首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Whole genome sequencing of several microbes has revealed thousands of genes of unknown function. A large proportion of these genes seem to confer subtle quantitative phenotypes or phenotypes that do not have a plate screen. We report a novel method to monitor such phenotypes, where the fitness of mutants is assessed in mixed cultures under competitive growth conditions, and the abundance of any individual mutant in the pool is followed by means of its unique feature, namely the mutation itself. A mixed population of yeast mutants, obtained through transposon mutagenesis, was subjected to selection. The DNA regions (targets) flanking the transposon, until nearby restriction sites, are then quantitatively amplified by means of a ligation-mediated PCR method, using transposon-specific and adapter-specific primers. The amplified PCR products correspond to mutated regions of the genome and serve as ‘mutant DNA fingerprints’ that can be displayed on a sequencing gel. The relative intensity of the amplified DNA fragments before and after selection match with the relative abundance of corresponding mutants, thereby revealing the fate of the mutants during selection. Using this method we demonstrate that UBI4, YDJ1 and HSP26 are essential for stress tolerance of yeast during ethanol production. We anticipate that this method will be useful for functional analysis of genes of any microbe amenable to insertional mutagenesis.  相似文献   

2.
Multicellular organisms can be regenerated from totipotent differentiated somatic cell or nuclear founders [1-3]. Organisms regenerated from clonally related isogenic founders might a priori have been expected to be phenotypically invariant. However, clonal regenerant animals display variant phenotypes caused by defective epigenetic reprogramming of gene expression [2], and clonal regenerant plants exhibit poorly understood heritable phenotypic ("somaclonal") variation [4-7]. Here we show that somaclonal variation in regenerant Arabidopsis lineages is associated with genome-wide elevation in DNA sequence mutation rate. We also show that regenerant mutations comprise?a distinctive molecular spectrum of base substitutions, insertions, and deletions that probably results from decreased DNA repair fidelity. Finally, we show that while regenerant base substitutions are a likely major genetic cause of the somaclonal variation of regenerant Arabidopsis lineages, transposon movement is unlikely to contribute substantially to that variation. We conclude that the phenotypic variation of regenerant plants, unlike that of regenerant animals, is substantially due to DNA sequence mutation.  相似文献   

3.
Genomic DNA microextraction: a method to screen numerous samples.   总被引:21,自引:0,他引:21  
Many experimental designs require the analysis of genomic DNA from a large number of samples. Although the polymerase chain reaction (PCR) can be used, the Southern blot is preferred for many assays because of its inherent reliability. The rapid acceptance of PCR, despite a significant rate of false positive/negative results, is partly due to the disadvantages of the sample preparation process for Southern blot analysis. We have devised a rapid protocol to extract high-molecular-weight genomic DNA from a large number of samples. It involves the use of a single 96-well tissue culture dish to carry out all the steps of the sample preparation. This, coupled with the use of a multichannel pipette, facilitates the simultaneous analysis of multiple samples. The procedure may be automated since no centrifugation, mixing, or transferring of the samples is necessary. The method has been used to screen embryonic stem cell clones for the presence of targeted mutations at the Hox-2.6 locus and to obtain data from human blood.  相似文献   

4.
Yeast surface display is a valuable, widely used method for protein engineering. However, current yeast display applications rely on the staining of epitope tags in order to verify full‐length presentation of the protein of interest on the cell surface. We aimed at developing a modified yeast display approach that relies on ribosomal skipping, thereby enabling the translation of two proteins from one open reading frame and, in that manner, generating an intracellular fluorescence signal. This improved setup is based on a 2A sequence that is encoded between the protein to be displayed and a gene for green fluorescent protein (GFP). The intracellular GFP fluorescence signal of yeast cells correlates with full‐length protein presentation and omits the need for the immunofluorescence detection of epitope tags. For method validation, shark‐derived IgNAR variable domains (vNAR) were subjected to affinity maturation using the 2A‐GFP system. Yeast library screening of full‐length vNAR variants which were detected via GFP expression yielded the same high‐affinity binder that had previously been isolated by our group using the conventional epitope tag‐based display format. The presented method obviates the need for additional immunofluorescence cell staining, offering an easy and cost‐friendly alternative to conventional epitope tag detections.  相似文献   

5.

Background  

An exciting application of genetic network is to predict phenotypic consequences for environmental cues or genetic perturbations. However, de novo prediction for quantitative phenotypes based on network topology is always a challenging task.  相似文献   

6.
《The Journal of cell biology》1996,135(6):1485-1500
A complete understanding of the molecular mechanisms of endocytosis requires the discovery and characterization of the protein machinery that mediates this aspect of membrane trafficking. A novel genetic screen was used to identify yeast mutants defective in internalization of bulk lipid. The fluorescent lipophilic styryl dye FM4-64 was used in conjunction with FACS to enrich for yeast mutants that exhibit internalization defects. Detailed characterization of two of these mutants, dim1-1 and dim2-1, revealed defects in the endocytic pathway. Like other yeast endocytosis mutants, the temperature-sensitive dim mutant were unable to endocytose FM4-64 or radiolabeled alpha-factor as efficiently as wild-type cells. In addition, double mutants with either dim1-delta or dim2-1 and the endocytosis mutants end4-1 or act1-1 displayed synthetic growth defects, indicating that the DIM gene products function in a common or parallel endocytic pathway. Complementation cloning of the DIM genes revealed identity of DIM1 to SHE4 and DIM2 to PAN1. Pan1p shares homology with the mammalian clathrin adaptor-associated protein, eps15. Both proteins contain multiple EH (eps15 homology) domains, a motif proposed to mediate protein-protein interactions. Phalloidin labeling of filamentous actin revealed profound defects in the actin cytoskeleton in both dim mutants. EM analysis revealed that the dim mutants accumulate vesicles and tubulo-vesicular structures reminiscent of mammalian early endosomes. In addition, the accumulation of novel plasma membrane invaginations where endocytosis is likely to occur were visualized in the mutants by electron microscopy using cationized ferritin as a marker for the endocytic pathway. This new screening strategy demonstrates a role for She4p and Pan1p in endocytosis, and provides a new general method for the identification of additional endocytosis mutants.  相似文献   

7.
An analysis of non-biotinylated camptothecin (CPT) binding to the C-20-biotinylated CPT binding peptide NSSQSARR was carried out using two methods, quartz-crystal microbalance (QCM) and surface plasmon resonance (SPR). The peptide was immobilized peptide on a sensor chip and showed a dissociation constant (KD) of approximately 0.1 microM against CPT in QCM and SPR experiments.  相似文献   

8.
We have isolated mutants defective in DNA topoisomerases and an endonuclease from the fission yeast Schizosaccharomyces pombe by screening individual extracts of mutagenized cells. Two type I topoisomerase mutants (top1) and three endonuclease mutants (end1) were all viable. The double mutant top1 end1 was also viable and, in its extract, Mg2+- and ATP- dependent type II activity could be detected. Three temperature-sensitive (ts-) mutants having heat-sensitive (hs-) type II enzymes were isolated, and the ts- marker cosegregated with the hs- type II activity. All the ts- mutations fell in one gene (top2) tightly linked to leul in chromosome II. The nuclear division of single top2 mutants was blocked at the restrictive temperature, but the formation of a septum was not inhibited so that the nucleus was cut across with the cell plate. In contrast, the double top1 top2 mutants were rapidly arrested at various stages of the cell cycle, showing a strikingly altered nuclear chromatin region. The type II topoisomerase may have an essential role in the compaction and/or segregation of chromosomes during the nuclear division but also complement the defect of the type I enzyme whose major function is the maintenance of chromatin organization throughout the cell cycle.  相似文献   

9.
We have characterized a simplified method to determine the relative thermal stability of single-chain antibodies by following the irreversible denaturation of scFv fusions on the surface of yeast by flow cytometry. The method was highly reproducible and correlated well with other methods used to monitor thermal denaturation of the soluble proteins. We found a range of thermal stabilities for wild-type single-chain antibodies with half-maximum denaturation temperatures between 43 and 61 degrees C. The ability to quantitate thermal stability of antibodies or other proteins that are immobilized on the surface of yeast allows rapid comparisons of primary structural information with stability. Thermal denaturation could be a useful parameter to consider in the choice of scFv fragments for various applications.  相似文献   

10.
Summary Mitochondrial DNA (mtDNA) replication in petite mutants ofSaccharomyces cerevisiae is generally less sensitive to inhibition by ethidium bromide than in grande (respiratory competent) cells. In every petite that we have examined, which retain a range of different grande mtDNA sequences, this general phenomenon has been demonstrated by measurements of the loss of mtDNA from cultures grown in the presence of the drug. The resistance is also demonstrable by direct analysis of drug inhibition of mtDNA replication in isolated mitochondria. Furthermore, the resistance to ethidium bromide is accompanied, in every case tested, by cross-resistance to berenil and euflavine, although variations in the levels of resistance are observed.In one petite the level of in vivo resistance to the three drugs was very similar (4-fold over the grande parent) whilst another petite was mildly resistant to ethidium bromide and berenil (each 1.6-fold over the parent) and strongly resistant (nearly 8-fold) to inhibition of mtDNA replication by euflavine. The level of resistance to ethidium bromide in several other petite clones tested was found to vary markedly. Using genetic techniques it is possible to identify those petites which display an enhanced resistance to ethidium bromide inhibition of mtDNA replication.It is considered that the general resistance of petites arises because a product of mitochondrial protein synthesis is normally involved in facilitating the inhibitory action of these drugs on mtDNA synthesis in grande cells. The various levels of resistance in petites may be modulated by the particular mtDNA sequences retained in each petite.  相似文献   

11.
1. A method for isolating DNA from Pneumocystis carinii is described. 2. The DNA content per nucleus is 0.22-0.34 pg. 3. This finding is consistent with other parasitic protozoa DNA content per nuclei.  相似文献   

12.
Previously known cell size (wee) mutations of fission yeast suppress the mitotic block caused by a defective cdc25 allele. Some 700 revertants of cdc25-22 were obtained after ultraviolet mutagenesis and selection at the restrictive temperature. Most revertants carried the original cdc25 lesion plus a mutation in or very close to the wee1 gene. Two partial wee1 mutations of a new type were found among the revertants. Two new wee mutations mapping at the cdc2 gene (cdc2-w mutants) were also obtained. The various mutations were examined for their effects on cell division size, their efficiency as cdc25 suppressors, and their dominance relations. Full wee1 mutations were found to suppress cdc25 lesions very efficiently, whereas partial wee1 mutations were poor suppressors. The cdc25 suppression ability of cdc2-w mutations was allele specific for cdc2, suggesting bifunctionality of the gene product. The wee1 mutations were recessive for cdc25 suppression; cdc2-w mutations were dominant. A model is proposed for the genetic control of mitotic timing and cell division size, in which the cdc2+ product is needed and is rate limiting for mitosis. The cdc2+ activity is inhibited by the wee1+ product, whereas the cdc25+ product relieves this inhibition.  相似文献   

13.
During industrial production process using yeast, cells are exposed to the stress due to the accumulation of ethanol, which affects the cell growth activity and productivity of target products, thus, the ethanol stress-tolerant yeast strains are highly desired. To identify the target gene(s) for constructing ethanol stress tolerant yeast strains, we obtained the gene expression profiles of two strains of Saccharomyces cerevisiae, namely, a laboratory strain and a strain used for brewing Japanese rice wine (sake), in the presence of 5% (v/v) ethanol, using DNA microarray. For the selection of target genes for breeding ethanol stress tolerant strains, clustering of DNA microarray data was performed. For further selection, the ethanol sensitivity of the knockout mutants in each of which the gene selected by DNA microarray analysis is deleted, was also investigated. The integration of the DNA microarray data and the ethanol sensitivity data of knockout strains suggests that the enhancement of expression of genes related to tryptophan biosynthesis might confer the ethanol stress tolerance to yeast cells. Indeed, the strains overexpressing tryptophan biosynthesis genes showed a stress tolerance to 5% ethanol. Moreover, the addition of tryptophan to the culture medium and overexpression of tryptophan permease gene conferred ethanol stress tolerance to yeast cells. These results indicate that overexpression of the genes for trypophan biosynthesis increases the ethanol stress tolerance. Tryptophan supplementation to culture and overexpression of the tryptophan permease gene are also effective for the increase in ethanol stress tolerance. Our methodology for the selection of target genes for constructing ethanol stress tolerant strains, based on the data of DNA microarray analysis and phenotypes of knockout mutants, was validated.  相似文献   

14.
15.
A graphical method is presented for displaying how binding proteins and other macromolecules interact with individual bases of nucleotide sequences. Characters representing the sequence are either oriented normally and placed above a line indicating favorable contact, or upside-down and placed below the line indicating unfavorable contact. The positive or negative height of each letter shows the contribution of that base to the average sequence conservation of the binding site, as represented by a sequence logo. These sequence 'walkers' can be stepped along raw sequence data to visually search for binding sites. Many walkers, for the same or different proteins, can be simultaneously placed next to a sequence to create a quantitative map of a complex genetic region. One can alter the sequence to quantitatively engineer binding sites. Database anomalies can be visualized by placing a walker at the recorded positions of a binding molecule and by comparing this to locations found by scanning the nearby sequences. The sequence can also be altered to predict whether a change is a polymorphism or a mutation for the recognizer being modeled.  相似文献   

16.
The study and eventual manipulation of leaf development in plants requires a thorough understanding of the genetic basis of leaf organogenesis. Forward genetic screens have identified hundreds of Arabidopsis mutants with altered leaf development, but the genome has not yet been saturated. To identify genes required for leaf development we are screening the Arabidopsis Salk Unimutant collection. We have identified 608 lines that exhibit a leaf phenotype with full penetrance and almost constant expressivity and 98 additional lines with segregating mutant phenotypes. To allow indexing and integration with other mutants, the mutant phenotypes were described using a custom leaf phenotype ontology. We found that the indexed mutation is present in the annotated locus for 78% of the 553 mutants genotyped, and that in half of these the annotated T‐DNA is responsible for the phenotype. To quickly map non‐annotated T‐DNA insertions, we developed a reliable, cost‐effective and easy method based on whole‐genome sequencing. To enable comprehensive access to our data, we implemented a public web application named PhenoLeaf ( http://genetics.umh.es/phenoleaf ) that allows researchers to query the results of our screen, including text and visual phenotype information. We demonstrated how this new resource can facilitate gene function discovery by identifying and characterizing At1g77600, which we found to be required for proximal–distal cell cycle‐driven leaf growth, and At3g62870, which encodes a ribosomal protein needed for cell proliferation and chloroplast function. This collection provides a valuable tool for the study of leaf development, characterization of biomass feedstocks and examination of other traits in this fundamental photosynthetic organ.  相似文献   

17.
Twenty-eight site-directed mutations were introduced into the fission yeast gene (pcn1 +) that encodes proliferating cell nuclear antigen (PCNA) and their in vivo effects analyzed in a strain with a null pcn1 background. Mutants defective in enhancing processivity of DNA polymerase δ have previously been identified. In this study, we assessed all of the mutants for their sensitivities to temperature, hydroxyurea, UV irradiation and methyl methanesulfonate (MMS), and specific mutants were also tested for sensitivity to γ irradiation. One cold-sensitive allele, pcn1-3, was characterized in detail. This mutant had a recessive cold-sensitive cdc phenotype and showed sensitivity to hydroxyurea, UV, and γ irradiation. At the non-permissive temperature pcn1-3 protein was able to form homotrimers in solution and showed increased stimulation of both synthetic activity and processivity of DNA polymerase δ relative to the wild-type Pcn1+ protein. Epistasis analyses indicated that pcn1-3 is defective in the repair pathway involving rad2 + but not defective in the classical nucleotide excision repair pathway involving rad13 + . Furthermore, pcn1-3 is either synthetically or conditionally lethal in null checkpoint rad backgrounds and displays a mitotic catastrophe phenotype in these backgrounds. A model for how pcn1-3 defects may affect DNA repair and replication is presented.  相似文献   

18.
Twenty-eight site-directed mutations were introduced into the fission yeast gene (pcn1 +) that encodes proliferating cell nuclear antigen (PCNA) and their in vivo effects analyzed in a strain with a null pcn1 background. Mutants defective in enhancing processivity of DNA polymerase δ have previously been identified. In this study, we assessed all of the mutants for their sensitivities to temperature, hydroxyurea, UV irradiation and methyl methanesulfonate (MMS), and specific mutants were also tested for sensitivity to γ irradiation. One cold-sensitive allele, pcn1-3, was characterized in detail. This mutant had a recessive cold-sensitive cdc phenotype and showed sensitivity to hydroxyurea, UV, and γ irradiation. At the non-permissive temperature pcn1-3 protein was able to form homotrimers in solution and showed increased stimulation of both synthetic activity and processivity of DNA polymerase δ relative to the wild-type Pcn1+ protein. Epistasis analyses indicated that pcn1-3 is defective in the repair pathway involving rad2 + but not defective in the classical nucleotide excision repair pathway involving rad13 + . Furthermore, pcn1-3 is either synthetically or conditionally lethal in null checkpoint rad backgrounds and displays a mitotic catastrophe phenotype in these backgrounds. A model for how pcn1-3 defects may affect DNA repair and replication is presented. Received: 5 July 1997 / Accepted: 10 October 1997  相似文献   

19.
Phage display is a useful means of identifying and selecting proteins of interest that bind specific targets. In order to examine the potential of phage display for the genome-wide screening of DNA-binding proteins, we constructed yeast genomic libraries using lambda foo-based vectors devised in this work. After affinity selection using GAL4 UAS(G) as a probe, phages expressing GAL4 were enriched approximately 5 x 10(5)-fold from the library. Approximately 90% of polypeptides encoded in correct translation reading frames by the selected phages were known or putative polynucleotide-binding proteins. This result clearly indicates that the modified lambda phage display vector in combination with our enrichment technique has great potential for the enrichment of DNA-binding proteins in a sequence-specific manner.  相似文献   

20.
Directed evolution of a single-chain class II MHC product by yeast display   总被引:1,自引:0,他引:1  
Many autoimmune diseases have been linked to the class II region of the major histocompatibility complex (MHC). The linkage is thought to be a result of autoreactive T cells that recognize self-peptides bound to a product of this locus. For example, T cells from non-obese diabetic mice recognize specific 'diabetogenic' peptides bound to a class II MHC allele called I-A(g7). The I-A(g7) molecule is noted for being unstable and difficult to work with, especially in soluble form. In this work, yeast surface display combined with fluorescence-activated cell sorting was used as a means of directed evolution to engineer stabilized variants of a single-chain form of I-A(g7). A library containing mutations at two residues (positions 56 and 57 of the I-A(g7) beta-chain) that are important in the class II disease associations yielded stabilized mutants with preferences for a glutamic acid at residue 56 and a leucine at residue 57. Random mutation of I-A(g7) followed by selection with an anti-I-A(g7) antibody also yielded stabilized variants with mutations in other residues. The methods described here allow the discovery of novel MHC complexes that could facilitate structural studies and provide new opportunities in the development of diagnostics or antagonists of class II MHC-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号