共查询到20条相似文献,搜索用时 15 毫秒
1.
Suply E de Vries P Soret R Cossais F Neunlist M 《American journal of physiology. Gastrointestinal and liver physiology》2012,302(12):G1373-G1380
Postnatal changes in the enteric nervous system (ENS) are involved in the establishment of colonic motility. In adult rats, butyrate induced neuroplastic changes in the ENS, leading to enhanced colonic motility. Whether butyrate can induce similar changes during the postnatal period remains unknown. Enemas (Na-butyrate) were performed daily in rat pups between postnatal day (PND) 7 and PND 17. Effects of butyrate were evaluated on morphological and histological parameters in the distal colon at PND 21. The neurochemical phenotype of colonic submucosal and myenteric neurons was analyzed using antibodies against Hu, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS). Colonic motility and neuromuscular transmission was assessed in vivo and ex vivo. Butyrate (2.5 mM) enemas had no impact on pup growth and histological parameters compared with control. Butyrate did not modify the number of Hu-immunoreactive (IR) neurons per ganglia. A significant increase in the proportion (per Hu-IR neurons) of nNOS-IR myenteric and submucosal neurons and ChAT-IR myenteric neurons was observed in the distal colon after butyrate enemas compared with control. In addition, butyrate induced a significant increase in both nitrergic and cholinergic components of the neuromuscular transmission compared with control. Finally, butyrate increased distal colonic transit time compared with control. We concluded that butyrate enemas induced neuroplastic changes in myenteric and submucosal neurons, leading to changes in gastrointestinal functions. Our results support exploration of butyrate as potential therapy for motility disorders in preterm infants with delayed maturation of the ENS. 相似文献
2.
G Burnstock 《Federation proceedings》1977,36(10):2434-2438
A general model of the autonomic neuromuscular junction is proposed which emphasizes muscle effector bundles with gap junctions (or 'nexuses') forming the low resistance pathways allowing electrotonic coupling between neighboring cells, and extensive terminal varicose nerve fibers with 'en passage' release of transmitter. Some variations in autonomic neuromuscular geometry are discussed. Junctional clefts vary from 15nm in densely-innervated tissues such as vas deferens and iris to 2,000 nm in some large elastic arteries. Postjunctional specializations take the form of subsynaptic cysternae (in vas deferens and iris) and aggregations of plasmalemmal vesicles (in circular intestinal muscle). Current views of the synthesis, storage, release, and inactivation of transmitter during cholinergic, adrenergic, and purinergic transmission are summarized. 相似文献
3.
McDonnell B Hamilton R Fong M Ward SM Keef KD 《American journal of physiology. Gastrointestinal and liver physiology》2008,294(4):G1041-G1051
The neurotransmitter(s) underlying nitric oxide synthase (NOS)-independent neural inhibition in the internal anal sphincter (IAS) is still uncertain. The present study investigated the role of purinergic transmission. Contractile and electrical responses to electrical field stimulation of nerves (0.1-5 Hz for 10-60 s) were recorded in strips of mouse IAS. A single stimulus generated a 28-mV fast inhibitory junction potential (IJP) and relaxation. The NOS inhibitor N(omega)-nitro-l-arginine (l-NNA) reduced the fast IJP duration by 20%. Repetitive stimulation at 2.5-5 Hz caused a more sustained IJP and sustained relaxation. l-NNA reduced relaxation at 1 Hz and the sustained IJP at 2.5-5 Hz. All other experiments were carried out in the presence of NOS blockade. IJPs and relaxation were significantly reduced by the P2 receptor antagonists 4-[[4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-2-pyridinyl]azo]-1,3-benzenedisulfonic acid (PPADS) (100 microM), by desensitization of P2Y receptors with adenosine 5'-[beta-thio]diphosphate (ADP-betaS) (10 microM), and by the selective P2Y1 receptor blocker 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179) (10 microM). Relaxation and IJPs were also significantly reduced by the K(+) channel blocker apamin (1 microM). Removal of extracellular potassium (K(o)) increased IJP amplitude to 205% of control, whereas return of K(o) 30 min later hyperpolarized cells by 19 mV and reduced IJP amplitude to 50% of control. Exogenous ATP (3 mM) relaxed muscles in the presence of TTX (1 microM) and hyperpolarized cells by 15 mV. In conclusion, these data suggest that purinergic transmission significantly contributes to NOS-independent neural inhibition in the mouse IAS. P2Y1 receptors, as well as at least one other P2 receptor subtype, contribute to this pathway. Purinergic receptors activate apamin-sensitive K(+) channels as well as other apamin-insensitive conductances leading to hyperpolarization and relaxation. 相似文献
4.
Wang GD Wang XY Hu HZ Liu S Gao N Fang X Xia Y Wood JD 《American journal of physiology. Gastrointestinal and liver physiology》2007,292(6):G1483-G1489
ATP is a putative inhibitory neurotransmitter responsible for inhibitory junction potentials (IJPs) at neuromuscular junctions (IJPs) in the intestine. This study tested the hypothesis that the purinergic P2Y(1) receptor subtype mediates the IJPs. IJPs were evoked by focal electrical stimulation in the myenteric plexus and recorded with "sharp" intracellular microelectrodes in the circular muscle coat. Stimulation evoked three categories of IJPs: 1) purely purinergic IJPs, 2) partially purinergic IJPs, and 3) nonpurinergic IJPs. Purely purinergic IJPs were suppressed by the selective P2Y(1) purinergic receptor antagonist MRS2179. Purely purinergic IJPs comprised 26% of the IJPs. Partially purinergic IJPs (72% of the IJPs) consisted of a component that was abolished by MRS2179 and a second unaffected component. The MRS2179-insensitive component was suppressed or abolished by inhibition of formation of nitric oxide by N(omega)-nitro-l-arginine methyl ester (l-NAME) in some, but not all, IJPs. An unidentified neurotransmitter, different from nitric oxide, mediated the second component in these cases. Nonpurinergic IJPs were a small third category (4%) of IJPs that were abolished by l-NAME and unaffected by MRS2179. Exogenous application of ATP evoked IJP-like hyperpolarizing responses, which were blocked by MRS2179. Application of apamin, which suppresses opening of small-conductance Ca(2+)-operated K(+) channels in the muscle, decreased the amplitude of the purinergic IJPs and the amplitude of IJP-like responses to ATP. The results support ATP as a neurotransmitter for IJPs in the intestine and are consistent with the hypothesis that the P2Y(1) purinergic receptor subtype mediates the action of ATP. 相似文献
5.
《生物化学与生物物理学报:生物膜》2018,1860(1):166-173
Pannexins are a three-member family of vertebrate plasma membrane spanning molecules that have homology to the invertebrate gap junction forming proteins, the innexins. However, pannexins do not form gap junctions but operate as plasma membrane channels. The best-characterized member of these proteins, Pannexin1 (Panx1) was suggested to be functionally associated with purinergic P2X and N-methyl-D-aspartate (NMDA) receptor channels. Activation of these receptor channels by their endogenous ligands leads to cross-activation of Panx1 channels. This in turn potentiates P2X and NMDA receptor channel signaling. Two potentiation concepts have been suggested: enhancement of the current responses and/or sustained receptor channel activation by ATP released through Panx1 pore and adenosine generated by ectonucleotidase-dependent dephosphorylation of ATP. Here we summarize the current knowledge and hypotheses about interactions of Panx1 channels with P2X and NMDA receptor channels. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. 相似文献
6.
Li M Johnson CP Adams MB Sarna SK 《American journal of physiology. Gastrointestinal and liver physiology》2002,283(3):G544-G552
The aim of this study was to characterize in vivo rat colonic motor activity in normal and inflamed states and determine its neural regulation. Circular muscle contractions were recorded by surgically implanted strain-gauge transducers. The rat colon exhibited predominantly giant migrating contractions (GMCs) whose frequency decreased distally. Only a small percentage of these GMCs propagated in the distal direction; the rest occurred randomly. Phasic contractions were present, but their amplitude was very small compared with that of GMCs. Inflammation induced by oral administration of dextran sodium sulfate suppressed the frequency of GMCs in the proximal and middle but not in the distal colon. Frequency of GMCs was suppressed by intraperitoneally administered atropine and 4-diphenylacetoxy-N-methyl-piperidine methiodide and was enhanced by N(w)-nitro-L-arginine methyl ester. Serotonin, tachykinin, and calcitonin gene-related peptide receptor or receptor subtype antagonists as well as guanethidine and suramin had no significant effect on the frequency of GMCs. Verapamil transiently suppressed the GMCs. In conclusion, unlike the canine and human colons, the rat colon exhibits frequent GMCs and their frequency is suppressed in inflammation. In vivo GMCs are stimulated by neural release of acetylcholine that acts on M3 receptors. Constitutive release of nitric oxide may partially suppress their frequency. 相似文献
7.
8.
The small-conductance Ca2+-activated K+ (SKCa) channels modulate cytosolic Ca2+ concentration in excitable and non-excitable tissues by regulating the membrane potential and are responsible of slow action potential after hyperpolarization that inhibits cell firing. Among these, human SKCa2 and SKCa3 channels differ in the pore region by only two residues: Ala331 and Asn367 (human small-conductance calcium-activated potassium channel, hSKCa2) instead of Val485 and His521 (hSKCa3). To design highly selective blockers of hSKCa channels, a number of known hSKCa2 and/or hSKCa3-active peptides (i.e. scorpion toxins and analogs thereof) were analyzed for their interactions and selectivities toward these channels. Molecular models of hSKCa2 and hSKCa3 channels (S5-H5-S6 portion) were generated, and scorpion toxins/peptides of unsolved three-dimensional (3D) structures were modeled. Models of toxin-channel complexes were generated by the bimolecular complex generation with global evaluation, and ranking (BiGGER) docking software and selected by using a screening method of the docking solutions. A high degree of correlation was found to exist between docking energies and experimental Kd values of peptides that blocked hSKCa2 and/or hSKCa3 channels, suggesting it could be appropriate to predict Kd values of other bioactive peptides. The best scoring complexes were also used to identify key residues of both interacting partners, indicating that such an approach should help the design of more active and/or selective peptide blockers of targeted ion channels. 相似文献
9.
Gallego D Gil V Aleu J Aulí M Clavé P Jiménez M 《American journal of physiology. Gastrointestinal and liver physiology》2008,295(3):G522-G533
The aim of the present work is to investigate a putative junction transmission [nitric oxide (NO) and ATP] in the human colon and to characterize the electrophysiological and mechanical responses that might explain different functions from both neurotransmitters. Muscle bath and microelectrode techniques were performed on human colonic circular muscle strips. The NO donor sodium nitroprusside (10 microM), but not the P2Y receptor agonist adenosine 5'-O-2-thiodiphosphate (10 microM), was able to cause a sustained relaxation. NG-nitro-L-arginine (L-NNA) (1 mM), a NO synthase inhibitor, but not 2'-deoxy-N6-methyl adenosine 3',5'-diphosphate tetraammonium salt (MRS 2179) (10 microM), a P2Y antagonist, increased spontaneous motility. Electrical field stimulation (EFS) at 1 Hz caused fast inhibitory junction potentials (fIJPs) and a relaxation sensitive to MRS 2179 (10 microM). EFS at higher frequencies (5 Hz) showed biphasic IJP with fast hyperpolarization sensitive to MRS 2179 followed by sustained hyperpolarization sensitive to L-NNA; both drugs were needed to fully block the EFS relaxation at 2 and 5 Hz. Two consecutive single pulses induced MRS 2179-sensitive fIJPs that showed a rundown. The rundown mechanism was not dependent on the degree of hyperpolarization and was present after incubation with L-NNA (1 mM), hexamethonium (100 microM), MRS 2179 (1 microM), and NF023 (10 microM). We concluded that single pulses elicit ATP release from enteric motor neurons that cause a fIJP and a transient relaxation that is difficult to maintain over time; also, NO is released at higher frequencies causing a sustained hyperpolarization and relaxation. These differences might be responsible for complementary mechanisms of relaxation being phasic (ATP) and tonic (NO). 相似文献
10.
11.
12.
Natalia L. Komarova Daniela Anghelina Igor Voznesensky Benjamin Trinité David N. Levy Dominik Wodarz 《Biology letters》2013,9(1)
Human immunodeficiency virus can spread through target cells by transmission of cell-free virus or directly from cell-to-cell via formation of virological synapses. Although cell-to-cell transmission has been described as much more efficient than cell-free infection, the relative contribution of the two transmission pathways to virus growth during multiple rounds of replication remains poorly defined. Here, we fit a mathematical model to previously published and newly generated in vitro data, and determine that free-virus and synaptic transmission contribute approximately equally to the growth of the virus population. 相似文献
13.
Hermann GE Travagli RA Rogers RC 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,290(6):R1570-R1576
It has long been known that the esophageal distension produced by swallowing elicits a powerful proximal gastric relaxation. Gastroinhibitory control by the esophagus involves neural pathways from esophageal distension-sensitive neurons in the nucleus tractus solitarius centralis (cNTS) with connections to virtually all levels of the dorsal motor nucleus of the vagus (DMV). We have shown recently that cNTS responses are excitatory and primarily involve tyrosine hydroxylase-immunoreactive cells, whereas the DMV response involves both an alpha1 excitatory and an alpha2 inhibitory response. In the present study, using an esophageal balloon distension to evoke gastric relaxation (esophageal-gastric reflex, EGR), we investigated the peripheral pharmacological basis responsible for this reflex. Systemic administration of atropine methyl nitrate reduced the amplitude of the gastric relaxation to 52.0+/-4.4% of the original EGR, whereas NG-nitro-L-arginine methyl ester (L-NAME) reduced it to 26.3+/-7.2% of the original EGR. Concomitant administration of atropine methyl nitrate and L-NAME reduced the amplitude of the gastric relaxation to 4.0+/-2.5% of control. This reduction in the amplitude of induced EGR is quite comparable (4.3+/-2.6%) to that seen when the animal was pretreated with the nicotinic ganglionic blocker hexamethonium. In the presence of bethanechol, the amplitude of the esophageal distension-induced gastric relaxation was increased to 177.0+/-10.0% of control; administration of L-NAME reduced this amplitude to 19.9+/-9.5%. Our data provide a clear demonstration that the gastroinhibitory control by the esophagus is mediated via a dual vagal innervation consisting of inhibitory nitrergic and excitatory cholinergic transmission. 相似文献
14.
Hendrich AB Mozrzymas JW Konopińska D Scuka M 《Cellular & molecular biology letters》2002,7(2):195-202
The effect of the ant venom neuropeptide--poneratoxin (PoTX)--on neuromuscular transmission in rat diaphragm tissue was studied by means of intracellular recordings of spontaneous miniature endplate potentials (MEPPs) and of nerve evoked endplate potentials (EPPs). A 2 microM concentration of PoTX caused a pronounced but transient increase in MEPPs frequency. Moreover, within the first few minutes of PoTX administration, the area, rise time and half decay time of MEPPs gradually decreased, reaching steady values after 15-20 min. The alteration of the area, rise time and half decay time of EPPs after PoTX application was similar to that observed for MEPPs. We conclude that PoTX affects neuromuscular transmission in rat tissue, and suggest that PoTX could exert both pre- and postsynaptic effects. 相似文献
15.
16.
The effects of the putatively selective inhibitor of neuronal nitric oxide synthase (nNOS) 1-(2-trifluoromethylphenyl) imidazole (TRIM) were investigated on contractility, intracellular calcium and nitrergic relaxations in the rat anococcygeus muscle. TRIM (100-1000 microM) reduced the tension of rat anococcygeus muscles when contracted with guanethidine (10 microM) and clonidine (0.1 microM). Relaxations to TRIM persisted in the presence of the non-selective NOS inhibitor L-NAME (100 microM) and the inhibitor of soluble guanylate cyclase ODQ (1 microM). TRIM also reduced tension when muscles were contracted with phenylephrine (3 microM), noradrenaline (3 microM) or high K physiological salt solution (high KPSS; 60mM). Influx of calcium ([Ca(2+)](i)) in response to high KPSS was significantly reduced in the presence of TRIM (1mM). TRIM also inhibited the influx of (45)Ca(2+) induced by KPSS, but had no effect on the influx induced by phenylephrine (10 microM). TRIM (300 microM) had a modest, but significant, inhibitory effect on nitrergic relaxations that were evoked by electrical field stimulation (1-10 Hz, 15 V, 10s trains) in muscles contracted with guanethidine and clonidine. In contrast, L-NAME (1-100 microM) inhibited these nitrergic responses with an IC(50) of 9.31+/-0.87 microM (n=4). The results suggest that the smooth muscle relaxant effect of TRIM in the rat anococcygeus muscle may affect the entry of Ca(2+) possibly through voltage-operated calcium channels. Furthermore, the relatively modest effect of TRIM on nitrergic responses indicates that it is not a particularly reliable inhibitor of nNOS. 相似文献
17.
Recent studies indicate that chemoafferent nerve fiber excitation in the rat carotid body is mediated by acetylcholine and ATP, acting at nicotinic cholinergic receptors and P2X2 purinoceptors, respectively. We previously demonstrated that, after a 10- to 14-day exposure to chronic hypoxia (CH), the nicotinic cholinergic receptor blocker mecamylamine no longer inhibits rat carotid sinus nerve (CSN) activity evoked by an acute hypoxic challenge. The present experiments examined the effects of CH (9-16 days at 380 Torr) on the expression of P2X2 purinoceptors in carotid body and chemoafferent neurons, as well as the effectiveness of P2X2 receptor blocking drugs on CSN activity evoked by hypoxia. In the normal carotid body, immunocytochemical studies demonstrated a dense plexus of P2X2-positive nerve fibers penetrating lobules of type I cells. In addition, type I cells were lightly stained, indicating P2X2 receptor expression. After CH, the intensity of P2X2 receptor immunostaining was maintained in chemosensory type I cells and in the soma of chemoafferent neurons. P2 receptor expression on type I cells was confirmed by demonstrations of ATP-evoked increased intracellular Ca2+; this response was modulated by simultaneous exposure to hypoxia. In normal preparations, CSN activity evoked by hypoxia in vitro was 65% inhibited in the presence of specific P2X2 receptor antagonists. However, unlike the absence of mecamylamine action after CH, P2X2 antagonists remained effective against hypoxia-evoked activity after CH. Our findings indicate that ATP acting at P2X2 receptors contributes to adjusted chemoreceptor activity after CH, indicating a possible role for purinergic mechanisms in the adaptation of the carotid body in a chronic low-O2 environment. 相似文献
18.
The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission
under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs)
from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat
hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was
blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors:
ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II)
tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate]
at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N
6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in
evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence
of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible
loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission
induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked
or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions
by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor stimulation plays a deleterious
role during a severe OGD insult. 相似文献
19.
Summary Chloride channels from rat colonic enterocytes were studied using the patch-clamp technique. After removal of mucus, inside-out patches were excised from the apical membrane of intact epithelium located at the luminal surface. They contained spontaneously switching Cl– channels with a conductance of 35–40 pS. The channels were blocked reversibly by anthracene-9-carboxylic acid (1mm).In excised patches from single enterocytes, isolated by calcium removal, the Cl– channels were studied in more detail. TheI–V relation was linear between ±80 mV. The selectivity was I–>Br–>Cl–=NO3–>F–=HCO3–.Thirty pS Cl– channels were also found on the basolateral membrane of crypts isolated by brief calcium removal. TheI–V curve of these Cl– channels was also linear.The results provide direct evidence for the existence of Cl– channels in the apical membrane of surface cells in colonic mucosa. The properties of these channels are similar to those previously observed when incorporating membrane vesicles into planar lipid bilayers. Both results support the validity of the theoretical models describing intestinal secretion. 相似文献
20.
Gastrointestinal motility disorders are of considerable clinical importance in humans and animals. Abnormalities of smooth muscle and the enteric nervous system have been described. We have identified and characterized a new mutant stock of rats that develops severe megacecum and colon with pseudo-obstruction, Familial Megacecum and Colon (FMC). The inheritance pattern of FMC was characterized by selective breeding. Gastrointestinal motility was evaluated radiographically. Complete pathologic evaluations, including ultrastructural examination and staining of colonic segments for acetylcholinesterase, peripherin, vasoactive intestinal peptide, substance P, nitric oxide synthase, and somatostatin, were performed. Spontaneous contractility and contractile force in isolated colonic muscle strips were examined. Familial megacecum and colon is inherited as an autosomal recessive trait. The markedly dilated cecum and proximal portion of the colon are followed by a short, funnel-shaped segment and distal portion of the colon with normal or slightly reduced lumen. Although clinical features and gross anatomic changes of the colon resemble those of Hirschsprung's disease in humans and animals, aganglionosis is not a feature of FMC. An increase in somatostatin staining was observed in dilated regions of bowel. The spontaneous contractile frequency and contractile force were diminished in the affected colon. Familial megacecum and colon is a new mutant, distinct from previously described hereditary and targeted mutant rodent models that develop megacecum and colon as a result of distal colonic dysfunction. The functional or morphologic defect(s) that result in colonic dysfunction in rats with FMC was not determined. The disease may result from an absence or overexpression of a single or group of neurotransmitters or their respective neurons, receptor abnormalities, or defects in the intestinal pacemaker system. 相似文献