首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indirect evidence suggests that ATP is a neurotransmitter involved in inhibitory pathways in the neuromuscular junction in the gastrointestinal tract. The aim of this study was to characterize purinergic inhibitory neuromuscular transmission in the human colon. Tissue was obtained from colon resections for neoplasm. Muscle bath, microelectrode experiments, and immunohistochemical techniques were performed. 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) was used as a selective inhibitor of P2Y(1) receptors. We found that 1) ATP (1 mM) and adenosine 5'-beta-2-thiodiphosphate (ADPbetaS) (10 microM), a preferential P2Y agonist, inhibited spontaneous motility and caused smooth muscle hyperpolarization (about -12 mV); 2) MRS 2179 (10 microM) and apamin (1 microM) significantly reduced these effects; 3) both the fast component of the inhibitory junction potential (IJP) and the nonnitrergic relaxation induced by electrical field stimulation were dose dependently inhibited (IC(50) approximately 1 microM) by MRS 2179; 4) ADPbetaS reduced the IJP probably by a desensitization mechanism; 5) apamin (1 microM) reduced the fast component of the IJP (by 30-40%) and the inhibitory effect induced by electrical field stimulation; and 6) P2Y(1) receptors were localized in smooth muscle cells as well as in enteric neurons. These results show that ATP or a related purine is released by enteric inhibitory motoneurons, causing a fast hyperpolarization and smooth muscle relaxation. The high sensitivity of MRS 2179 has revealed, for the first time in the human gastrointestinal tract, that a P2Y(1) receptor present in smooth muscle probably mediates this mechanism through a pathway that partially involves apamin-sensitive calcium-activated potassium channels. P2Y(1) receptors can be an important pharmacological target to modulate smooth muscle excitability.  相似文献   

2.
Postnatal changes in the enteric nervous system (ENS) are involved in the establishment of colonic motility. In adult rats, butyrate induced neuroplastic changes in the ENS, leading to enhanced colonic motility. Whether butyrate can induce similar changes during the postnatal period remains unknown. Enemas (Na-butyrate) were performed daily in rat pups between postnatal day (PND) 7 and PND 17. Effects of butyrate were evaluated on morphological and histological parameters in the distal colon at PND 21. The neurochemical phenotype of colonic submucosal and myenteric neurons was analyzed using antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS). Colonic motility and neuromuscular transmission was assessed in vivo and ex vivo. Butyrate (2.5 mM) enemas had no impact on pup growth and histological parameters compared with control. Butyrate did not modify the number of Hu-immunoreactive (IR) neurons per ganglia. A significant increase in the proportion (per Hu-IR neurons) of nNOS-IR myenteric and submucosal neurons and ChAT-IR myenteric neurons was observed in the distal colon after butyrate enemas compared with control. In addition, butyrate induced a significant increase in both nitrergic and cholinergic components of the neuromuscular transmission compared with control. Finally, butyrate increased distal colonic transit time compared with control. We concluded that butyrate enemas induced neuroplastic changes in myenteric and submucosal neurons, leading to changes in gastrointestinal functions. Our results support exploration of butyrate as potential therapy for motility disorders in preterm infants with delayed maturation of the ENS.  相似文献   

3.
Cholinergic, adrenergic, and purinergic neuromuscular transmission.   总被引:1,自引:0,他引:1  
A general model of the autonomic neuromuscular junction is proposed which emphasizes muscle effector bundles with gap junctions (or 'nexuses') forming the low resistance pathways allowing electrotonic coupling between neighboring cells, and extensive terminal varicose nerve fibers with 'en passage' release of transmitter. Some variations in autonomic neuromuscular geometry are discussed. Junctional clefts vary from 15nm in densely-innervated tissues such as vas deferens and iris to 2,000 nm in some large elastic arteries. Postjunctional specializations take the form of subsynaptic cysternae (in vas deferens and iris) and aggregations of plasmalemmal vesicles (in circular intestinal muscle). Current views of the synthesis, storage, release, and inactivation of transmitter during cholinergic, adrenergic, and purinergic transmission are summarized.  相似文献   

4.
ATP is a putative inhibitory neurotransmitter responsible for inhibitory junction potentials (IJPs) at neuromuscular junctions (IJPs) in the intestine. This study tested the hypothesis that the purinergic P2Y(1) receptor subtype mediates the IJPs. IJPs were evoked by focal electrical stimulation in the myenteric plexus and recorded with "sharp" intracellular microelectrodes in the circular muscle coat. Stimulation evoked three categories of IJPs: 1) purely purinergic IJPs, 2) partially purinergic IJPs, and 3) nonpurinergic IJPs. Purely purinergic IJPs were suppressed by the selective P2Y(1) purinergic receptor antagonist MRS2179. Purely purinergic IJPs comprised 26% of the IJPs. Partially purinergic IJPs (72% of the IJPs) consisted of a component that was abolished by MRS2179 and a second unaffected component. The MRS2179-insensitive component was suppressed or abolished by inhibition of formation of nitric oxide by N(omega)-nitro-l-arginine methyl ester (l-NAME) in some, but not all, IJPs. An unidentified neurotransmitter, different from nitric oxide, mediated the second component in these cases. Nonpurinergic IJPs were a small third category (4%) of IJPs that were abolished by l-NAME and unaffected by MRS2179. Exogenous application of ATP evoked IJP-like hyperpolarizing responses, which were blocked by MRS2179. Application of apamin, which suppresses opening of small-conductance Ca(2+)-operated K(+) channels in the muscle, decreased the amplitude of the purinergic IJPs and the amplitude of IJP-like responses to ATP. The results support ATP as a neurotransmitter for IJPs in the intestine and are consistent with the hypothesis that the P2Y(1) purinergic receptor subtype mediates the action of ATP.  相似文献   

5.
The neurotransmitter(s) underlying nitric oxide synthase (NOS)-independent neural inhibition in the internal anal sphincter (IAS) is still uncertain. The present study investigated the role of purinergic transmission. Contractile and electrical responses to electrical field stimulation of nerves (0.1-5 Hz for 10-60 s) were recorded in strips of mouse IAS. A single stimulus generated a 28-mV fast inhibitory junction potential (IJP) and relaxation. The NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) reduced the fast IJP duration by 20%. Repetitive stimulation at 2.5-5 Hz caused a more sustained IJP and sustained relaxation. l-NNA reduced relaxation at 1 Hz and the sustained IJP at 2.5-5 Hz. All other experiments were carried out in the presence of NOS blockade. IJPs and relaxation were significantly reduced by the P2 receptor antagonists 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) (100 microM), by desensitization of P2Y receptors with adenosine 5'-[beta-thio]diphosphate (ADP-betaS) (10 microM), and by the selective P2Y1 receptor blocker 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179) (10 microM). Relaxation and IJPs were also significantly reduced by the K(+) channel blocker apamin (1 microM). Removal of extracellular potassium (K(o)) increased IJP amplitude to 205% of control, whereas return of K(o) 30 min later hyperpolarized cells by 19 mV and reduced IJP amplitude to 50% of control. Exogenous ATP (3 mM) relaxed muscles in the presence of TTX (1 microM) and hyperpolarized cells by 15 mV. In conclusion, these data suggest that purinergic transmission significantly contributes to NOS-independent neural inhibition in the mouse IAS. P2Y1 receptors, as well as at least one other P2 receptor subtype, contribute to this pathway. Purinergic receptors activate apamin-sensitive K(+) channels as well as other apamin-insensitive conductances leading to hyperpolarization and relaxation.  相似文献   

6.
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.  相似文献   

7.
8.
The aim of this study was to characterize in vivo rat colonic motor activity in normal and inflamed states and determine its neural regulation. Circular muscle contractions were recorded by surgically implanted strain-gauge transducers. The rat colon exhibited predominantly giant migrating contractions (GMCs) whose frequency decreased distally. Only a small percentage of these GMCs propagated in the distal direction; the rest occurred randomly. Phasic contractions were present, but their amplitude was very small compared with that of GMCs. Inflammation induced by oral administration of dextran sodium sulfate suppressed the frequency of GMCs in the proximal and middle but not in the distal colon. Frequency of GMCs was suppressed by intraperitoneally administered atropine and 4-diphenylacetoxy-N-methyl-piperidine methiodide and was enhanced by N(w)-nitro-L-arginine methyl ester. Serotonin, tachykinin, and calcitonin gene-related peptide receptor or receptor subtype antagonists as well as guanethidine and suramin had no significant effect on the frequency of GMCs. Verapamil transiently suppressed the GMCs. In conclusion, unlike the canine and human colons, the rat colon exhibits frequent GMCs and their frequency is suppressed in inflammation. In vivo GMCs are stimulated by neural release of acetylcholine that acts on M3 receptors. Constitutive release of nitric oxide may partially suppress their frequency.  相似文献   

9.
10.
The small-conductance Ca2+-activated K+ (SKCa) channels modulate cytosolic Ca2+ concentration in excitable and non-excitable tissues by regulating the membrane potential and are responsible of slow action potential after hyperpolarization that inhibits cell firing. Among these, human SKCa2 and SKCa3 channels differ in the pore region by only two residues: Ala331 and Asn367 (human small-conductance calcium-activated potassium channel, hSKCa2) instead of Val485 and His521 (hSKCa3). To design highly selective blockers of hSKCa channels, a number of known hSKCa2 and/or hSKCa3-active peptides (i.e. scorpion toxins and analogs thereof) were analyzed for their interactions and selectivities toward these channels. Molecular models of hSKCa2 and hSKCa3 channels (S5-H5-S6 portion) were generated, and scorpion toxins/peptides of unsolved three-dimensional (3D) structures were modeled. Models of toxin-channel complexes were generated by the bimolecular complex generation with global evaluation, and ranking (BiGGER) docking software and selected by using a screening method of the docking solutions. A high degree of correlation was found to exist between docking energies and experimental Kd values of peptides that blocked hSKCa2 and/or hSKCa3 channels, suggesting it could be appropriate to predict Kd values of other bioactive peptides. The best scoring complexes were also used to identify key residues of both interacting partners, indicating that such an approach should help the design of more active and/or selective peptide blockers of targeted ion channels.  相似文献   

11.
The aim of the present work is to investigate a putative junction transmission [nitric oxide (NO) and ATP] in the human colon and to characterize the electrophysiological and mechanical responses that might explain different functions from both neurotransmitters. Muscle bath and microelectrode techniques were performed on human colonic circular muscle strips. The NO donor sodium nitroprusside (10 microM), but not the P2Y receptor agonist adenosine 5'-O-2-thiodiphosphate (10 microM), was able to cause a sustained relaxation. NG-nitro-L-arginine (L-NNA) (1 mM), a NO synthase inhibitor, but not 2'-deoxy-N6-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) (10 microM), a P2Y antagonist, increased spontaneous motility. Electrical field stimulation (EFS) at 1 Hz caused fast inhibitory junction potentials (fIJPs) and a relaxation sensitive to MRS 2179 (10 microM). EFS at higher frequencies (5 Hz) showed biphasic IJP with fast hyperpolarization sensitive to MRS 2179 followed by sustained hyperpolarization sensitive to L-NNA; both drugs were needed to fully block the EFS relaxation at 2 and 5 Hz. Two consecutive single pulses induced MRS 2179-sensitive fIJPs that showed a rundown. The rundown mechanism was not dependent on the degree of hyperpolarization and was present after incubation with L-NNA (1 mM), hexamethonium (100 microM), MRS 2179 (1 microM), and NF023 (10 microM). We concluded that single pulses elicit ATP release from enteric motor neurons that cause a fIJP and a transient relaxation that is difficult to maintain over time; also, NO is released at higher frequencies causing a sustained hyperpolarization and relaxation. These differences might be responsible for complementary mechanisms of relaxation being phasic (ATP) and tonic (NO).  相似文献   

12.
13.
14.
Purinergic signaling mediated by ATP and its metabolites contributes to various brain physiological processes as well as to several pathological conditions, including neurodegenerative and neurological disorders, such as epilepsy. Among the different ATP release pathways, pannexin 1 channels represent one of the major conduits being primarily activated in pathological contexts. Investigations on in vitro and in vivo models of epileptiform activity and seizures in mice and human tissues revealed pannexin 1 involvement in aberrant network activity and epilepsy, and highlighted that pannexin 1 exerts a complex role. Pannexin 1 can indeed either sustain seizures through release of ATP that can directly activate purinergic receptors, or tune down epileptic activity via ATP-derived adenosine that decreases neuronal excitability. Interestingly, in-depth analysis of the literature unveils that this dichotomy is only apparent, as it depends on the model of seizure induction and the type of evoked epileptiform activity, two factors that can differentially activate pannexin 1 channels and trigger distinct intracellular signaling cascades. Here, we review the general properties and ATP permeability of pannexin 1 channels, and discuss their impact on acute epileptiform activity and chronic epilepsy according to the regime of activity and disease state. These data pave the way for the development of new antiepileptic strategies selectively targeting pannexin 1 channels in a context-dependent manner.  相似文献   

15.
Human immunodeficiency virus can spread through target cells by transmission of cell-free virus or directly from cell-to-cell via formation of virological synapses. Although cell-to-cell transmission has been described as much more efficient than cell-free infection, the relative contribution of the two transmission pathways to virus growth during multiple rounds of replication remains poorly defined. Here, we fit a mathematical model to previously published and newly generated in vitro data, and determine that free-virus and synaptic transmission contribute approximately equally to the growth of the virus population.  相似文献   

16.
Mechanosensitive TREK channels belong to the family of K2P channels, a family of widely distributed, well modulated channels that uniquely have two similar or identical subunits, each with two TM1-P-TM2 motifs. Our goal is to build viable structural models of TREK channels, as representatives of K2P channels family. The structures available to be used as templates belong to the 2TM channels superfamily. These have low sequence similarity and different structural features: four symmetrically arranged subunits, each having one TM1-P-TM2 motif. Our model building strategy used two subunits of the template (KcsA) to build one subunit of the target (TREK-1). Our models of the Closed channel were adjusted to differ substantially from those of the template, e.g., TM2 of the 2nd repeat is near the axis of the pore whereas TM2 of the 1st repeat is far from the axis. Segments linking the two repeats and immediately following the last TM segment were modeled ab initio as α-helices based on helical periodicities of hydrophobic and hydrophilic residues, highly conserved and poorly conserved residues, and statistically related positions from multiple sequence alignments. The models were further refined by two-fold symmetry-constrained MD simulations using a protocol we developed previously. We also built models of the Open state and suggest a possible tension-activated gating mechanism characterized by helical motion with two-fold symmetry. Our models are consistent with deletion/truncation mutagenesis and thermodynamic analysis of gating described in the accompanying paper.  相似文献   

17.
Neuromuscular transmission was studied in diaphragms from rats of three ages, 4-7 days old, 11-12 days old, and adults with the use of an in vitro phrenic nerve-hemidiaphragm preparation. Each hemidiaphragm was stimulated via either muscle or nerve with 1-s stimulus trains at frequencies from 10 to 100 Hz. The patterns of force development obtained in response to the two routes of stimulation were compared for each group. Diaphragms from adults developed maximum force in response to stimulation of approximately 40 Hz with no significant decrease in force at higher frequencies. Within each stimulus train, once peak force was achieved, it was maintained for the remainder of the stimulus and responses to nerve and muscle stimulation were almost identical. In contrast, diaphragms from 4- to 7-day-old rats developed maximum force at approximately 20 Hz; stimulation at greater than or equal to 60 Hz induced significantly less peak force. This decrease in peak force at higher frequencies was significantly larger for nerve than for muscle stimulation. In addition, during each nerve stimulus train diaphragms from 4- to 7-day-old rats were unable to maintain peak force, which decreased at frequencies greater than 20 Hz. The decrease in force reached approximately 50% of peak at stimulation frequencies greater than or equal to 60 Hz. Diaphragms from 11- to 12-day-old rats showed intermediate responses. Based on the responses to phrenic nerve stimulation, we conclude that the neonatal rat diaphragm shows marked neuromuscular transmission failure that is not seen in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It has long been known that the esophageal distension produced by swallowing elicits a powerful proximal gastric relaxation. Gastroinhibitory control by the esophagus involves neural pathways from esophageal distension-sensitive neurons in the nucleus tractus solitarius centralis (cNTS) with connections to virtually all levels of the dorsal motor nucleus of the vagus (DMV). We have shown recently that cNTS responses are excitatory and primarily involve tyrosine hydroxylase-immunoreactive cells, whereas the DMV response involves both an alpha1 excitatory and an alpha2 inhibitory response. In the present study, using an esophageal balloon distension to evoke gastric relaxation (esophageal-gastric reflex, EGR), we investigated the peripheral pharmacological basis responsible for this reflex. Systemic administration of atropine methyl nitrate reduced the amplitude of the gastric relaxation to 52.0+/-4.4% of the original EGR, whereas NG-nitro-L-arginine methyl ester (L-NAME) reduced it to 26.3+/-7.2% of the original EGR. Concomitant administration of atropine methyl nitrate and L-NAME reduced the amplitude of the gastric relaxation to 4.0+/-2.5% of control. This reduction in the amplitude of induced EGR is quite comparable (4.3+/-2.6%) to that seen when the animal was pretreated with the nicotinic ganglionic blocker hexamethonium. In the presence of bethanechol, the amplitude of the esophageal distension-induced gastric relaxation was increased to 177.0+/-10.0% of control; administration of L-NAME reduced this amplitude to 19.9+/-9.5%. Our data provide a clear demonstration that the gastroinhibitory control by the esophagus is mediated via a dual vagal innervation consisting of inhibitory nitrergic and excitatory cholinergic transmission.  相似文献   

19.
20.
Colon cancer cells, like other types of cancer cells, undergo the remodeling of the intracellular Ca2+ homeostasis that contributes to cancer cell hallmarks including enhanced cell proliferation, migration, and survival. Colon cancer cells display enhanced store-operated Ca2+ entry (SOCE) compared with their non-cancer counterparts. Colon cancer cells display an abnormal expression of SOCE molecular players including Orai1 and TRPC1 channels, and the stromal interacting molecule (STIM) 1 and 2. Interestingly, upregulation of Orai1 and TRPC1 channels and their contribution to SOCE are associated with cancer malignancy in colon cancer cells. In a specific cellular model of colon cancer, whereas in non-cancer colon cells SOCE is composed of the Ca2+ release activated (CRAC) currents, in colon cancer cells SOCE is composed of CRAC- and cationic, non-selective store operated (SOC) currents. Former SOCs are mediated by TRPC1 channels. Moreover, colon cancer cells also display dysregulation of the expression of 1,4,5-triphosphate receptors (IP3R) that could contribute to the enhanced SOCE. Another important factor underlying the enhanced SOCE is the differential mitochondrial modulation of the CRAC and SOC currents in non-cancer and colon cancer cells. In colon cancer cells, mitochondria take up more Ca2+ that prevent the Ca2+-dependent inactivation of the SOCs, leading to sustained Ca2+ entry. Notably, the inhibition of SOCE in cancer colon cells abolishes their cancer hallmarks. Robust evidence has shown the efficiency of non-steroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO) to reverse the enhanced cell proliferation, migration, and apoptosis resistance of cancer cells. In colon cancer cells, both NSAIDs and DFMO decrease SOCE, but they target different molecular components of SOCE. NSAIDs decrease the Ca2+ uptake by mitochondria, limiting their ability to prevent the Ca2+-dependent inactivation of the SOCs that underlie SOCE. On the other hand, DFMO inhibits the expression of TRPC1 channels in colon cancer cells, eliminating their contribution to SOCE. The identification of players of SOCE in colon cancer cells may help to better understand the remodeling of the Ca2+ homeostasis in cancer. Importantly, the use of different pharmacological tools that target different SOCE molecular players in colon cancer cells may play a pivotal role in designing better chemoprevention strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号