured in leukocyte DNA by HPLC-coulometry after NaI extraction of nucleic acids. Vitamins A and E and carotenoids were measured by HPLC-spectrophotometry. Vitamin C was measured by HPLC-spectrofluorimetry. Median 8-oxo-dGuo/dGuo ratios increased significantly from 0.34 to 0.48 lesions per 100,000 bases while per cent of tail DNA increased from 3.47 to 3.94 after chemotherapy 8-Oxo-dGuo/dGuo and per cent of tail DNA medians remained in the normal range. Only vitamin C decreased significantly from 55.4 to 50.3 microM Decreases in vitamins A, E, lutein and zeaxanthin were not significant, but concentrations were below the lower limit of the normal range both before and after chemotherapy. Only the correlation between comet assay results and vitamin C concentrations was significant (rho =-0.517, p = 0.023). This study shows that cellular DNA is damaged by epirubicin-generated free radicals which produce the mutagenic modified base 8-oxo-dGuo and are responsible for strand breaks. However, strand breaks are created not only by free radicals but also by topoisomerase II inhibition. In a previous study we did not find any significant change in urinary 8-oxo-dGuo excretion after adriamycin treatment. However, 8-oxo-dGuo may have increased at the end of urine collection as DNA repair and subsequent kidney elimination are relatively slow processes. In another study, authors used GC-MS to detect 8-oxo-dGuo in DNA and did not find any change after prolonged adriamycin infusion. Reasons for these apparent discrepancies are discussed.  相似文献   

10.
The previously reported extensive DNA strand breakage in resting murine splenic lymphocytes is not an artifact of the extraction or assay procedure. The benzamide inhibitors of poly(ADP ribose) synthetase (pADPRS), such as 5-methoxybenzamide (MBA), had been shown to block the strand break repair occurring within 2 h of activation of splenic lymphocytes by the mitogen concanavalin A (conA); the inhibitors also blocked early events in proliferation, such as blast formation, as well as entry into S phase. Inhibitors of pADPRS blocked lymphocyte proliferation by inhibiting the activity of this enzyme, rather than by non-specific effects. Aphidicolin, an inhibitor of alpha-polymerase, also prevented DNA strand break repair in conA-stimulated cells but, unlike MBA, did not prevent blast formation. DNA strand breaks accumulated in the presence of MBA at the same linear rate (300-400/h) in both resting and conA-treated cells. We and others had hypothesized that this accumulation was due to a continuous production of strand breaks in lymphocytes, leading to their accumulation in presence of repair inhibitors. However, incubation of the cells with aphidicolin at concentrations that inhibited repair did not result in any increase in strand breaks. The hypothesis of continuous cycling of breaks is incorrect; accumulation of breaks was due to some indirect effect of MBA, such as a possible disinhibition of an ADP-ribosylation-sensitive endonuclease described in other cell types. All of the early stages of lymphocyte proliferation, including blast transformation (but not DNA synthesis) require ADP ribosylation. Repair of DNA strand breaks is not a precondition for blast formation, though experiments involving the combined effects of MBA and aphidicolin showed that repair of the breaks is essential in order for the cells to replicate their DNA. Our data are consistent with a model suggesting that DNA strand breaks introduced into differentiated cells act as an additional safety-catch mechanism that restrains them from replicating their genetic material but not from undergoing the early stages of proliferation.  相似文献   

11.
Radiation-induced formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dG) and DNA strand breaks was studied in cultured cells with normal or modified chromatin structure. Human fibroblasts were irradiated as cellular monolayers (intact cells), nuclear monolayers (permeabilized cells with intact chromatin structure), and nucleoid monolayers (permeabilized and salt-treated cells with histone-free DNA). 8-oxo-dG was assayed with reverse-phase HPLC coupled to an electrochemical detector and strand breaks with the alkali unwinding assay. Depletion of low-molecular-weight nuclear components increased the radiation-induced formation of 8-oxo-dG fivefold compared to twofold for the formation of strand breaks. Removal of both low-molecular-weight components and histones increased the yield of 8-oxo-dG 46-fold and the yield of strand breaks 43-fold. Removal of only the histones thus leads to a two times greater increase in the yield of strand breaks compared to 8-oxo-dG. Addition of radical scavengers to nuclear and nucleoid monolayers provided a significantly better protection against the formation of 8-oxo-dG relative to the formation of strand breaks. These results suggest that in intact cells, 8-oxo-dG is preferentially formed in histone-free structures of chromatin, indicating a larger role for the indirect effect of radiation in the formation of 8-oxo-dG than in the formation of strand breaks.  相似文献   

12.
The genotoxic effect of chloroquine (CQ), a 4-aminoquinoline antimalarial drug was investigated in rat liver cells using the alkaline comet assay. Chloroquine (0–1000 μmol/L) significantly increased DNA strand breaks of rat liver cells dose-dependently. Rat liver cells exposed to CQ (100–500 μmol/L) and treated with endonuclease III and formamidopyrimidine-DNA glycosylase, the bacterial DNA repair enzymes that recognize oxidized pyrimidine and purine, respectively, showed greater DNA damage than those not treated with the enzymes, providing evidence that CQ induced oxidation of purines and pyrimidines. Treatment of cells with 5 mmol/L N-acetylcysteine, an intracellular reactive oxygen species (ROS) scavenger, and 100 μmol/L and 250 μmol/L deferoxamine, an established iron chelator, significantly decreased the CQ-induced strand breaks and base oxidation, respectively. Similarly, the formation of DNA strand breaks and oxidized bases was prevented by vitamin C (10 μmol/L) (a water-soluble antioxidant), quercetin (50 μmol/L) (an antioxidant flavonoid), and kolaviron (30 μmol/L and 90 μmol/L) (an antioxidant and a liver hepatoprotective phytochemical). The results indicate that the genotoxicity of CQ in rat liver cells might involve ROS and that free radical scavengers may elicit protective effects in these cells.  相似文献   

13.
Certain DNA base lesions induced by ionizing radiation or oxidative stress are repaired faster from the transcribed strand of active genes compared to the genome overall. In this study, it was investigated whether radiation-induced DNA strand breaks are preferentially repaired in active genes compared to the genome as a whole in CHO cells. The alkaline unwinding technique coupled to slot-blot hybridization with specific DNA probes was used to study the induction and repair of DNA strand breaks in defined DNA sequences. Results using this technique showed a linear dose response for the formation of radiation-induced DNA strand breaks in the dihydrofolate reductase (DHFR) gene. Furthermore, the half-life of radiation-induced strand breaks was less than 5 min in the DHFR gene, in the ribosomal genes, and in the genome as a whole. These results suggest that the repair of DNA strand breaks is fast and uniform in the genome of mammalian cells.  相似文献   

14.
R D Snyder 《Mutation research》1988,193(3):237-246
The ability of 6 metal salts to induce DNA damage in human diploid fibroblasts was examined. Cadmium, magnesium, manganese, chromium(VI), zinc and selenite were all shown to induce DNA strand breaks as measured by two independent assays. DNA strand breaks were repaired within 2-4 h after removal of metal and this repair appeared not to be sensitive to "long-patch" repair inhibitors. With the exception of selenite, metal-induced DNA damage appeared to be mediated via the formation of active oxygen species since oxygen scavengers when administered simultaneously with the metal, antagonized strand break formation. Selenite-induced DNA damage (as previously reported) was dependent on the formation of a selenite-glutathione conjugant and was not affected by oxygen radical scavengers. Scavenger treatment did not enhance cloning ability of metal-treated cells suggesting that DNA strand breaks may not be important in metal-induced cytotoxicity.  相似文献   

15.
Su M  Yang Y  Yang G 《FEBS letters》2006,580(17):4136-4142
Reactive oxygen species, such as hydroxyl or superoxide radicals, can be generated by exogenous agents as well as from normal cellular metabolism. Those radicals are known to induce various lesions in DNA, including strand breaks and base modifications. These lesions have been implicated in a variety of diseases such as cancer, arteriosclerosis, arthritis, neurodegenerative disorders and others. To assess these oxidative DNA damages and to evaluate the effects of the antioxidant N-acetyl-L-cysteine (NAC), atomic force microscopy (AFM) was used to image DNA molecules exposed to hydroxyl radicals generated via Fenton chemistry. AFM images showed that the circular DNA molecules became linear after incubation with hydroxyl radicals, indicating the development of double-strand breaks. The occurrence of the double-strand breaks was found to depend on the concentration of the hydroxyl radicals and the duration of the reaction. Under the conditions of the experiments, NAC was found to exacerbate the free radical-induced DNA damage.  相似文献   

16.
Formation of strand-breaks in DNA and its repair in Yoshida ascites tumor cells exposed to gamma radiation (100-400 Gy) in presence and absence of misonidazole (10 mM) were studied. The methodology involved pre-labelling of cellular DNA by 3H-thymidine during cell proliferation in rats, irradiation of cells in vitro and analysing sedimentation profile of DNA by ultracentrifugation in alkaline sucrose density gradients. Irradiation under euoxic conditions resulted in formation of about 1.5 times greater number of strand breaks as compared to those formed during irradiation under hypoxic conditions. Misonidazole (10 mM) by its presence along with the cells during irradiation under hypoxic conditions caused a 3-fold increase in the number of single strand breaks, but under euoxic conditions of irradiation the presence of misonidazole did not enhance the strand break formation. Incubation of cells irradiated in absence of misonidazole for 1 hr in tissue culture medium at 37 degrees C resulted in repair of substantial fraction of the strand breaks while there was no repair of the DNA strand breaks in cells irradiated in the presence of the chemical.  相似文献   

17.
Genotoxicity of singlet oxygen   总被引:9,自引:0,他引:9  
Singlet oxygen, 1O2(1Δg), fulfills essential prerequisites for a genotoxic substance, like hydroxyl radicals and other oxygen radicals: it can react efficiently with DNA and it can be generated inside cells, e.g. by photosensitization and enzymatic oxidation. As might be anticipated from the non-radical character of singlet oxygen, the pattern of DNA modifications it produces is very different from that caused by hydroxyl radicals. While hydroxyl radicals produce DNA strand breaks and sites of base loss (AP sites) in high yield and react with all four bases of DNA, singlet oxygen generates predominantly modified guanine residues and few strand breaks and AP sites. There is now convincing evidence that a major product of base modification caused by singlet oxygen is 8-hydroxyguanine (7,8-dihydro-8-oxoguanine). Indeed, the recently reported miscoding properties of 8-hydroxyguanine can explain the predominant type of mutations observed when DNA modified by singlet oxygen is replicated in cells. There are also strong indications that singlet oxygen generated by photosensitization can act as an ultimate DNA modifying species inside cells. However, indirect genotoxic mechanisms involving other reactive oxygen species produced from singlet oxygen are also possible and appear to predominate in some cases. The cellular defense system against oxidants consists of effective singlet oxygen scavengers such as carotenoids. The observation that carotenoids can inhibit neoplastic cell transformation when administered not only together with but also after the application of chemical or physical carcinogens might indicate a role of singlet oxygen in tumor promotion that could be independent of the direct or indirect DNA damaging properties.  相似文献   

18.
Rapid activation of ATR by ionizing radiation requires ATM and Mre11   总被引:16,自引:0,他引:16  
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.  相似文献   

19.
The pro- and antioxidant properties of estrogens are subject of debate. The apparent discrepancy is largely caused by the chemical heterogeneity in the estrogen family and by their concentration and the environment in which they are found. To gain some insight into this debate, we determined whether estradiol (E(2)), estrone (E(1)), the 2-, 4- and 16alpha-hydroxyestrogens and also the 2- and 4-methoxyestrogens are: (1) good electron-donors; (2) capable of O(2) consumption and DNA strand break induction; (3) capable of inhibiting lipid peroxidation in vitro. E(2), E(1) and 16alpha-hydroxyestrone (16alpha-OHE(1)) were not pro-oxidants and were rather weak antioxidants, while the 2- and 4-hydroxyestrogens demonstrated both properties inducing DNA strand breaks damage as well as inhibiting lipid peroxidation. The 4-hydroxyestrogens consumed O(2) and induced DNA strand breaks to a level approximately 2.5-fold higher than the 2-hydroxyestrogens, but these hydroxyestrogens exhibited similar antioxidant capacity, as measured by inhibition of lipid peroxidation. The 4-methoxyestrogens cannot induce oxidative damage to DNA but can inhibit lipid peroxidation, although being less potent than the 2-methoxyestrogens and the 2- and 4-hydroxyestrogens. The 2-methoxyestrogens were both potent electron donors and inhibitors of lipid peroxidation. Although 2-methoxyestrogens cannot generate superoxide in vitro, they may also be considered pro-oxidants in vivo.  相似文献   

20.
Life-long low-dosage supplementation of coenzyme Q(10) (CoQ(10)) is studied in relation to the antioxidant status and DNA damage. Thirty-two male rats were assigned into two experimental groups differing in the supplementation or not with 0.7 mg/kg/day of CoQ(10). Eight rats per group were killed at 6 and 24 months. Plasma retinol, alpha-tocopherol, coenzyme Q, total antioxidant capacity and fatty acids were analysed. DNA strand breaks were studied in peripheral blood lymphocytes. Aging and supplementation led to significantly higher values for CoQ homologues, retinol and alpha-tocopherol. No difference in total antioxidant capacity was detected at 6 months but significantly lower values were found in aged control animals. Similar DNA strand breaks levels were found at 6 months. Aging led to significantly higher DNA strand breaks levels in both groups but animals supplemented with CoQ(10) led to a significantly lower increase in that marker. Aged rats showed significantly higher polyunsaturated fatty acids. This study demonstrates that lifelong intake of a low dosage of CoQ(10) enhances plasma levels of CoQ(9), CoQ(10), alpha-tocopherol and retinol. In addition, CoQ(10) supplementation attenuates the age-related fall in total antioxidant capacity of plasma and the increase in DNA damage in peripheral blood lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号