首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Yeast Snf4 is a prototype of activating gamma-subunits of conserved Snf1/AMPK-related protein kinases (SnRKs) controlling glucose and stress signaling in eukaryotes. The catalytic subunits of Arabidopsis SnRKs, AKIN10 and AKIN11, interact with Snf4 and suppress the snf1 and snf4 mutations in yeast. By expression of an Arabidopsis cDNA library in yeast, heterologous multicopy snf4 suppressors were isolated. In addition to AKIN10 and AKIN11, the deficiency of yeast snf4 mutant to grown on non-fermentable carbon source was suppressed by Arabidopsis Myb30, CAAT-binding factor Hap3b, casein kinase I, zinc-finger factors AZF2 and ZAT10, as well as orthologs of hexose/UDP-hexose transporters, calmodulin, SMC1-cohesin and Snf4. Here we describe the characterization of AtSNF4, a functional Arabidopsis Snf4 ortholog, that interacts with yeast Snf1 and specifically binds to the C-terminal regulatory domain of Arabidopsis SnRKs AKIN10 and AKIN11.  相似文献   

2.
3.
Sucrose nonfermenting-1 (Snf1)-related protein kinase-1 (SnRK1) of plants is a global regulator of carbon metabolism through the modulation of enzyme activity and gene expression. It is structurally and functionally related to the yeast protein kinase, Snf1, and to mammalian AMP-activated protein kinase. Two DNA sequences from Arabidopsis thaliana, previously known only by their data base accession numbers of NM_ 125448.3 (protein ID NP_200863) and NM_114393.3 (protein ID NP_566876) each functionally complemented a Saccharomyces cerevisiae elm1 sak1 tos3 triple mutant. This indicates that the Arabidopsis proteins are able to substitute for one of the missing yeast upstream kinases, which are required for activity of Snf1. Both plant proteins were shown to phosphorylate a peptide with the amino acid sequence of the phosphorylation site in the T-loop of SnRK1 and by inference SnRK1 in Arabidopsis. The proteins encoded by NM_125448.3 and NM_114393.3 have been named AtSnAK1 and AtSnAK2 (Arabidopsis thaliana SnRK1-activating kinase), respectively. We believe this is the first time that upstream activators of SnRK1 have been described in any plant species.  相似文献   

4.
The Snf1/AMP-activated protein kinase (AMPK) family is important for metabolic regulation and is highly conserved from yeast to mammals. The upstream kinases are also functionally conserved, and the AMPK kinases LKB1 and Ca2+/calmodulin-dependent protein kinase kinase activate Snf1 in mutant yeast cells lacking the native Snf1-activating kinases, Sak1, Tos3, and Elm1. Here, we exploited the yeast genetic system to identify members of the mammalian AMPK kinase family by their function as Snf1-activating kinases. A mouse embryo cDNA library in a yeast expression vector was used to transform sak1Delta tos3Delta elm1Delta yeast cells. Selection for a Snf+ growth phenotype yielded cDNA plasmids expressing LKB1, Ca2+/calmodulin-dependent protein kinase kinase, and transforming growth factor-beta-activated kinase (TAK1), a member of the mitogen-activated protein kinase kinase kinase family. We present genetic and biochemical evidence that TAK1 activates Snf1 protein kinase in vivo and in vitro. We further show that recombinant TAK1, fused to the activation domain of its binding partner TAB1, phosphorylates Thr-172 in the activation loop of the AMPK catalytic domain. Finally, expression of TAK1 and TAB1 in HeLa cells or treatment of cells with cytokines stimulated phosphorylation of Thr-172 of AMPK. These findings indicate that TAK1 is a functional member of the Snf1/AMPK kinase family and support TAK1 as a candidate for an authentic AMPK kinase in mammalian cells.  相似文献   

5.
Arabidopsis Snf1-related protein kinases (SnRKs) are implicated in pleiotropic regulation of metabolic, hormonal and stress responses through their interaction with the kinase inhibitor PRL1 WD-protein. Here we show that SKP1/ASK1, a conserved SCF (Skp1-cullin-F-box) ubiquitin ligase subunit, which suppresses the skp1-4 mitotic defect in yeast, interacts with the PRL1-binding C-terminal domains of SnRKs. The same SnRK domains recruit an SKP1/ASK1-binding proteasomal protein, alpha4/PAD1, which enhances the formation of a trimeric SnRK complex with SKP1/ASK1 in vitro. By contrast, PRL1 reduces the interaction of SKP1/ASK1 with SnRKs. SKP1/ASK1 is co-immunoprecipitated with a cullin SCF subunit (AtCUL1) and an SnRK kinase, but not with PRL1 from Arabidopsis cell extracts. SKP1/ASK1, cullin and proteasomal alpha-subunits show nuclear co-localization in differentiated Arabidopsis cells, and are observed in association with mitotic spindles and phragmoplasts during cell division. Detection of SnRK in purified 26S proteasomes and co-purification of epitope- tagged SKP1/ASK1 with SnRK, cullin and proteasomal alpha-subunits indicate that the observed protein interactions between SnRK, SKP1/ASK1 and alpha4/PAD1 are involved in proteasomal binding of an SCF ubiquitin ligase in Arabidopsis.  相似文献   

6.
Recombineering, permitting precise modification of genes within bacterial artificial chromosomes (BACs) through homologous recombination mediated by lambda phage-encoded Red proteins, is a widely used powerful tool in mouse, Caenorhabditis and Drosophila genetics. As Agrobacterium-mediated transfer of large DNA inserts from binary BACs and TACs into plants occurs at low frequency, recombineering is so far seldom exploited in the analysis of plant gene functions. We have constructed binary plant transformation vectors, which are suitable for gap-repair cloning of genes from BACs using recombineering methods previously developed for other organisms. Here we show that recombineering facilitates PCR-based generation of precise translational fusions between coding sequences of fluorescent reporter and plant proteins using galK-based exchange recombination. The modified target genes alone or as part of a larger gene cluster can be transferred by high-frequency gap-repair into plant transformation vectors, stably maintained in Agrobacterium and transformed without alteration into plants. Versatile application of plant BAC-recombineering is illustrated by the analysis of developmental regulation and cellular localization of interacting AKIN10 catalytic and SNF4 activating subunits of Arabidopsis Snf1-related (SnRK1) protein kinase using in vivo imaging. To validate full functionality and in vivo interaction of tagged SnRK1 subunits, it is demonstrated that immunoprecipitated SNF4-YFP is bound to a kinase that phosphorylates SnRK1 candidate substrates, and that the GFP- and YFP-tagged kinase subunits co-immunoprecipitate with endogenous wild type AKIN10 and SNF4.  相似文献   

7.
Members of the SNF1-related protein kinase-1 (SnRK1) subfamily of protein kinases are higher plant homologues of mammalian AMP-activated and yeast SNF1 protein kinases. Based on analogies with the mammalian system, we surmised that the SnRK1 kinases would be regulated by phosphorylation on a threonine [equivalent to Thr175 in Arabidopsis thaliana SnRK1 (AKIN10)] within the 'T loop' between the conserved DFG and APE motifs. We have raised an antibody against a phosphopeptide based on this sequence, and used it to show that inactivation of two spinach SnRK1 kinases by protein phosphatases, and reactivation by a mammalian upstream protein kinase, is associated with changes in the phosphorylation state of this threonine. We also show that dephosphorylation of this threonine by protein phosphatases, and consequent inactivation, is inhibited by low concentrations of 5'-AMP, via binding to the substrate (i.e. the kinase). This is the first report showing that the plant SnRK1 kinases are regulated by AMP in a manner similar to their mammalian counterparts. The possible physiological significance of these findings is discussed.  相似文献   

8.
A novel protein phosphatase in Arabidopsis thaliana was identified by database searching. This protein, designated AtPTPKIS1, contains a protein tyrosine phosphatase (PTP) catalytic domain and a kinase interaction sequence (KIS) domain. It is predicted to interact with plant SNF1-related kinases (SnRKs), representing central regulators of metabolic and stress responses. AtPTPKIS1 has close homologues in other plant species, both dicots and monocots, but is not found in other kingdoms. The tomato homologue of AtPTPKIS1 was expressed as a recombinant protein and shown to hydrolyse a generic phosphatase substrate, and phosphotyrosine residues in synthetic peptides. The KIS domain of AtPTPKIS1 was shown to interact with the plant SnRK AKIN11 both in vivo in the yeast two-hybrid system, and in vitro in a GST-fusion 'pull down' assay. The genomes of Arabidopsis and other plants contain further predicted proteins related to AtPTPKIS1, which could also interact with SnRKs and act in novel regulatory and signalling pathways.  相似文献   

9.
The Snf1/AMP-activated protein kinase (AMPK) family is important for metabolic regulation in response to stress. In the yeast Saccharomyces cerevisiae, the Snf1 kinase cascade comprises three Snf1-activating kinases, Pak1, Tos3, and Elm1. The only established mammalian AMPK kinase is LKB1. We show that LKB1 functions heterologously in yeast. In pak1Delta tos3Delta elm1Delta cells, LKB1 activated Snf1 catalytic activity and conferred a Snf(+) growth phenotype. Coexpression of STRADalpha and MO25alpha, which form a complex with LKB1, enhanced LKB1 function. Thus, the Snf1/AMPK kinase cascade is functionally conserved between yeast and mammals. Ca(2+)/calmodulin-dependent kinase kinase (CaMKK) shows more sequence similarity to Pak1, Tos3, and Elm1 than does LKB1. When expressed in pak1Delta tos3Delta elm1Delta cells, CaMKKalpha activated Snf1 catalytic activity, restored the Snf(+) phenotype, and also phosphorylated the activation loop threonine of Snf1 in vitro. These findings indicate that CaMKKalpha is a functional member of the Snf1/AMPK kinase family and support CaMKKalpha as a likely candidate for an AMPK kinase in mammalian cells. Analysis of the function of these heterologous kinases in yeast provided insight into the regulation of Snf1. When activated by LKB1 or CaMKKalpha, Snf1 activity was significantly inhibited by glucose, suggesting that a mechanism independent of the activating kinases can mediate glucose signaling in yeast. Finally, this analysis provided evidence that Pak1 functions in another capacity, besides activating Snf1, to regulate the nuclear enrichment of Snf1 protein kinase in response to carbon stress.  相似文献   

10.
Trehalose-6-phosphate is a 'sugar signal' that regulates plant metabolism and development. The Arabidopsis genome encodes trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphatase (TPP) enzymes. It also encodes class II proteins (TPS isoforms 5-11) that contain both TPS-like and TPP-like domains, although whether these have enzymatic activity is unknown. In this paper, we show that TPS5, 6 and 7 are phosphoproteins that bind to 14-3-3 proteins, by using 14-3-3 affinity chromatography, 14-3-3 overlay assays, and by co-immunoprecipitating TPS5 and 14-3-3 isoforms from cell extracts. GST-TPS5 bound to 14-3-3s after in vitro phosphorylation at Ser22 and Thr49 by either mammalian AMP-activated protein kinase (AMPK) or partially purified plant Snf1-related protein kinase 1 (SnRK1s). Dephosphorylation of TPS5, or mutation of either Ser22 or Thr49, abolished binding to 14-3-3s. Ser22 and Thr49 are both conserved in TPS5, 7, 9 and 10. When GST-TPS5 was expressed in human HEK293 cells, Thr49 was phosphorylated in response to 2-deoxyglucose or phenformin, stimuli that activate the AMPK via the upstream kinase LKB1. 2-deoxyglucose stimulated Thr49 phosphorylation of endogenous TPS5 in Arabidopsis cells, whereas phenformin did not. Moreover, extractable SnRK1 activity was increased in Arabidopsis cells in response to 2-deoxyglucose. The plant kinase was inactivated by dephosphorylation and reactivated by phosphorylation with human LKB1, indicating that elements of the SnRK1/AMPK pathway are conserved in Arabidopsis and human cells. We hypothesize that coordinated phosphorylation and 14-3-3 binding of nitrate reductase (NR), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (F2KP) and class II TPS isoforms mediate responses to signals that activate SnRK1.  相似文献   

11.
All life forms on earth require a continuous input and monitoring of carbon and energy supplies. The AMP-activated kinase (AMPK)/sucrose non-fermenting1 (SNF1)/Snf1-related kinase1 (SnRK1) protein kinases are evolutionarily conserved metabolic sensors found in all eukaryotic organisms from simple unicellular fungi (yeast SNF1) to animals (AMPK) and plants (SnRK1). Activated by starvation and energy-depleting stress conditions, they enable energy homeostasis and survival by up-regulating energy-conserving and energy-producing catabolic processes, and by limiting energy-consuming anabolic metabolism. In addition, they control normal growth and development as well as metabolic homeostasis at the organismal level. As such, the AMPK/SNF1/SnRK1 kinases act in concert with other central signaling components to control carbohydrate uptake and metabolism, fatty acid and lipid biosynthesis and the storage of carbon energy reserves. Moreover, they have a tremendous impact on developmental processes that are triggered by environmental changes such as nutrient depletion or stress. Although intensive research by many groups has partly unveiled the factors that regulate AMPK/SNF1/SnRK1 kinase activity as well as the pathways and substrates they control, several fundamental issues still await to be clarified. In this review, we will highlight these issues and focus on the structure, function and regulation of the AMPK/SNF1/SnRK1 kinases.  相似文献   

12.
13.
The AMPK/SNF1/SnRK1 protein kinases are a family of ancient and highly conserved eukaryotic energy sensors that function as heterotrimeric complexes. These typically comprise catalytic α subunits and regulatory β and γ subunits, the latter function as the energy‐sensing modules of animal AMPK through adenosine nucleotide binding. The ability to monitor accurately and adapt to changing environmental conditions and energy supply is essential for optimal plant growth and survival, but mechanistic insight in the plant SnRK1 function is still limited. In addition to a family of γ‐like proteins, plants also encode a hybrid βγ protein that combines the Four‐Cystathionine β‐synthase (CBS)‐domain (FCD) structure in γ subunits with a glycogen‐binding domain (GBD), typically found in β subunits. We used integrated functional analyses by ectopic SnRK1 complex reconstitution, yeast mutant complementation, in‐depth phylogenetic reconstruction, and a seedling starvation assay to show that only the hybrid KINβγ protein that recruited the GBD around the emergence of the green chloroplast‐containing plants, acts as the canonical γ subunit required for heterotrimeric complex formation. Mutagenesis and truncation analysis further show that complex interaction in plant cells and γ subunit function in yeast depend on both a highly conserved FCD and a pre‐CBS domain, but not the GBD. In addition to novel insight into canonical AMPK/SNF/SnRK1 γ subunit function, regulation and evolution, we provide a new classification of plant FCD genes as a convenient and reliable tool to predict regulatory partners for the SnRK1 energy sensor and novel FCD gene functions.  相似文献   

14.
The yeast Snf1, animal AMPK, and plant SnRK1 protein kinases constitute a family of related proteins that have been proposed to serve as metabolic sensors of the eukaryotic cell. We have previously reported the characterization of two redundant SnRK1 encoding genes (PpSNF1a and PpSNF1b) in the moss Physcomitrella patens. Phenotypic analysis of the snf1a snf1b double knockout mutant suggested that SnRK1 is important for the plant’s ability to recognize and adapt to conditions of limited energy supply, and also suggested a possible role of SnRK1 in the control of plant development. We have now used a yeast two-hybrid system to screen for PpSnf1a interacting proteins. Two new moss genes were found, PpSKI1 and PpSKI2, which encode highly similar proteins with homologues in vascular plants. Fusions of the two encoded proteins to the green fluorescent protein localize to the nucleus. Knockout mutants for either gene have an excess of gametophores under low light conditions, and exhibit reduced gametophore stem lengths. Possible functions of the new proteins and their connection to the SnRK1 kinase are discussed.  相似文献   

15.
Domain fusion between SNF1-related kinase subunits during plant evolution   总被引:9,自引:0,他引:9  
Members of the conserved SNF1/AMP-activated protein kinase (AMPK) family regulate cellular responses to environmental and nutritional stress in eukaryotes. Yeast SNF1 and animal AMPKs form a complex with regulatory SNF4/AMPKγ and SIP1/SIP2/GAL83/AMPKβ subunits. The β-subunits function as target selective adaptors that anchor the catalytic kinase and regulator SNF4/γ-subunits to their kinase association (KIS) and association with the SNF1 complex (ASC) domains. Here we demonstrate that plant SNF1-related protein kinases (SnRKs) interact with an adaptor-regulator protein, AKINβγ, in which an N-terminal KIS domain characteristic of β-subunits is fused with a C-terminal region related to the SNF4/AMPKγ proteins. AKINβγ is constitutively expressed in plants, suppresses the yeast Δsnf4 mutation, and shows glucose-regulated interaction with the Arabidopsis SnRK, AKIN11. Our results suggest that evolution of AKINβγ reflects a unique function of SNF1-related protein kinases in plant glucose and stress signalling.  相似文献   

16.
17.
The plant hormone abscisic acid (ABA) orchestrates plant adaptive responses to a variety of stresses, including drought. This signaling pathway is regulated by reversible protein phosphorylation, and genetic evidence demonstrated that several related protein phosphatases 2C (PP2Cs) are negative regulators of this pathway in Arabidopsis thaliana. Here, we developed a protein phosphatase profiling strategy to define the substrate preferences of the HAB1 PP2C implicated in ABA signaling and used these data to screen for putative substrates. Interestingly, this analysis designated the activation loop of the ABA activated kinase OST1, related to Snf1 and AMPK kinases, as a putative HAB1 substrate. We experimentally demonstrated that HAB1 dephosphorylates and deactivates OST1 in vitro. Furthermore, HAB1 and the related PP2Cs ABI1 and ABI2 interact with OST1 in vivo, and mutations in the corresponding genes strongly affect OST1 activation by ABA. Our results provide evidence that PP2Cs are directly implicated in the ABA-dependent activation of OST1 and further suggest that the activation mechanism of AMPK/Snf1-related kinases through the inhibition of regulating PP2Cs is conserved from plants to human.  相似文献   

18.
The yeast Snf1 protein kinase and its animal homologue, the AMP-activated protein kinase, play important roles in metabolic regulation, by serving as energy gauges that turn off energy-consuming processes and mobilize energy reserves during low-energy conditions. The closest homologue of these kinases in plants is Snf1-related protein kinase 1 (SnRK1). We have cloned two SnRK1-encoding genes, PpSNF1a and PpSNF1b, in the moss Physcomitrella patens, where gene function can be studied directly by gene targeting in the haploid gametophyte. A snf1a snf1b double knockout mutant is viable, but lacks all Snf1-like protein kinase activity. The mutant has a complex phenotype that includes developmental abnormalities, premature senescence and altered sensitivities to plant hormones. Remarkably, the double knockout mutant also requires continuous light, and is unable to grow in a normal day-night light cycle. This suggests that SnRK1 is needed for metabolic changes that help the plant cope with the dark hours of the night.  相似文献   

19.
The Snf1/AMPK kinases are intracellular energy sensors, and the AMPK pathway has been implicated in a variety of metabolic human disorders. Here we report the crystal structure of the kinase domain from yeast Snf1, revealing a bilobe kinase fold with greatest homology to cyclin-dependant kinase-2. Unexpectedly, the crystal structure also reveals a novel homodimer that we show also forms in solution, as demonstrated by equilibrium sedimentation, and in yeast cells, as shown by coimmunoprecipitation of differentially tagged intact Snf1. A mapping of sequence conservation suggests that dimer formation is a conserved feature of the Snf1/AMPK kinases. The conformation of the conserved alphaC helix, and the burial of the activation segment and substrate binding site within the dimer, suggests that it represents an inactive form of the kinase. Taken together, these studies suggest another layer of kinase regulation within the Snf1/AMPK family, and an avenue for development of AMPK-specific activating compounds.  相似文献   

20.
The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号