首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole genome sequencing of several microbes has revealed thousands of genes of unknown function. A large proportion of these genes seem to confer subtle quantitative phenotypes or phenotypes that do not have a plate screen. We report a novel method to monitor such phenotypes, where the fitness of mutants is assessed in mixed cultures under competitive growth conditions, and the abundance of any individual mutant in the pool is followed by means of its unique feature, namely the mutation itself. A mixed population of yeast mutants, obtained through transposon mutagenesis, was subjected to selection. The DNA regions (targets) flanking the transposon, until nearby restriction sites, are then quantitatively amplified by means of a ligation-mediated PCR method, using transposon-specific and adapter-specific primers. The amplified PCR products correspond to mutated regions of the genome and serve as ‘mutant DNA fingerprints’ that can be displayed on a sequencing gel. The relative intensity of the amplified DNA fragments before and after selection match with the relative abundance of corresponding mutants, thereby revealing the fate of the mutants during selection. Using this method we demonstrate that UBI4, YDJ1 and HSP26 are essential for stress tolerance of yeast during ethanol production. We anticipate that this method will be useful for functional analysis of genes of any microbe amenable to insertional mutagenesis.  相似文献   

2.
Goodman AL  Wu M  Gordon JI 《Nature protocols》2011,6(12):1969-1980
Insertion sequencing (INSeq) is a method for determining the insertion site and relative abundance of large numbers of transposon mutants in a mixed population of isogenic mutants of a sequenced microbial species. INSeq is based on a modified mariner transposon containing MmeI sites at its ends, allowing cleavage at chromosomal sites 16-17 bp from the inserted transposon. Genomic regions adjacent to the transposons are amplified by linear PCR with a biotinylated primer. Products are bound to magnetic beads, digested with MmeI and barcoded with sample-specific linkers appended to each restriction fragment. After limited PCR amplification, fragments are sequenced using a high-throughput instrument. The sequence of each read can be used to map the location of a transposon in the genome. Read count measures the relative abundance of that mutant in the population. Solid-phase library preparation makes this protocol rapid (18 h), easy to scale up, amenable to automation and useful for a variety of samples. A protocol for characterizing libraries of transposon mutant strains clonally arrayed in a multiwell format is provided.  相似文献   

3.
Abstract: Mutants obtained by insertional mutagenesis are widely used for determining gene-phenotype relationships. In Arabidopsis thaliana, several populations mutagenized either by T-DNA or transposon insertion are available for screening for knockout mutants in genes of interest. We have so far screened our Arabidopsis population mutagenized with the Zea mays transposon En-1/Spm for insertion mutations in 718 genes, using PCR on DNA pools. Although successful, this common approach is too time consuming for use in systematic screening of all 25 498 predicted genes of the Arabidopsis genome. We therefore investigated the use of DNA arrays for the direct identification of mutants in our population. All transposon-flanking regions from individual plants are amplified by PCR and subsequently spotted at high density onto nylon membranes. A single hybridization experiment with a gene-specific probe then allows one to identify candidate mutant plants. The efficiency of each separate step was determined and optimized. Screening of filters representing 2880 plants for insertions in 144 genes and subsequent investigation of some of the potential insertion mutants suggest that an overall screening efficiency of 50 % is attained.  相似文献   

4.
Salmonella spp. are one of the foodborne pathogens that can be isolated in the environments of poultry houses and desiccation is a potential stress condition that can influence the survival of Salmonella spp. in this environment. In order to investigate the desiccation survival mechanism of Salmonella spp. the genome of S. typhimurium ATCC 14028 was screened for the genes potentially required for survival during desiccation using a novel method based on Tn5 mutagenesis previously developed in our laboratory. This method, termed transposon footprinting, simultaneously amplifies the Tn5-flanking sequences in a complex pool of the Tn5 mutants. As the length of the amplified DNA fragment should be unique for each distinct Tn5 mutant, the polymerase chain reaction (PCR) products separated on an agarose gel generate transposon footprints with each band in the footprint representing the corresponding Tn5 mutant. By comparing the transposon footprints from the pools of S. typhimurium Tn5 mutants before and after exposure to desiccation, Tn5 mutants that were not recovered after the selection were rapidly identified that would be easily isolated for further genetic analysis.  相似文献   

5.
Bacteriophage PM2 presently is the only member of the Corticoviridae family. The virion consists of a protein-rich lipid vesicle, which is surrounded by an icosahedral protein capsid. The lipid vesicle encloses a supercoiled circular double-stranded DNA genome of 10,079 bp. PM2 belongs to the marine phage community and is known to infect two gram-negative Pseudoalteromonas species. In this study, we present a characterization of the PM2 genome made using the in vitro transposon insertion mutagenesis approach. Analysis of 101 insertion mutants yielded information on the essential and dispensable regions of the PM2 genome and led to the identification of several new genes. A number of lysis-deficient mutants as well as mutants displaying delayed- and/or incomplete-lysis phenotypes were identified. This enabled us to identify novel lysis-associated genes with no resemblance to those previously described from other bacteriophage systems. Nonessential genome regions are discussed in the context of PM2 genome evolution.  相似文献   

6.
We have recently developed a novel cDNA selection method (the cDNA scanning method) to select cDNAs for expressed genes in specific regions of the genome [Hayashida et al. (1995) Gene 165: 155, Seki et al. (1997) Plant J. 12: 481]. The gene Ds is known to transpose mainly in its neighborhood. By combining the cDNA scanning method with this trait of Ds, we started functional analysis of region-specific expressed genes on the Arabidopsis thaliana genome. DNA fragments of yeast artificial chromosome (YAC) clones CIC5F11 and CIC2B9 on A. thaliana chromosome 5 were used for the selection of region-specific cDNAs. In total, 50 and 68 cDNA clones were selected from CIC5F11 and CIC2B9, respectively. In parallel, we transposed Ds from a donor T-DNA line, which was mapped on the CIC5F11/CIC2B9 locus of chromosome 5, and obtained Ds-transposed lines. To isolate Ds insertion mutants in the 10 specific genes identified by the cDNA scanning method, we carried out PCR-based screening of 100 Ds-transposed lines and found that 2 lines contain Ds mutations in the genes isolated. We also isolated Ds-flanking genomic DNAs by thermal asymmetric interlaced PCR (TAIL-PCR) in 153 Ds transposon-tagged lines. Southern blot analysis showed that 14% of the lines contained the transposed Ds in the CIC5F11/2B9 region. This suggests that this Ac/Ds transposon system is effective for region-specific insertional mutagenesis.  相似文献   

7.
The removal of unwanted genetic material is a key aspect in many synthetic biology efforts and often requires preliminary knowledge of which genomic regions are dispensable. Typically, these efforts are guided by transposon mutagenesis studies, coupled to deepsequencing (TnSeq) to identify insertion points and gene essentiality. However, epistatic interactions can cause unforeseen changes in essentiality after the deletion of a gene, leading to the redundancy of these essentiality maps. Here, we present LoxTnSeq, a new methodology to generate and catalogue libraries of genome reduction mutants. LoxTnSeq combines random integration of lox sites by transposon mutagenesis, and the generation of mutants via Cre recombinase, catalogued via deep sequencing. When LoxTnSeq was applied to the naturally genome reduced bacterium Mycoplasma pneumoniae, we obtained a mutant pool containing 285 unique deletions. These deletions spanned from > 50 bp to 28 Kb, which represents 21% of the total genome. LoxTnSeq also highlighted large regions of non-essential genes that could be removed simultaneously, and other non-essential regions that could not, providing a guide for future genome reductions.  相似文献   

8.
For regional insertional mutagenesis of Arabidopsis thaliana genes, we combined a cDNA scanning method (Hayashida et al. Gene 1995; 165:155-161) and an Ac/Ds transposon designed for local mutagenesis, and evaluated this approach with two overlapping yeast artificial chromosome (YAC) clones, CIC7E11 and CIC8B11, on A. thaliana chromosome 5. We applied a previously developed novel cDNA selection method using DNA latex particles (cDNA scanning method) to the two YAC clones and constructed two sub-libraries in which cDNAs for genes on each YAC DNA were concentrated. From each sub-library we isolated cDNAs for genes on each YAC DNA, partially sequenced them, and produced expressed sequence tags (ESTs). In total, 113 non-redundant groups of cDNAs were obtained. Forty-four per cent of these EST clones were novel, and 34% had significant homology to functional proteins from various organisms. In parallel, we transposed Ds from a donor Ds-GUS-T-DNA line, Ds4391-20, already mapped to the CIC7E11/8B11 region. We obtained Ds-transposed lines and recovered their Ds-flanking genomic DNAs by thermal asymmetric interlaced (TAIL) polymerase chain reaction (PCR). Dot-blot analysis indicated that 20% of the lines contained transposed Ds in the CIC7E11/8B11 region, suggesting that this Ac/Ds transposon system is effective for regional insertional mutagenesis. To isolate Ds insertion mutants in the genes identified from the CIC7E11/8B11 region, we carried out PCR screening from 800 Ds-containing lines using Ds-specific and gene-specific primers that were designed from the 113 cDNA sequences identified by the cDNA scanning method. We found that 49 lines contain Ds insertion mutations, and that five lines contain Ds mutations in genes that are mapped to the sequenced CIC7E11/8B11 genomic DNA region. These results indicate that combining the cDNA scanning method and the Ac/Ds transposon gives a powerful tool for regional insertional mutagenesis not only in Arabidopsis but also in other plants or crops whose genomes are not sequenced.  相似文献   

9.
With the increase of sequenced fungal genomes, high-throughput methods for functional analyses of genes are needed. We assessed the potential of a new transposon mutagenesis tool deploying a Fusarium oxysporum miniature inverted-repeat transposable element mimp1, mobilized by the transposase of impala, a Tc1-like transposon, to obtain knock-out mutants in Fusarium graminearum. We localized 91 mimp1 insertions which showed good distribution over the entire genome. The main exception was a major hotspot on chromosome 2 where independent insertions occurred at exactly the same nucleotide position. Furthermore insertions in promoter regions were over-represented. Screening 331 mutants for sexual development, radial growth and pathogenicity on wheat resulted in 19 mutants (5.7%) with altered phenotypes. Complementation with the original gene restored the wild-type phenotype in two selected mutants demonstrating the high tagging efficiency. This is the first report of a MITE transposon tagging system as an efficient mutagenesis tool in F. graminearum.  相似文献   

10.
A system of transposon mutagenesis for bacteriophage T4   总被引:1,自引:0,他引:1  
We have developed a system of transposon mutagenesis for bacteriophage T4. The transposon is a plasmid derivative of Tn5 which contains the essential T4 gene 24, permitting a direct selection for transposition events into a gene 24-deleted phage. The transposition occurred at a frequency of only 10(-7) per progeny phage, even though a dam- host was used to increase transposition frequency. Phage strains with a transposon insert were distinguished from most pseudorevertants of the gene 24 deletion by plaque hybridization using a transposon-specific probe. Mapping analysis showed that the transposon inserts into a large number of sites in the T4 genome, probably with a preference for certain regions. The transposon insertions in four strains were analysed by DNA sequencing using primers that hybridize to each end of the transposon and read out into the T4 genome. In each case, a 9 bp T4 target sequence had been duplicated and the insertions had occurred exactly at the IS50 ends of the transposon, demonstrating that bona fide transposition had occurred. Finally, the transposon insert strains were screened on the TabG Escherichia coli strain, which inhibits the growth of T4 motA mutants, and a motA transposon insert strain was found.  相似文献   

11.
Transposon mutagenesis with the Enterococcus faecalis transposon Tn917 is a genetic approach frequently used to identify genes related with specific phenotypes in gram-positive bacteria. We established an arbitrary PCR for the rapid and easy identification of Tn917 insertion sites in Staphylococcus epidermidis with six independent, well-characterized biofilm-negative Tn917 transposon mutants, which were clustered in the icaADBC gene locus or harbor Tn917 in the regulatory gene rsbU. For all six of these mutants, short chromosomal DNA fragments flanking both transposon ends could be amplified. All fragments were sufficient to correctly identify the Tn917 insertion sites in the published S. epidermidis genomes. By using this technique, the Tn917 insertion sites of three not-yet-characterized biofilm-negative or nonmucoid mutants were identified. In the biofilm-negative and nonmucoid mutant M12, Tn917 is inserted into a gene homologous to the regulatory gene purR of Bacillus subtilis and Staphylococcus aureus. The Tn917 insertions of the nonmucoid but biofilm-positive mutants M16 and M20 are located in genes homologous to components of the phosphoenolpyruvate-sugar phosphotransferase system (PTS) of B. subtilis, S. aureus, and Staphylococcus carnosus, indicating an influence of the PTS on the mucoid phenotype in S. epidermidis.  相似文献   

12.
Transposon mutagenesis and single-gene deletion are two methods applied in genome-wide gene knockout in bacteria 1,2. Although transposon mutagenesis is less time consuming, less costly, and does not require completed genome information, there are two weaknesses in this method: (1) the possibility of a disparate mutants in the mixed mutant library that counter-selects mutants with decreased competition; and (2) the possibility of partial gene inactivation whereby genes do not entirely lose their function following the insertion of a transposon. Single-gene deletion analysis may compensate for the drawbacks associated with transposon mutagenesis. To improve the efficiency of genome-wide single gene deletion, we attempt to establish a high-throughput technique for genome-wide single gene deletion using Streptococcus sanguinis as a model organism. Each gene deletion construct in S. sanguinis genome is designed to comprise 1-kb upstream of the targeted gene, the aphA-3 gene, encoding kanamycin resistance protein, and 1-kb downstream of the targeted gene. Three sets of primers F1/R1, F2/R2, and F3/R3, respectively, are designed and synthesized in a 96-well plate format for PCR-amplifications of those three components of each deletion construct. Primers R1 and F3 contain 25-bp sequences that are complementary to regions of the aphA-3 gene at their 5'' end. A large scale PCR amplification of the aphA-3 gene is performed once for creating all single-gene deletion constructs. The promoter of aphA-3 gene is initially excluded to minimize the potential polar effect of kanamycin cassette. To create the gene deletion constructs, high-throughput PCR amplification and purification are performed in a 96-well plate format. A linear recombinant PCR amplicon for each gene deletion will be made up through four PCR reactions using high-fidelity DNA polymerase. The initial exponential growth phase of S. sanguinis cultured in Todd Hewitt broth supplemented with 2.5% inactivated horse serum is used to increase competence for the transformation of PCR-recombinant constructs. Under this condition, up to 20% of S. sanguinis cells can be transformed using ~50 ng of DNA. Based on this approach, 2,048 mutants with single-gene deletion were ultimately obtained from the 2,270 genes in S. sanguinis excluding four gene ORFs contained entirely within other ORFs in S. sanguinis SK36 and 218 potential essential genes. The technique on creating gene deletion constructs is high throughput and could be easy to use in genome-wide single gene deletions for any transformable bacteria.  相似文献   

13.
Helicobacter pylori mutagenesis by mariner in vitro transposition   总被引:3,自引:0,他引:3  
We have developed a method for generating transposon insertion mutants using mariner in vitro mutagenesis. The gene of interest was PCR-amplified and cloned. A kanamycin-marked mariner transposon was randomly inserted into the purified plasmid in an in vitro transposition reaction. After repair and propagation in Escherichia coli, purified mutagenized plasmid was introduced into Helicobacter pylori by natural transformation. Transformants were selected by plating on kanamycin. Mutants were predominantly the result of double homologous recombination, and multiple mutants (with insertions in distinct positions) were often obtained. The site of insertion was determined by PCR or sequencing. We have made mutations in known or potential virulence genes, including ureA, hopZ, and vacA, using kanamycin- and kanamycin/lacZ-marked transposons. Colonies carrying a kanamycin/lacZ transposon appeared blue on medium containing the chromogenic agent X-gal, allowing discrimination of mutant and wild-type H. pylori in mixed competition experiments.  相似文献   

14.
A novel mapping method based on touchdown PCR was developed for identifying a transposon insertion site in genomic DNA using a hybrid consensus-degenerate primer in combination with a specific primer that anneals to the transposon. The method was tested using Xanthomonas citri transposon mutants. PCR products contained adjacent DNA regions that belonged to both X. citri genomic DNA and the transposon. Products were directly sequenced from PCRs using only the specific primer. Different PCR conditions were tested, and the optimized reaction parameters that increased product yields and specificity are described. Best results were obtained with the HIB17 hybrid primer, which is a 25-mer oligonucleotide having degenerate bases at 6 different positions within the last 12 bases at the 3' end. An X. citri mutants library was produced by random transposition using the EZ::TN transposon, and we identified the insertion sites within the genome of 90 mutants. Insertions were found within both the chromosomal and the plasmid DNA in these X. citri mutants. Restriction mapping and Southern blot analysis confirmed the insertion sites for eight randomly chosen mutants. This method is a very useful tool for large-scale characterization of mutants in functional genomics studies.  相似文献   

15.
The yeast Saccharomyces cerevisiae exhibits high ethanol tolerance compared with other microorganisms. The mechanism of ethanol tolerance in yeast is thought to be regulated by many genes. To identify some of these genes, we screened for ethanol-sensitive S. cerevisiae strains among a collection of mutants obtained using transposon mutagenesis. Five ethanol-sensitive (ets) mutants were isolated from approximately 7,000 mutants created by transforming yeast cells with a transposon (mTn-lacZ/LEU2)-mutagenized genomic library. Although these mutants grew normally in a rich medium, they could not grow in the same medium containing 6% ethanol. Sequence analysis of the ets mutants revealed that the transposon was inserted in the coding regions of BEM2, PAT1, ROM2, VPS34 and ADA2. We constructed deletion mutants for these genes by a PCR-directed disruption method and confirmed that the disruptants, like the ets mutants, were ethanol sensitive. Thus, these five genes are indeed required for growth under ethanol stress. These mutants were also more sensitive than normal cells to Calcofluor white, a drug that affects cell wall architecture, and Zymolyase, a yeast lytic enzyme containing mainly beta-1,3- glucanase, indicating that the integrity of the cell wall plays an important role in ethanol tolerance in S. cerevisiae.  相似文献   

16.
Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED), in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.  相似文献   

17.
18.
Bacteriophage phiYeO3-12 is a T7/T3-related lytic phage that naturally infects Yersinia enterocolitica serotype O:3 strains by using the lipopolysaccharide O polysaccharide (O antigen) as its receptor. The phage genome is a 39,600-bp-long linear, double-stranded DNA molecule that contains 58 genes. The roles of many of the genes are currently unknown. To identify nonessential genes, the isolated phage DNA was subjected to MuA transposase-catalyzed in vitro transposon insertion mutagenesis with a lacZ' gene-containing reporter transposon. Following electroporation into Escherichia coli DH10B and subsequent infection of E. coli JM109/pAY100, a strain that expresses the Y. enterocolitica O:3 O antigen on its surface, mutant phage clones were identified by their beta-galactosidase activity, manifested as a blue color on indicator plates. Transposon insertions were mapped in a total of 11 genes located in the early and middle regions of the phage genome. All of the mutants had efficiencies of plating (EOPs) and fitnesses identical to those of the wild-type phage when grown on E. coli JM109/pAY100. However, certain mutants exhibited altered phenotypes when grown on Y. enterocolitica O:3. Transposon insertions in genes 0.3 to 0.7 decreased the EOP on Y. enterocolitica O:3, while the corresponding deletions did not, suggesting that the low EOP was not caused by inactivation of the genes per se. Instead, it was shown that in these mutants the low EOP was due to the delayed expression of gene 1, coding for RNA polymerase. On the other hand, inactivation of gene 1.3 or 3.5 by either transposon insertion or deletion decreased phage fitness when grown on Y. enterocolitica. These results indicate that phiYeO3-12 has adapted to utilize Y. enterocolitica as its host and that these adaptations include the products of genes 1.3 and 3.5, DNA ligase and lysozyme, respectively.  相似文献   

19.
Shuttle mutagenesis has been adapted to randomly mutate the genome of Neisseria gonorrhoeae (gono-coccus; Gc). A size-restricted plasmid library of Gc strain FA1090 was mutated with the mini-transposon mTnEGNS. Randomness was tested by checking for transposon insertion bias between vector and insert DNA, Gc transformation efficiency of individual mutated clones, and representation of unique clones before and after Gc transformation with a mutated pool of DNA. Mutants created by random shuttle mutagenesis were screened, using a colony-based polymerase chain reaction assay, for the ability to undergo pilin antigenic variation. Out of 8064 mutants screened, 22 unique transposon insertion mutants were found to be antigenic variation deficient (Avd). The Avd mutants were separated into five types according to recombination defect-associated phenotypes, including colony growth, natural DNA transformation competence, and repair of DNA damage caused by ultraviolet radiation.  相似文献   

20.
Cadmium-regulated gene fusions in Pseudomonas fluorescens   总被引:2,自引:1,他引:1  
To study the mechanisms soil bacteria use to cope with elevated concentrations of heavy metals in the environment, a mutagenesis with the lacZ-based reporter gene transposon Tn5B20 was performed. Random gene fusions in the genome of the common soil bacterium Pseudomonas fluorescens strain ATCC 13525 were used to create a bank of 5,000 P. fluorescens mutants. This mutant bank was screened for differential gene expression in the presence of the toxic metal cadmium. Fourteen mutants were identified that responded with increased or reduced gene expression to the presence of cadmium. The mutants were characterized with respect to their metal-dependent gene expression and their metal tolerance. Half the identified mutants reacted with differential gene expression specifically to the metal cadmium, whereas some of the other mutants also responded to elevated concentrations of copper and zinc ions. One of the mutants, strain C8, also showed increased gene expression in the presence of the solvent ethanol, but otherwise no overlap between cadmium-induced gene expression and general stress response was detected. Molecular analysis of the corresponding genetic loci was performed using arbitrary polymerase chain reaction (PCR), DNA sequencing and comparison of the deduced protein products with sequences deposited in genetic databases. Some of the genetic loci targeted by the transposon did not show any similarities to any known genes; thus, they may represent 'novel' loci. The hypothesis that genes that are differentially expressed in the presence of heavy metals play a role in metal tolerance was verified for one of the mutants. This mutant, strain C11, was hypersensitive to cadmium and zinc ions. In mutant C11, the transposon had inserted into a genetic region displaying similarity to genes encoding the sensor/regulator protein pairs of two-component systems that regulate gene expression in metal-resistant bacteria, including czcRS of Ralstonia eutropha, czrRS of Pseudomonas aeruginosa and copRS of Pseudomonas syringae. Although the P. fluorescens strain used in this study had not been isolated from a metal-rich environment, it nevertheless contained at least one genetic region enabling it to cope with elevated concentrations of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号