首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
T. M. Butt  A. Beckett 《Protoplasma》1984,120(1-2):72-83
Summary An account of mitosis in the aphid-pathogenic, entomophthoraceous fungusErynia neoaphidis is presented. The mitotic apparatus is characterized by a closed, intranuclear, polarized spindle. Chromosomes are permanently attached by kinetochore microtubules (kcMTs) to the poles during mitosis. The spindle develops as the spindle pole bodies migrate and separate. At metaphase the eccentric spindle contains only kcMTs and is located in a relatively chromatinfree zone. Paired sister kinetochores are arranged in a broad metaphase plate. During anaphase kcMTs shorten, astral and nonchromosomal microtubules develop and elongate and the interpolar distance increases.  相似文献   

2.
Time-lapse cinematography and immunofluorescence microscopy were used to study cellular events during amoebal fusions and sexual plasmodium development in Physarum polycephalum. Amoebal fusions occurred frequently in mixtures of strains heteroallelic or homoallelic for the mating-type locus matA, but plasmodia developed only in the matA-heteroallelic cultures. These observations confirmed that matA controls development of fusion cells rather than cell fusion. Analysis of cell pedigrees showed that, in both types of culture, amoebae fused at any stage of the cell cycle except mitosis. In matA-heteroallelic fusion cells, nuclear fusion occurred in interphase about 2 h after cell fusion; interphase nuclear fusion did not occur in matA-homoallelic fusion cells. The diploid zygote, formed by nuclear fusion in matA-heteroallelic fusion cells, entered an extended period of cell growth which ended in the formation of a binucleate plasmodium by mitosis without cytokinesis. In contrast, no extension to the cell cycle was observed in matA-homoallelic fusion cells and mitosis was always accompanied by cytokinesis. In matA-homoallelic cultures, many of the binucleate fusion cells split apart without mitosis, regenerating pairs of uninucleate amoebae; in the remaining fusion cells, the nuclei entered mitosis synchronously and spindle fusion sometimes occurred, giving rise to a variety of products. Immunofluorescence microscopy showed that matA-heteroallelic fusion cells possessed two amoebal microtubule organizing centres, and that most zygotes possessed only one; amoebal microtubule organization was lost gradually over several cell cycles. In matA-homoallelic cultures, all the cells retained amoebal microtubule organization.  相似文献   

3.
Mitosis in vegetative cells of the siphonocladalean algaBoergesenia forbesii (Harvey) Feldmann was investigated mainly by electron microscopy. The mitotic spindle was centric and closed. The interphase nucleus contained a spherical nucleolus. The nucleolus was slightly dispersed at prophase, but nucleolar materials remained during nearly all stages of mitosis. Kinetochores were evident on chromosomes. The polar regions of nuclear envelope had no fenestrae during mitosis. Anaphase separation of the chromosomes was asynchronous. Elongation of interzonal spindle at telophase separated the two daughter nuclei widely. The ultrastructural features of mitosis inB. forbesii revealed by the present investigation are compared with those of other siphonous and siphonocladous algae in the Ulvophyceae.  相似文献   

4.
Summary The interphase nucleus ofLeishmania adleri has clumps of chromatin associated with the nuclear envelope and a large centrally located nucleolus. Prior to mitosis the basal bodies replicate at the cell anterior. Subsequently, dense plaques appear in the equatorial region of the nucleus at the time of spindle development. Microtubules appear in the nucleus adjacent to the nuclear envelope and embedded in the matrix of the plaques. A central spindle composed of a single bundle of microtubules develops and spans the nucleus. Plaques and nucleolar components laterally associate with the spindle and migrate towards the poles. The central spindle elongates to three to four times its original length separating the forming daughter nuclei and producing an interzonal spindle. A remnant of the interzonal spindle remains attached to each of the daughter nuclei until late into cytokinesis. The kinetoplast does not divide until after the completion of mitosis.  相似文献   

5.
Cytological observations have shown that the presence of unstable minichromosomes can delay progression through the early stages of mitosis in fission yeast (Schizosaccharomyces pombe), suggesting that such minichromosomes may provide a useful tool for examining the system that regulates the coordinated segregation of chromosomes. One such unstable minichromosome is a large circular minichromosome. We previously showed that the mitotic instability of this minichromosome is probably due to the frequent occurrence of catenated forms of DNA after replication. To identify genes involved in the regulation of chromosome behavior in mitosis, we isolated mutants which stabilized this minichromosome. Three loci (stal, sta2, and sta3) were identified. Two of them were found to be suppressors of temperature-sensitive mutations in cdc2, which encodes the catalytic subunit of muturation promoting factor (MPF). They show no linkage to, and are thus different from, sucl, and cdc13, previously identified as genes that interact with cdc2. The other mutation mapped to a gene previously identified as being required for the correct formation of the mitotic spindle. Data provided in this study suggest that the sta genes are involved in the regulation of spindle dynamics to ensure proper chromosome segregation during mitosis.  相似文献   

6.
T. M. Butt  R. A. Humber 《Protoplasma》1989,151(2-3):115-123
Summary Mitosis in a mite-pathogenic species ofNeozygites (Zygomycetes: Entomophthorales) was investigated by indirect immunofluorescence microscopy using an antibody against -tubulin for visualization of microtubules (MTs). DAPI and rhodamine-conjugated phalloidin were used to stain chromatin and actin, respectively. Salient features of mitosis inNeozygites sp. are (1) a strong tendency for mitotic synchrony in any given cell, (2) conical protrusions at the poles of metaphase and anaphase nuclei revealed by actin staining, (3) absence of astral and other cytoplasmic MTs, (4) a spindle that occupies most of the nuclear volume at metaphase, (5) a spindle that remains symmetrical throughout most of mitosis, (6) kinetochore MTs that shorten during anaphase A, (7) a central spindle that elongates during anaphase B, pushing the daughter nuclei into the cell apices, and (8) interpolar MTs that continue to elongate even after separation of the daughter nuclei. Cortical cytoplasmic MTs are present in a few interphasic and post-cytokinetic cells. The data presented show thatNeozygites possesses features unique to this genus and support the erection of theNeozygitaceae as a separate family in theEntomophthorales.Abbreviations DAPI 4,6-diamidino-2-phenylindole - MT microtubule - SPB spindle pole body  相似文献   

7.
Frans A. C. Kouwets 《Protoplasma》1996,191(3-4):191-204
Summary The ultrastructure of mitosis and cytokinesis is studied in the typical and a multicentriolar form of the multinucleate green algaBracteacoccus minor (Chodat) Petrovà. These processes are essentially identical in both forms, and are similar to those in other uni- and multinucleate chlorellalean algae. The mitotic spindle is closed and centric, and a fragmentary perinuclear envelope is present. In multinuclear cells mitosis is synchronous and may occur at the same time as cytokinesis. Cleavage is simultaneous and centrifugal, starting near the nucleus-associated centrioles and apparently mediated by phycoplast microtubules of the trochoplast type. Flagellated wall-less spores are usually formed. In the typical form ofB. minor, each interphase nucleus is associated with two mature centrioles (= one set) which function as centrosomal markers. At the onset of mitosis these centrioles duplicate and segregate and eventually establish the two poles of the spindle, where polar fenestrae develop in the nuclear envelope. In the multicentriolar form, however, each interphase nucleus generally is associated with two or three sets of centrioles. Consequently, during mitosis each half-spindle is associated with two or three sets. These centrioles are not necessarily all associated with the fenestrae at the spindle poles, but one or more sets are frequently associated with the nuclear membrane, more or less remote from the nuclear poles. However, the spindle in this multicentriolar form remains essentially bipolar. Cleavage generally results in zoospores with two, four or six flagella. The behaviour of the extra centrioles during the cell cycle and their possible relationship with centrosomes are discussed.  相似文献   

8.
Summary The ultrastructure of mitosis and cytokinesis of the uninucleateTribonema regulare has been investigated by employing transmission electron microscopy. Prophase is characterized by settlement of a pair of centrioles at the presumptive poles of the spindle, metaphase by equatorial bulging of the nucleus, anaphase by non-synchronous separation of the chromosomes, and telophase by a persistent, strongly elongated, interzonal spindle. Throughout mitosis, at each pole dictyosomes are associated with the polar gaps of the nuclear envelope that otherwise remains intact. Cytokinesis does not immediately follow mitosis; from the static images it can be concluded that it is necessary for the daughter nuclei to approach each other before cytokinesis is initiated by complete division of the protoplast via plasma membrane cleavage. Afterwards, a ring of cell wall material is deposited close near the lateral wall in the plane of protoplast separation followed by a simultaneous or centripetal development of a single integral partitioning septum. Once the septum is completed, the cylindrical portion of the H-shaped segment is manufactured. The phylogenetic position ofTribonema amongst those algae, which may have evolved from unicells into filaments, is discussed.  相似文献   

9.
Summary InSaprolegnia, kinetochore microtubules persist throughout the mitotic nuclear cycle but, whilst present at leptotene, they disappear coincidently with the formation of synaptonemal complexes at pachytene and reform at metaphase I. In some other fungi chromosomal segregation is random in meiosis and non-random in mitosis. The attachment of chromosomes to persistent kinetochore microtubules in mitosis, but not meiosis, inSaprolegnia provides a plausible explanation for such behaviour. At metaphase I each bivalent is connected to the spindle by 2 laterally paired kinetochore microtubules whereas at metaphase II (as in mitosis) each univalent bears only one kinetochore microtubule, thus showing that all kinetochores are fully active at all stages of meiosis.  相似文献   

10.
A. Schulz 《Protoplasma》1988,142(2-3):176-187
Summary The spatial and temporal organization of the microtubular cytoskeleton at the transitional stage of mitosis and cytokinesis has been studied in the chaetophoralean green algaAphanochaete magna using indirect immunofluorescence light microscopy and transmission electron microscopic analysis of serial sections including computer-aided three-dimensional reconstruction. At late mitosis, elaborate asterlike microtubule systems including bundles interconnecting both centriolar regions are present. These systems disappear a the onset of interzonal spindle disintegration. The incipient phycoplast consists of a star-shaped microtubule assemblage projecting from the intact interzonal spindle. It develops strongly at the time of spindle disintegration, later on it becomes compressed by daughter nuclei movement. Cell plate formation is associated with a two-dimensional phycoplast. Phycoplast microtubules remain for a while associated with the completed cross wall but finally they depolymerize. The general occurrence of astral microtubule systems (includingA. magna) is evaluated. The subsequent developmental stages of the phycoplast, formation, maturation and depolymerization, are discussed.Abbreviations IF immunofluorescence - IZS interzonal spindle - MT microtubule - MTOC microtubule organizing center - TEM transmission electron microscopy  相似文献   

11.
The formation of the nuclear envelope in the mitosis ofSpirogyra was studied with an electron microscope. The nuclear envelope was disrupted around the spindle equator in the metaphase. Many small vesicles were observed in the metaphase spindle. These vesicles surrounded the masses of chromosomes and nucleolar substance in the early anaphase, and they fused with each other to form daughter nuclear envelopes during the early anaphase. The formation of new envelopes from small vesicles at such an early mitotic anaphase is reported here for the first time. The possible origin of these vesicles is also discussed.  相似文献   

12.
Poly(ADP-ribosyl)ation is an unique posttranslational modification and required for spindle assembly and function during mitosis. However, the molecular mechanism of poly(ADP-ribose) (PAR) in mitosis remains elusive. Here, we show the evidence that PAR is recognized by ECT2, a key guanine nucleotide exchange factor in mitosis. The BRCT domain of ECT2 directly binds to PAR both in vitro and in vivo. We further found that α-tubulin is PARylated during mitosis. PARylation of α-tubulin is recognized by ECT2 and recruits ECT2 to mitotic spindle for completing mitosis. Taken together, our study reveals a novel mechanism by which PAR regulates mitosis.  相似文献   

13.
D. B. Gromov 《Protoplasma》1985,126(1-2):130-139
Summary The fine structure ofAmoeba proteus nuclei has been studied during interphase and mitosis. The interphase nucleus is discoidal, the nuclear envelope is provided with a honeycomb layer on the inside. There are numerous nucleoli at the periphery and many chromatin filaments and nuclear helices in the central part of nucleus.In prophase the nucleus becomes spherical, the numerous chromosomes are condensed, and the number of nucleoli decreases. The mitotic apparatus forms inside the nucleus in form of an acentric spindle. In metaphase the nuclear envelope loses its pore complexes and transforms into a system of rough endoplasmic reticulum cisternae (ERC) which separates the mitotic apparatus from the surrounding cytoplasm; the nucleoli and the honeycomb layer disappear completely. In anaphase the half-spindles become conical, and the system of ERC around the mitotic spindle persists. Electron dense material (possibly microtubule organizing centers—MTOCs) appears at the spindle pole regions during this stage. The spindle includes kinetochore microtubules attached to the chromosomes, and non-kinetochore ones which pierce the anaphase plate. In telophase the spindle disappears, the chromosomes decondense, and the nuclear envelope becomes reconstructed from the ERC. At this stage, nucleoli can already be revealed with the light microscope by silver staining; they are visible in ultrathin sections as numerous electron dense bodies at the periphery of the nucleus.The mitotic chromosomes consist of 10 nm fibers and have threelayered kinetochores. Single nuclear helices still occur at early stages of mitosis in the spindle region.  相似文献   

14.
T. Kanbe  K. Tanaka 《Protoplasma》1985,129(2-3):198-213
Summary Mitosis in the dermatophyteMicrosporum canis was studied by freeze substitution and electron microscopy, and analyzed by three dimensional reconstruction from serial sections of the mitotic nuclei. The interphase nucleus has associated nucleus-associated organelle (NAO) on a portion of the outer surface of the nuclear envelope, subjacent to which there was dense intranuclear material. The NAO divided and separated on the envelope, and a spindle was formed. The spindle was composed mostly of microtubules extended between opposite NAOs. Pairing of kinetochores was observed in the spindle from an early stage of development, when chromosomes were not so condensed, and remained unchanged while chromosome condensation proceeded until metaphase. Before the completion of nuclear division, daughter nuclei were connected by a narrow spindle channel, and then the nucleolus, whose structure underwent minimal change during mitosis, was eliminated into the cytoplasm.  相似文献   

15.
Cultures of amoebae of the mutant strain ATS23 isolated from strain CLd of Physarum polycephalum contain multinucleate cells and cells with increased nuclear DNA content. Plasmodia derived from ATS23 clones show abnormal morphology and defective sporulation. All abnormalities are enhanced by high incubation temperature (31 °C). Genetic analysis suggested that all the abnormalities were caused by a single mutation, denoted hts-23. The kinetics of plasmodium formation were followed in cultures of apogamic amoebae carrying hts-23 and hts+ (wild type) respectively. Results indicated that, relative to wild type, hts-23 did not increase the rate of plasmodium formation. There was evidence that, in both mutant and wild-type strains, commitment to plasmodium development occurred in uninucleate cells. Analysis of cell pedigrees by time-lapse cinematography indicated that the primary abnormal event in cultures of hts-23 amoebae was failure of cytokinesis; an apparently complete cleavage furrow was formed but cell separation failed, resulting in a binucleate cell. This event occurred randomly in pedigrees in which the majority of divisions were completed normally; its frequency increased during incubation at 31 °C. All other abnormalities in hts-23 amoebal cultures could be attributed to this primary event, assuming that DNA synthesis continued in the absence of cytokinesis and that the binucleate cells underwent the amoebal type of “open” mitosis, allowing the possibility of spindle fusion. This implies that the acquisition of “closed” mitosis is an essential early step in plasmodium development.  相似文献   

16.
Electron microscopy of glutaraldehyde-osmium-fixed samples of haploid myxamoebae and diploid plasmodia of the myxomycete Physarum flavicomum Berk. reveal dissimilar spindle apparatus during mitosis in the two cell types. Myxamoebae exhibit an astral type of mitosis with centrioles at the poles and nuclear envelope breakdown during prophase. Plasmodial nuclei lack centrioles at mitosis and have an intranuclear spindle, with nuclear envelope persisting during the entire division. Coated vesicles are noted during prophase and telophase in myxamoebae and their role in spindle formation and dispersion is suggested.  相似文献   

17.
Summary In strain CL ofPhysarum polycephalum, multinucleate, haploid plasmodia form within clones of uninucleate, haploid amoebae. Analysis of plasmodium development, using time-lapse cinematography, shows that binucleate cells arise from uninucleate cells, by mitosis without cytokinesis. Either one or both daughter cells, from an apparently normal amoebal division, can enter an extended cell cycle (28.7 hours compared to the 11.8 hours for vegetative amoebae) that ends in the formation of a binucleate cell. This long cycle is accompanied by extra growth; cells that become binucleate are twice as big as amoebae at the time of mitosis. Nuclear size also increases during the extended cell cycle: flow cytometric analysis indicates that this is not associated with an increase over the haploid DNA content. During the extended cell cycle uninucleate cells lose the ability to transform into flagellated cells and also become irreversibly committed to plasmodium development. It is shown that commitment occurs a maximum of 13.5 hours before binucleate cell formation and that loss of ability to flagellate precedes commitment by 3–5 hours. Plasmodia develop from binucleate cells by cell fusions and synchronous mitoses without cytokinesis.Abbreviations CL Colonia Leicester - DSDM Dilute semi-defined medium - FKB Formalin killed bacterial suspension - IMT Intermitotic time - LIA Liver infusion agar - SBS Standard bacterial suspension - SDM Semi-defined medium  相似文献   

18.
TMBP200 from tobacco BY-2 cells is a member of the highly conserved family of microtubule-associated proteins that includes Xenopus XMAP215, human TOGp, and Arabidopsis MOR1/GEM1. XMAP215 homologues have an essential role in spindle assembly and function in animals and yeast, but their role in plant mitosis is not fully clarified. Here, we show by immunoblot analysis that TMBP200 levels in synchronously cultured BY-2 cells increased when the cells entered mitosis, thus indicating that TMBP200 plays an important role in mitosis in tobacco. To investigate the role of TMBP200 in mitosis, we employed inducible RNA interference to silence TMBP200 expression in BY-2 cells. The resulting depletion of TMBP200 caused severe defects in bipolar spindle formation and resulted in the appearance of multinucleated cells with variable-sized nuclei. This finding indicates that TMBP200 has an essential role in bipolar spindle formation and function.  相似文献   

19.
The orientation of the mitotic spindle plays a central role in specifying stem cell-renewal by enabling interaction of the daughter cells with external cues: the daughter cell closest to the hub region is instructed to self-renew, whereas the distal one starts to differentiate. Here, we have analyzed male gametogenesis in DSas-4 Drosophila mutants and we have reported that spindle alignment and asymmetric divisions are properly executed in male germline stem cells that lack centrioles. Spermatogonial divisions also correctly proceed in the absence of centrioles, giving rise to cysts of 16 primary spermatocytes. By contrast, abnormal meiotic spindles assemble in primary spermatocytes. These results point to different requirements for centrioles during male gametogenesis of Drosophila. Spindle formation during germ cell mitosis may be successfully supported by an acentrosomal pathway that is inadequate to warrant the proper execution of meiosis.  相似文献   

20.
Summary Aspects of mitosis in the dinoflagellateAmphidinium carterae have been examined using TEM, SEM and fluorescence immunochemistry. The extranuclear spindle is composed of 2–4 bundles of microtubules arranged into two interdigitated half-spindles. Unlike previous reports of dinomitosis, the spindle bundles converge at the poles. These bundles of microtubules are inserted into a multilobed, vesiculate body containing electron opaque, amorphous material. This spindle pole body has ribosomes associated with it and is continuous with the endoplasmic reticulum. Chromosomes are attached to the nuclear envelope, which is persistent throughout mitosis. Kinetochore microtubules attach to the nuclear envelope via elongate electron dense kinetochores (one microtubule per daughter kinetochore). Several microtubules pass alongside the kinetochore, forming a halo of 3–4 spindle microtubules. Electron dense connections can be seen between some of these microtubules and the kinetochore. Chromosome segregation appears to be a function of spindle elongation (anaphase B), since chromosome-to-pole distance (anaphase A) remains relatively unchanged throughout mitosis.Abbreviations DABCO 1,4 diazabicyclo(2,2,2)octane - EGTA ethyleneglycol-bis-(-aminoethyl ether)-N,N,NN-tetraacetic acid - PIPES piperazine-N,N-bis(2-thanesulfonic acid) Supported by a Charles and Johanna Bush Predoctoral Fellowship to S. B. B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号