首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Morphactins were found to resemble other auxin-transport inhibitors in their ability to stimulate leaf abscission in cotton in response to ethylene or Ethephon (2-chloroethylphosphonic acid).  相似文献   

2.
Petioles of expiants ofColeus blumei Benth. exposed to 20 μl/l ethylene abscised within 36 h. Pretreatment of expiants with 4 mM silver thiosulfate (STS) inhibited ethylene-induced abscission. Delaying treatment with STS reduced its effectiveness in retarding ethylene-promoted abscission, suggesting that some events leading to abscission are initiated during the first hours of ethylene treatment. Microscopic study of abscission zones of ethylene-treated expiants showed greatly increased amounts of rough endoplasmic reticulum, disruptions of the plasma membrane, and some cell separation in the region of the middle lamella. Pretreatment with STS prevented ethylene-induced reorganization of the endomembrane system and the subsequent middle lamellar dissolution.  相似文献   

3.
Ethylene is known to accelerate flower senescence, but the sequence of events that links its interaction with the tissue and the final senescence symptoms is still obscure. Recently, 1-methylcyclopropene (1-MCP) was found to inhibit ethylene-induced wilting in flowers. This work was carried out in order to investigate the effects of 1-MCP on cellular senescence symptoms in petunia flowers following expossure to ethylene. Cut petunia ( Petunia hybrida ) flowers that were exposed to ethylene for 12 h at concentrations of 1–12 ppm wilted sooner than their untreated counterparts. This effect was abolished by a 6-h pre-treatment with 1-MCP. Immediately following the ethylene treatment, decreases in petal fresh weight and total protein content were measured, along with higher electrolyte leakage, and lower membrane lipid fluidity and protein content. When applied alone, 1-MCP had relatively little impact on these parameters. However, when the flowers were treated with 1-MCP prior to the ethylene treatment, ethylene had no effect. These results indicate that while ethylenes effects on wilting were obvious 3 days after the treatment, cellular parameters were affected already at the end of the treatment. Since 1-MCP repressed these early ethylene effects, it was concluded that it interferes with ethylene action in petunia flowers at a rather early stage, long before apparent wilting.  相似文献   

4.
Mechanical wounding and abscission in citrus   总被引:1,自引:0,他引:1  
Fruit detachment force (FDF), ethylene evolution, fruit and leaf drop were determined in Citrus sinensis for periods up to 96 h after mechanical wounding. Injury by removing a thin section of mature fruit flavedo reduced FDF, increased ethylene evolution and promoted abscission. Injuring flavedo 1 cm below the calyx was more effective at reducing FDF than injuring flavedo at the equator or the blossom‐end of mature fruit. Injuring the calyx or peduncle of mature fruit, or injuring three leaves closest to the mature fruit did not reduce FDF. Immature fruitlets either did not abscise or underwent low rates of abscission in response to mechanical wounding, depending on age. Inhibiting ethylene binding in wounded mature fruit with 1‐methylcyclopropene (1‐MCP) increased ethylene evolution compared with wounded fruit alone, but the reduction in FDF was similar. When an ethylene biosynthesis inhibitor (aminoethoxyvinylglycine, AVG) was used, reduction in FDF of wounded mature fruit exposed to AVG was similar to that of wounded fruit alone but ethylene production was markedly reduced. Wounding mature leaf blades in the presence or absence of 1‐MCP resulted in elevated but equal ethylene evolution up to 48 h after wounding, however, no leaf drop occurred. Thereafter, ethylene evolution was higher in 1‐MCP‐treated wounded leaves. Removing up to 77% of the total mature leaf area did not cause leaf drop, nor did wounding tissue across the laminar or petiolar abscission zones. Leaflets of 5 mm length reached nearly 100% abscission after mechanical wounding, whereas wounding leaves 20 mm length resulted in 15% abscission. The data suggest that mechanical wounding of flavedo results in mature fruit abscission, and ethylene binding may not be mandatory to initiate abscission in citrus fruit. The differential response of fruit and leaves at different ages to wounding may be related to potential contribution to carbohydrate accumulation, and production and sensitivity of tissues to an abscission signal(s).  相似文献   

5.
Petioles of expiants ofColeus blumei Benth. exposed to 20 l/l ethylene abscised within 36 h. Pretreatment of expiants with 4 mM silver thiosulfate (STS) inhibited ethylene-induced abscission. Delaying treatment with STS reduced its effectiveness in retarding ethylene-promoted abscission, suggesting that some events leading to abscission are initiated during the first hours of ethylene treatment. Microscopic study of abscission zones of ethylene-treated expiants showed greatly increased amounts of rough endoplasmic reticulum, disruptions of the plasma membrane, and some cell separation in the region of the middle lamella. Pretreatment with STS prevented ethylene-induced reorganization of the endomembrane system and the subsequent middle lamellar dissolution.  相似文献   

6.
7.
Citrus ( Citrus sinensis L. Osbeck) leaf explants completely abscise within 48 h when exposed to saturating amounts of ethylene at 25°C. When 2,5-norbornadiene was added, 2000 μl 1−1 reduced abscission of explants also exposed to 2 μl 1−1 of ethylene to the level of the control, and 8000 μl 1−1 reduced abscission in explants exposed to 10 μl 1−1 of ethylene to the level of the control, but abscission was complete when 1 000 μl 1−1 of ethylene was used in the presence of 8 000 μl 1−1 of 2,5-norbornadiene. When explants were exposed to 2 μl 1−1 of ethylene, 2000 μl 1−1 of 2,5-norbornadiene prevented abscission if applied up to 10 h after exposure to ethylene. After 18 h, applied 2,5-norbornadiene had little effect on abscission at 48 h. A Lineweaver-Burk plot gave a 1/2 maximum value of 0.12 μl 1−1 for ethylene on abscission, 2,5-Norbornadiene gave competitive kinetics with respect to ethylene with a K1 value of approximately 120 μl 1−1 of 2,5-norbornadiene. The presence of 2,5norbornadiene stimulated ethylene production, which progressively increased as the 2,5-norbornadiene concentration was increased from 250 to 8 000 μl 1−1 2,5-Norbornadiene also suppressed the induction of cellulase and polygalacturonase by ethylene. Together, 2,5-norbornadiene and 2,4-dichlorophenoxyacetic acid were more effective than either alone in reducing abscission. 2,5-Norbornadiene also was effective in preventing the reduction of indole-3-acetic acid transport induced by ethylene.  相似文献   

8.
Abstract. Total RNA was extracted from bean leaf abscission zones at different times after the induction of abscission by ethylene. The RNA was translated in the wheat germ system and the products analysed by SDS-PAGE. Products of molecular weight (raw) 42, 32 and 17 kD were seen to accumulate substantially during the induction. An attempt was made to establish that the mRNA species which produced the 32 kD product, which was coded for the ethylene-regulated enzyme chitinase. Mature chitinase (30 kD) was purifed from ethylene-treated abscission zones and used to raise monospecific antibodies in rabbits. These antibodies recognized the 32 kD product and mature chitinase. The 2 kD difference in molecular weight was due to the presence of the signal sequence which could be removed by microsomal membranes. Chitinase was also detected by enzymatic assay and immunoblotting of crude homogenates from ethylene-treated abscission zones. Chitinase appears to be ubiquitous in bean plants and probably does not have a direct role in abscission.  相似文献   

9.
Young R 《Plant physiology》1971,48(6):724-727
Citrus leaves exposed to subfreezing temperatures evolved ethylene at rates between 0.1 and 38.3 microliters per kilogram fresh weight per hour whereas untreated leaves evolved between 0.01 and 0.50 microliter per kilogram fresh weight per hour. Leaves not injured by freezing temperatures did not abscise, and ethylene evolution was near normal after 2 days. Freeze-injured leaves continued evolving high ethylene levels 4 or 5 days subsequent to freeze injury, and many of the freeze-killed leaves abscised. Supportive evidence suggested freeze-induced ethylene was involved in freeze-induced leaf abscission; whereas freeze-inhibited abscission was not due to a lack of ethylene but injury to other metabolic systems necessary for abscission.  相似文献   

10.
The loss of the antiethylene activity of Ag+ on leaf abscission by incubation in the dark was investigated. When primary leaves were removed from cuttings of Vigna radiata previously sprayed with AgNO3, dark-induced abscission of the petioles was inhibited, compared to untreated leafless controls, in the presence or absence of ethephon, an ethylene-releasing compound. Malformin did not negate inhibition of petiole abscission induced by Ag+. Although leaf removal restored the antiethylene activity of Ag+ in the dark, macerates of leaves from dark-aged cuttings did not negate the ability of Ag+ to inhibit petiole abscission in the dark. Abscisic acid completely abolished the ability of Ag+ to counteract ethephon-induced leaf abscission in the light, and almost completely abolished the Ag+-induced inhibition of petiole abscission from explants in the dark. It is proposed that the phytochrome requirement for the antiethylene activity of Ag+ on ethephon-induced leaf abscission involves prevention of the formation, accumulation, or transport of a substance in leaves in the dark which negates Ag+ activity. This substance may be abscisic acid or another substance with similar biological activity.  相似文献   

11.
12.
When leaves of Citrus sinensis (L.) Osbeck cv. Shamouti senesce, they become more susceptible to abscission and the proximal 2 mm of their lamina-petiole abscission zones exhibit callose deposition. The degree of senescence, assayed with the DAR-WIN image processor (Telewski et al. 1983), was positively correlated in a linear fashion with callose deposition. Explant of non-senescing leaves were observed. Excision of the leaf at the stem-petiole junction induced callose deposition throughout the petiole, but not in the lamina. Callose deposition began immediately upon excision and reached a maximum at 3 h. It then decreased slightly and remained at the same level for up to 5 days. Exogenous compounds that decrease callose deposition, e.g. laminarase and 2-deoxy-D-glucose, inhibited the rate of abscission of explants. Compounds that promote callose deposition, e.g. uridine diphosphoglucose and mannose, increased the rate of abscission of explants. Exogenous callose, e.g. laminarin, increased the rate of abscission. It is not known how callose might be causally involved in promoting abscission.  相似文献   

13.
A polygalacturonase from citrus leaf explants: role in abscission   总被引:14,自引:7,他引:7       下载免费PDF全文
Riov J 《Plant physiology》1974,53(2):312-316
The relationship between polygalacturonase activity and abscission of citrus leaf explants was studied. Determination of polygalacturonase activity in citrus tissues requires concentration of the enzyme, use of a proper assay method, and inhibition of an oxidase present in the extracts which oxidizes the reaction products of the polygalacturonase. The polygalacturonase from citrus leaf explants is an exopolygalacturonase and appears to be a soluble enzyme.  相似文献   

14.
15.
16.
 The hormonal signals controlling fruitlet abscission induced by sugar shortage in citrus were identified in Satsuma mandarin, Citrus unshiu (Mak.) Marc, cv. Clausellina and cv. Okitsu. Sugar supply, hormonal responses and fruitlet abscission were manipulated through full, partial or selective leaf removals at anthesis and thereafter. In developing fruitlets, defoliations reduced soluble sugars (up to 98%), but did not induce nitrogen and water deficiencies. Defoliation-induced abscission was preceded by rises (up to 20-fold) in the levels of abscisic acid (ABA) and 1-aminocyclopropane-1-carboxylic acid (ACC) in fruitlets. Applications to defoliated plants showed that ABA increased ACC levels (2-fold) and accelerated fruitlet abscission, whereas norflurazon and 2-aminoethoxyvinyl glycine reduced ACC (up to 65%) and fruitlet abscission (up to 40%). Only the full defoliation treatment reduced endogenous gibberellin A1 (4-fold), whereas exogenous gibberellins had no effect on abscission. The data indicate that fruitlet abscission induced by carbon shortage in citrus is regulated by ABA and ACC originating in the fruits, while gibberellins are apparently implicated in the maintenance of growth. In this system, ABA may act as a sensor of the intensity of the nutrient shortage that modulates the levels of ACC and ethylene, the activator of abscission. This proposal identifies ABA and ACC as components of the self-regulatory mechanism that adjusts fruit load to carbon supply, and offers a physiological basis for the photoassimilate competition-induced abscission occurring under natural conditions. Received: 19 February 1999 / Accepted: 14 August 1999  相似文献   

17.
Although mature citrus fruits [ Citrus sinensis (L.) Osbeck cv. Shamouti] did not abscise at the peduncle-shoot abscission zone (AZ–A) when incubated in ethylene environment, abscission processes did occur in a limited number of cell layers situated in the inner bark, the starch sheath region, and in the pith of AZ–A. These processes were regulated by 2,4-D and ethylene treatments. Cells responding to the "separation processes", particularly in the ethylene treatment, underwent either (a) cell wall swelling, dissolving and breakdown, or (b) growth and expansion in a radial plane. Further away from the dissolving area, the response of some cells of the mid and outer bark took the form of divisions or growth in a circumferential plane, while other cells remained unchanged. Non-responding tissues of the outer bark formed a "sleeve" of undissolved cells, and the vascular cylinder produced no abscission in AZ–A. It is concluded that the partial cell wall dissolution in AZ–A explains the increased activity of cellulase and polygalacturonase in the non-abscising AZ–A of the mature fruit (Greenberg et al. 1975. Physiol. Plant. 37: 1–7).  相似文献   

18.
Branchlets of broccoli (Brassica oleracea L.) were used to examine ethylene-stimulated chlorophyll catabolism. Branchlets treated with: 1) air (CK); 2) 1 µL·L–1 1-methylcyclopropene (1-MCP) for 14 hr at 20 °C; 3) 1000 µL·L–1 ethylene (C2H4) for 5 hr at 20 °C; or 4) 1-MCP then C2H4, were stored in the dark at 20 °C for up to 3 d. Chlorophyll (Chl) content and branchlet hue angle decreased during the storage period and 1-MCP treatment delayed this change. Chl degradation in broccoli was accelerated by exposure to C2H4, especially for Chl a. Prior treatment with 1-MCP prevented degreening stimulated by C2H4. Lipoxygenase activity was not altered by any of the treatments, however, 1-MCP with or without ethylene resulted in reduced activity of chlorophyllase (Chlase) and peroxidase (POD). Exposure to C2H4 stimulated Chlase activity and extended the duration of high POD activity. Treatment with 1-MCP followed by C2H4 resulted in reduced POD activity and delayed the increase in Chlase activity. The results suggest chlorophyll in broccoli can be degraded via the POD – hydrogen peroxide system. Exposure to C2H4 enhances activity of Chlase and extends the duration of high POD activity, and these responses may accelerate degreening. Treatment with 1-MCP delays yellowing of broccoli, an effect that may be due to the 1-MCP-induced reduction in POD and Chlase activities.  相似文献   

19.
Brassinolide (BR), a novel plant growth-regulating steroidal lactone, markedly retarded the abscission of leaf explants of Calamondin (Citrus madurensis Lour.), when dissolved in water and fed through the petiole. BR was effective at concentrations as low as 0.021 M, and showed a stronger effect than IAA which also retarded abscission. Trifluoperazine (TFP), an inhibitor of the calmodulin-calcium complex, accelerated abscission, and this acceleration could be counteracted by a simultaneous addition of IAA or BR, the effect of IAA being stronger. BR in lanolin applied to the cut surface of the leaf blade of the explant showed a weaker abscission-retarding effect than that applied in water via the petiole. BR and IAA also markedly retarded the abscission of fruitlet explants of Calamondin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号