首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Keloid formation is a wound healing response, which fails to resolve and leads to formation of a raised collagen mass extending beyond the original wound margins. Keloids are typically excluded from palms and soles. Therefore we compared keloid and palmar fibroblasts in vitro using fibroblasts from nonaffected individuals as controls. Collagen I, alpha-smooth muscle actin and thrombospondin-1 were found at higher levels in keloid than in palmar fibroblasts. These differences were ameliorated by addition of TGFbeta1. The potential for resolution of the wound healing response was estimated analyzing apoptosis during serum starvation. Annexin V and TUNEL assays showed that palmar fibroblasts underwent faster apoptosis, than did the keloid fibroblasts, and started detaching. Addition of TGFbeta1 counteracted this effect. The weak expression of the myofibroblast phenotype and the advanced apoptosis of palmar fibroblasts suggest mechanisms for the exclusion of keloids from palmar sites.  相似文献   

2.
3.
The marrow stromal cell is the principal source of the key osteoclastogenic cytokine receptor activator of NF-kappaB (RANK) ligand (RANKL). To individualize the role of marrow stromal cells in varying states of TNF-alpha-driven osteoclast formation in vivo, we generated chimeric mice in which wild-type (WT) marrow, immunodepleted of T cells and stromal cells, is transplanted into lethally irradiated mice deleted of both the p55 and p75 TNFR. As control, similarly treated WT marrow was transplanted into WT mice. Each group was administered increasing doses of TNF-alpha. Exposure to high-dose cytokine ex vivo induces exuberant osteoclastogenesis irrespective of in vivo TNF-alpha treatment or whether the recipient animals possess TNF-alpha-responsive stromal cells. In contrast, the osteoclastogenic capacity of marrow treated with lower-dose TNF-alpha requires priming by TNFR-bearing stromal cells in vivo. Importantly, the osteoclastogenic contribution of cytokine responsive stromal cells in vivo diminishes as the dose of TNF-alpha increases. In keeping with this conclusion, mice with severe inflammatory arthritis develop profound osteoclastogenesis and bone erosion independent of stromal cell expression of TNFR. The direct induction of osteoclast recruitment by TNF-alpha is characterized by enhanced RANK expression and sensitization of precursor cells to RANKL. Thus, osteolysis attending relatively modest elevations in ambient TNF-alpha depends upon responsive stromal cells. Alternatively, in states of severe periarticular inflammation, TNF-alpha may fully exert its bone erosive effects by directly promoting the differentiation of osteoclast precursors independent of cytokine-responsive stromal cells and T lymphocytes.  相似文献   

4.
Hydrocortisone stimulates proliferation and System A amino acid transport in cultured human fibroblasts, while decreasing production of collagen. Fibroblasts isolated from keloid tissue have an unusual glucocorticoid response; they are hyporesponsive with regard to proliferation and collagen production but hyperresponsive with regard to the induction of System A amino acid transport (Russell, J. D., Russell, S. B., and Trupin, K. M. (1978) J. Cell. Physiol. 97, 221-229; Russell, S. B., Russell, J. D., and Trupin, J. S. (1982) J. Biol. Chem. 256, 9525-9531). We show here that despite these differences, the glucocorticoid receptors of keloid cells do not differ from those of normal dermal fibroblasts in steroid specificity, dissociation constant (Kd), total number of binding sites (Bmax), or nuclear binding of glucocorticoid-receptor complexes. A single glucocorticoid binding species of molecular weight 93,000 was found in both cell types. A monolayer assay for glucocorticoid receptor binding is described which facilitates analysis of multiple strains of cultured cells. This assay gives the same specificity and dissociation constants as the conventional cytosol assay, but it is more sensitive. The magnitude of induction of System A amino acid transport was found to be directly proportional to glucocorticoid receptor occupancy in both keloid-derived and normal fibroblasts. This induction requires serum, which can be replaced with 1 nM insulin.  相似文献   

5.
The accessory limb model has become an alternative model for performing investigations of limb regeneration in an amputated limb. In the accessory limb model, a complete patterned limb can be induced as a result of an interaction between the wound epithelium, a nerve and dermal fibroblasts in the skin. Studies should therefore focus on examining these tissues. To date, however, a study of cellular contributions in the accessory limb model has not been reported. By using green fluorescent protein (GFP) transgenic axolotl tissues, we can trace cell fate at the tissue level. Therefore, in the present study, we transgrafted GFP skin onto the limb of a non‐GFP host and induced an accessory limb to investigate cellular contributions. Previous studies of cell contribution to amputation‐induced blastemas have demonstrated that dermal cells are the progenitors of many of the early blastema cells, and that these cells contribute to regeneration of the connective tissues, including cartilage. In the present study, we have determined that this same population of progenitor cells responds to signaling from the nerve and wound epithelium in the absence of limb amputation to form an ectopic blastema and regenerate the connective tissues of an ectopic limb. Blastema cells from dermal fibroblasts, however, did not differentiate into either muscle or neural cells, and we conclude that dermal fibroblasts are dedifferentiated along its developmental lineage.  相似文献   

6.
Fibroblasts were isolated from keloid, normal skin, and normal scar and maintained in tissue culture for four passages. Growth kinetics were the same for all groups on days 2 through 12. However, the rate of collagen synthesis per fibroblast was greater in keloid derived cells than any controls at all growth phases. Keloid fibroblasts have an autonomous capacity to synthesize collagen at a significantly increased level in vitro, which may explain in part why these lesions are characterized by increased collagen deposition.  相似文献   

7.
Sixty percent of the fibroblast strains derived from normal skin, scar, and keloid reached elevated growth plateaus when cultured in the presence of histamine. A pharmacologic level of the antihistamine diphenhydramine hydrochloride was able to suppress the stimulation in all the keloid strains that were histamine-sensitive.  相似文献   

8.
The Kv11.1 (hERG) K+ channel plays a fundamental role in cardiac repolarization. Missense mutations in KCNH2, the gene encoding Kv11.1, cause long QT syndrome (LQTS) and frequently cause channel trafficking-deficiencies. This study characterized the properties of a novel KCNH2 mutation discovered in a LQT2 patient resuscitated from a ventricular fibrillation arrest. Proband genotyping was performed by SSCP and DNA sequencing. The electrophysiological and biochemical properties of the mutant channel were investigated after expression in HEK293 cells. The proband manifested a QTc of 554 ms prior to electrolyte normalization. Mutation analysis revealed an autosomal dominant frameshift mutation at proline 1086 (P1086fs+32X; 3256InsG). Co-immunoprecipitation demonstrated that wild-type Kv11.1 and mutant channels coassemble. Western blot showed that the mutation did not produce mature complex-glycosylated Kv11.1 channels and coexpression resulted in reduced channel maturation. Electrophysiological recordings revealed mutant channel peak currents to be similar to untransfected cells. Co-expression of channels in a 1∶1 ratio demonstrated dominant negative suppression of peak Kv11.1 currents. Immunocytochemistry confirmed that mutant channels were not present at the plasma membrane. Mutant channel trafficking rescue was attempted by incubation at reduced temperature or with the pharmacological agents E-4031. These treatments did not significantly increase peak mutant currents or induce the formation of mature complex-glycosylated channels. The proteasomal inhibitor lactacystin increased the protein levels of the mutant channels demonstrating proteasomal degradation, but failed to induce mutant Kv11.1 protein trafficking. Our study demonstrates a novel dominant-negative Kv11.1 mutation, which results in degraded non-functional channels leading to a LQT2 phenotype.  相似文献   

9.
No differences in appearance or in cell size distribution were observed between cultured fibroblasts derived from normal skin, mature scars, or keloids. Artifactual differences in cell size distributions between strains can result when populations are compared at different cell densities. Keloid derived fibroblasts remain euploid in culture, and they have the same growth rate and same degree of density-dependent growth inhibition as cultured normal human fibroblasts.  相似文献   

10.
11.
Cultured fibroblasts derived from human keloid tissue are presented as a possible model system for studying the genetic regulation of cell growth. Histamine is shown to have a marked effect on the growth of cultured fibroblasts. A small increase in growth rate is seen during the log phase of the culture cycle and a 50% increase in cell number is observed during the plateau phase. Differences in the extent of growth stimulation are observed between strains isolated from different individuals. While most strains showed approximately 50% stimulation, a few were not stimulated and some strains gave a 100% or greater increase in cell number due to histamine. This phenotypic difference in extent of growth stimulation in response to histamine cannot be attributed to the gene or genes for keloid formation. However, elevated levels of histamine in vivo may be a contributing factor to the abnormal cell growth observed in this disorder. The extent of growth stimulation due to histamine decreases with repeated subculturing.  相似文献   

12.
This study describes the development and application of a novel rat patellar tendon model of mechanical fatigue for investigating the early in vivo response to tendon subfailure injury. Patellar tendons of adult female Sprague-Dawley rats were fatigue loaded between 1–35 N using a custom-designed loading apparatus. Patellar tendons were subjected to Low-, Moderate- or High-level fatigue damage, defined by grip-to-grip strain measurement. Molecular response was compared with that of a laceration-repair injury. Histological analyses showed that progression of tendon fatigue involves formation of localized kinked fiber deformations at Low damage, which increased in density with presence of fiber delaminations at Moderate damage, and fiber angulation and discontinuities at High damage levels. RT-PCR analysis performed at 1- and 3-day post-fatigue showed variable changes in type I, III and V collagen mRNA expression at Low and Moderate damage levels, consistent with clinical findings of tendon pathology and were modest compared with those observed at High damage levels, in which expression of all collagens evaluated were increased markedly. In contrast, only type I collagen expression was elevated at the same time points post-laceration. Findings suggest that cumulative fatigue in tendon invokes a different molecular response than laceration. Further, structural repair may not be initiated until reaching end-stage fatigue life, where the repair response may unable to restore the damaged tendon to its pre-fatigue architecture.  相似文献   

13.
Tissue transglutaminase (tTG) is a Ca2+-dependent enzyme which stabilizes the extracellular matrix (ECM) through post-translational modification, and may play an important role in the pathogenesis of focal and segmental glomerulosclerosis (FSGS). Here, we have investigated whether tTG contributes to the glomerular ECM expansion in the puromycin aminonucleoside (PAN)-injection-induced experimental rat model of FSGS. The localization and expression of tTG, MMP-9 gelatinase, and the ECM component fibronectin (FN) in kidneys was determined by immunohistochemistry and measured by semi-quantitative analysis. Protein levels of tTG and MMP-9 were also analyzed by Western blotting.In situtransglutaminase activity was assayed by measurement of incorporated substrate and the immunofluorescence staining for the cross-linking product, ε-(γ-glutamyl) lysine. Prominent proteinuria, a typical pathological feature of FSGS, was observed in PAN injection group rats. tTG immunoreactivity was located markedly in glomeruli and the levels of this protein in whole-kidney homogenates of PAN injection group rats were significantly increased (361± 106% control, P< 0.05). Similarly, transglutaminase activity and ε-(γ-glutamyl) lysine were also predominately located within glomeruli and were much more intense in the PAN-injected group than that in control animals. MMP-9 was also located primarily within glomeruli. In PAN-injected kidneys, protein levels of active MMP-9 were significantly reduced (59± 27% control, P< 0.01), while pro-MMP-9 levels increased (148± 42% control, P< 0.05). Remarkable expression of glomerular fibronectin (FN) was found in PAN injection group rats. Semi-quantitative analysis demonstrated this increased intensity of FN staining in the PAN-injected rats was 149± 23% of the control values (P< 0.05). Enhanced cross-linking of ECM by tissue transglutaminase and decreased degradation due to reduced active MMP-9 expression may be at least partially responsible for the deposition of FN within injured glomeruli in experimental FSGS.  相似文献   

14.
Cultured fibroblasts isolated from normal and keloid tissue do not differ in their growth characteristics or in the rate of collagen synthesis under routine culture conditions. The addition of hydrocortisone to the culture media results in significant differences in both growth and collagen synthesis between these cell types. Collagen syntehsis is inhibited 60% in normal cultures by hydrocortisone (0.5 μg/ml) and the population size at which density-dependent growth inhibition is achieved is increased. Keloid-derived fibroblasts grow to a lower maximum density in the presence of hydrocortisone, while their rate of collagen syntehsis is not significantly reduced. The rate of non-collagen protein synthesis is increased significantly by hydrocortisone in both cell types. Comparison of normal and keloid-derived cultures obtained from a single individual suggests that the keloid phenotype with respect to both growth and collagen synthesis is restricted to the fibroblasts isolated from the keloid nodule.  相似文献   

15.
16.
Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, with the capacity to also use atmospheric H2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils. Altogether, these findings suggest that the major bacterial lineages inhabiting hot deserts use different strategies for energy and carbon acquisition depending on resource availability. Moreover, they highlight the previously overlooked roles of Actinobacteriota as abundant primary producers and trace gases as critical energy sources supporting productivity and resilience of desert ecosystems.Subject terms: Microbial ecology, Biogeochemistry  相似文献   

17.
18.
19.
Myocardial infarction (MI) is followed by extracellular matrix (ECM) remodeling, which is on the one hand required for the healing response and the formation of stable scar tissue. However, on the other hand, ECM remodeling can lead to fibrosis and decreased ventricular compliance. The small leucine-rich proteoglycan (SLRP), biglycan (bgn), has been shown to be critically involved in these processes. During post-infarct remodeling cardiac fibroblasts differentiate into myofibroblasts which are the main cell type mediating ECM remodeling. The aim of the present study was to characterize the role of bgn in modulating the phenotype of cardiac fibroblasts. Cardiac fibroblasts were isolated from hearts of wild-type (WT) versus bgn(-/0) mice. Phenotypic characterization of the bgn(-/0) fibroblasts revealed increased proliferation. Importantly, this phenotype of bgn(-/0) fibroblasts was abolished to the WT level by reconstitution of biglycan in the ECM. TGF-β receptor II expression and phosphorylation of SMAD2 were increased. Furthermore, indicative of a myofibroblast phenotype bgn(-/0) fibroblasts were characterized by increased α-smooth muscle actin (α-SMA) incorporated into stress fibers, increased formation of focal adhesions, and increased contraction of collagen gels. Administration of neutralizing antibodies to TGF-β reversed the pro-proliferative, myofibroblastic phenotype. In vivo post-MI α-SMA, TGF-β receptor II expression, and SMAD2 phosphorylation were markedly increased in bgn(-/0) mice. Collectively, the data suggest that bgn deficiency promotes myofibroblast differentiation and proliferation in vitro and in vivo likely due to increased responses to TGF-β and SMAD2 signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号