共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input-output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions. 相似文献
4.
合成生物学自诞生以来对生物学领域的研究产生了重要的影响。利用工程学思维与方法,合成生物学揭开了生命系统许多调控机制,改造并扩展了一系列生物元件,同时带来了广泛的生物医学应用,为疾病诊断与治疗提供了新的思路。本文综述了适用于哺乳动物细胞或者细菌的合成基因线路并用于疾病诊断与治疗领域的最新进展,为未来智能药物设计提供新的思路。 相似文献
5.
6.
Functional genomic studies in zebrafish frequently use synthetic oligonucleotides called morpholinos that block RNA splicing or translation. However, the constitutive activity of these reagents limits their experimental utility. We report here the synthesis of a photoactivatable morpholino targeting the no tail (ntl) gene. This caged reagent permits spatiotemporal gene regulation in vivo and the photochemical generation of functionally mosaic organisms. 相似文献
7.
8.
9.
Prajakta Jadhav Yanyan Chen Nicholas Butzin Javier Buceta Arantxa Urchueguía 《Open biology》2022,12(8)
Bacterial proteases are a promising post-translational regulation strategy in synthetic circuits because they recognize specific amino acid degradation tags (degrons) that can be fine-tuned to modulate the degradation levels of tagged proteins. For this reason, recent efforts have been made in the search for new degrons. Here we review the up-to-date applications of degradation tags for circuit engineering in bacteria. In particular, we pay special attention to the effects of degradation bottlenecks in synthetic oscillators and introduce mathematical approaches to study queueing that enable the quantitative modelling of proteolytic queues. 相似文献
10.
F Yang J Tu J-Q Pan H-L Luo Y-H Liu J Wan J Zhang P-F Wei T Jiang Y-H Chen L-P Wang 《Cell death & disease》2013,4(10):e893
Glioblastomas are aggressive cancers with low survival rates and poor prognosis because of their highly proliferative and invasive capacity. In the current study, we describe a new optogenetic strategy that selectively inhibits glioma cells through light-controlled membrane depolarization and cell death. Transfer of the engineered opsin ChETA (engineered Channelrhodopsin-2 variant) gene into primary human glioma cells or cell lines, but not normal astrocytes, unexpectedly decreased cell proliferation and increased mitochondria-dependent apoptosis, upon light stimulation. These optogenetic effects were mediated by membrane depolarization-induced reductions in cyclin expression and mitochondrial transmembrane potential. Importantly, the ChETA gene transfer and light illumination in mice significantly inhibited subcutaneous and intracranial glioma growth and increased the survival of the animals bearing the glioma. These results uncover an unexpected effect of opsin ion channels on glioma cells and offer the opportunity for the first time to treat glioma using a light-controllable optogenetic approach. 相似文献
11.
12.
Advances in synthetic biology have augmented the available toolkit of biomolecular modules, allowing engineering and manipulation of signaling in a variety of organisms, ranging in complexity from single bacteria and eukaryotic cells to multi-cellular systems. The richness of synthetic circuit outputs can be dramatically enhanced by sophisticated environmental control systems designed to precisely pattern spatial-temporally heterogeneous environmental stimuli controlling these circuits. Moreover, the performance of the synthetic modules and 'blocks' needed to assemble more complicated networks requires more complete characterization as a function of arbitrarily complex environmental inputs. Microfluidic technologies are poised to meet these needs through a variety of innovative designs capitalizing on the unique benefits of manipulating fluids on the micro-scales and nano-scales. This review discusses the utility of microfluidics for the study of synthetic circuits and highlights recent work in the area. 相似文献
13.
14.
Lettuce (Lactuca sativa) seeds var. Grand Rapids could be maintained many weeks in the dark without germination. Following illumination with white light, a gradual increase in polyribosome population up to the time of germination was demonstrated by sucrose gradient centrifugation. Polysomes could not be detected in imbibed seeds maintained continuously in the dark. Thus, polysome formation and therefore the capacity for a high rate of protein synthesis required for germination and growth, is not associated with the process of imbibition, but is dependent upon the seeds having received the dormancy-breaking stimulus of illumination. 相似文献
15.
Shuqiang Huang Anna Jisu Lee Ryan Tsoi Feilun Wu Ying Zhang Kam W Leong Lingchong You 《Molecular systems biology》2016,12(2)
Engineered bacteria have great potential for medical and environmental applications. Fulfilling this potential requires controllability over engineered behaviors and scalability of the engineered systems. Here, we present a platform technology, microbial swarmbot, which employs spatial arrangement to control the growth dynamics of engineered bacteria. As a proof of principle, we demonstrated a safeguard strategy to prevent unintended bacterial proliferation. In particular, we adopted several synthetic gene circuits to program collective survival in Escherichia coli: the engineered bacteria could only survive when present at sufficiently high population densities. When encapsulated by permeable membranes, these bacteria can sense the local environment and respond accordingly. The cells inside the microbial swarmbot capsules will survive due to their high densities. Those escaping from a capsule, however, will be killed due to a decrease in their densities. We demonstrate that this design concept is modular and readily generalizable. Our work lays the foundation for engineering integrated and programmable control of hybrid biological–material systems for diverse applications. 相似文献
16.
Synthetic gene circuits are designed to program new biological behaviour, dynamics and logic control. For all but the simplest synthetic phenotypes, this requires a structured approach to map the desired functionality to available molecular and cellular parts and processes. In other engineering disciplines, a formalized design process has greatly enhanced the scope and rate of success of projects. When engineering biological systems, a desired function must be achieved in a context that is incompletely known, is influenced by stochastic fluctuations and is capable of rich nonlinear interactions with the engineered circuitry. Here, we review progress in the provision and engineering of libraries of parts and devices, their composition into large systems and the emergence of a formal design process for synthetic biology. 相似文献
17.
《Current opinion in biotechnology》2013,24(4):790-796
Highlights► Engineered feedback loops implement elaborate functionality in synthetic circuits. ► The homeostatic potential of feedback loops is under-utilized in synthetic biology. ► Feedback control of engineered or natural cellular functions can be achieved using biological components or in silico regulation. ► Optogenetics and microfluidic technologies are important for implementing in silico control. 相似文献
18.
《Trends in biotechnology》2023,41(6):760-768
Many synthetic biology applications rely on programming living cells using gene circuits – the assembly and wiring of genetic elements to control cellular behaviors. Extensive progress has been made in constructing gene circuits with diverse functions and applications. For many circuit functions, however, it remains challenging to ensure that the circuits operate in a predictable manner. Although the notion of predictability may appear intuitive, close inspection suggests that it is not always clear what constitutes predictability. We dissect this concept and how it can be confounded by the complexity of a circuit, the complexity of the context, and the interplay between the two. We discuss circuit engineering strategies, in both computation and experiment, that have been used to improve the predictability of gene circuits. 相似文献
19.
In this paper we consider the problem of representation and measurement in genetic circuits, and investigate how they can affect the reliability of engineered systems. We propose a design scheme, based on the notion of continuous computation, which addresses these issues. We illustrate the methodology by showing how a concept from computer architecture (namely, branch prediction) may be implemented in vivo, using a distributed approach. Simulation results confirm the in-principle feasibility of our method, and offer valuable insights into its future laboratory validation. 相似文献