首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ataide SF  Ibba M 《Biochemistry》2004,43(37):11836-11841
Within the two unrelated aminoacyl-tRNA synthetase classes, lysyl-tRNA synthetase (LysRS) is the only example known to exist in both classes. To probe the role of the amino acids responsible for L-lysine binding in the active site of the class II LysRS (LysRS2), we studied the lysS-encoded Escherichia coli protein. On the basis of the structure of L-lysine complexed with E. coli LysRS2 (lysS), residues implicated in amino acid recognition and discrimination were systematically replaced. Steady-state kinetic parameters for these variants showed reductions in the catalytic efficiency (k(cat)/K(M)) of 1-3 orders of magnitude, allowing the assignment of specific roles for key residues in the active site of LysRS2. To further investigate the role of each residue in discrimination against noncognate amino acids, steady-state kinetic parameters were determined for the nonprotein amino acid S-(2-aminoethyl)-L-cysteine, a potent inhibitor of LysRS2. While a number of variants showed reductions of several hundred-fold in efficiency of S-(2-aminoethyl)-L-cysteine utilization, this was uniformly accompanied by similar reductions in the efficiency of lysine utilization. Thus, manipulation of the amino acid binding site only allowed up to a 4-fold improvement in S-(2-aminoethyl)-L-cysteine discrimination. This is in contrast to the highly effective discrimination against S-(2-aminoethyl)-L-cysteine by class I LysRS and correlates with the fundamentally different roles of conserved aromatic residues in the two LysRS active sites. This now provides a mechanistic basis for the proposal that differences in amino acid discrimination have been pivotal in the evolution of two unrelated LysRSs.  相似文献   

2.
Lysine insertion during coded protein synthesis requires lysyl-tRNA(Lys), which is synthesized by lysyl-tRNA synthetase (LysRS). Two unrelated forms of LysRS are known: LysRS2, which is found in eukaryotes, most bacteria, and a few archaea, and LysRS1, which is found in most archaea and a few bacteria. To compare amino acid recognition between the two forms of LysRS, the effects of l-lysine analogues on aminoacylation were investigated. Both enzymes showed stereospecificity toward the l-enantiomer of lysine and discriminated against noncognate amino acids with different R-groups (arginine, ornithine). Lysine analogues containing substitutions at other positions were generally most effective as inhibitors of LysRS2. For example, the K(i) values for aminoacylation of S-(2-aminoethyl)-l-cysteine and l-lysinamide were over 180-fold lower with LysRS2 than with LysRS1. Of the other analogues tested, only gamma-aminobutyric acid showed a significantly higher K(i) for LysRS2 than LysRS1. These data indicate that the lysine-binding site is more open in LysRS2 than in LysRS1, in agreement with previous structural studies. The physiological significance of divergent amino acid recognition was reflected by the in vivo resistance to growth inhibition imparted by LysRS1 against S-(2-aminoethyl)-l-cysteine and LysRS2 against gamma-aminobutyric acid. These differences in resistance to naturally occurring noncognate amino acids suggest the distribution of LysRS1 and LysRS2 contributes to quality control during protein synthesis. In addition, the specific inhibition of LysRS1 indicates it is a potential drug target.  相似文献   

3.
H Jakubowski 《Biochemistry》1999,38(25):8088-8093
Lysyl-tRNA synthetase (LysRS), a class II enzyme whose major function is to provide Lys-tRNALys for protein synthesis, also catalyzes aminoacylation of tRNALys with arginine, threonine, methionine, leucine, alanine, serine, and cysteine. The limited selectivity in the tRNA aminoacylation reaction appears to be due to inefficient editing of some amino acids (Met, Leu, Cys, Ala, Thr) by a pre-transfer mechanism or the absence of editing of other amino acids (Arg and Ser). Purified Arg-tRNALys, Thr-tRNALys, and Met-tRNALys were essentially not deacylated by LysRS, indicating that the enzyme does not possess a post-transfer editing mechanism. However, LysRS possesses an efficient pre-transfer editing mechanism which prevents misacylation of tRNALys with ornithine. A novel feature of this editing reaction is that ornithine lactam is formed by the facile cyclization of ornithyl adenylate.  相似文献   

4.
The crystal structure of ligand-free E. coli glutaminyl-tRNA synthetase (GlnRS) at 2.4 A resolution shows that substrate binding is essential to construction of a catalytically proficient active site. tRNA binding generates structural changes throughout the enzyme, repositioning key active site peptides that bind glutamine and ATP. The structure gives insight into longstanding questions regarding the tRNA dependence of glutaminyl adenylate formation, the coupling of amino acid and tRNA selectivities, and the roles of specific pathways for transmission of tRNA binding signals to the active site. Comparative analysis of the unliganded and tRNA-bound structures shows, in detail, how flexibility is built into the enzyme architecture and suggests that the induced-fit transitions are a key underlying determinant of both amino acid and tRNA specificity.  相似文献   

5.
Levengood JD  Roy H  Ishitani R  Söll D  Nureki O  Ibba M 《Biochemistry》2007,46(39):11033-11038
Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.  相似文献   

6.
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3' end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of post-transfer editing, or the N- or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.  相似文献   

7.
8.
Ambrogelly A  Frugier M  Ibba M  Söll D  Giegé R 《FEBS letters》2005,579(12):2629-2634
Borrelia burgdorferi and other spirochetes contain a class I lysyl-tRNA synthetase (LysRS), in contrast to most eubacteria that have a canonical class II LysRS. We analyzed tRNA(Lys) recognition by B. burgdorferi LysRS, using two complementary approaches. First, the nucleotides of B. burgdorferi tRNA(Lys) in contact with B. burgdorferi LysRS were determined by enzymatic footprinting experiments. Second, the kinetic parameters for a series of variants of the B. burgdorferi tRNA(Lys) were then determined during aminoacylation by B. burgdorferi LysRS. The identity elements were found to be mostly located in the anticodon and in the acceptor stem. Transplantation of the identified identity elements into the Escherichia coli tRNA(Asp) scaffold endowed lysylation activity on the resulting chimera, indicating that a functional B. burgdorferi lysine tRNA identity set had been determined.  相似文献   

9.
10.
Functional and comparative genomic studies have previously shown that the essential protein lysyl-tRNA synthetase (LysRS) exists in two unrelated forms. Most prokaryotes and all eukaryotes contain a class II LysRS, whereas most archaea and a few bacteria contain a less common class I LysRS. In bacteria the class I LysRS is only found in the alpha-proteobacteria and a scattering of other groups, including the spirochetes, while the class I protein is by far the most common form of LysRS in archaea. To investigate this unusual distribution we functionally annotated a representative phylogenetic sampling of LysRS proteins. Class I LysRS proteins from a variety of bacteria and archaea were characterized in vitro by their ability to recognize Escherichia coli tRNA(Lys) anticodon mutants. Class I LysRS proteins were found to fall into two distinct groups, those that preferentially recognize the third anticodon nucleotide of tRNA(Lys) (U36) and those that recognize both the second and third positions (U35 and U36). Strong recognition of U35 and U36 was confined to the pyrococcus-spirochete grouping within the archaeal branch of the class I LysRS phylogenetic tree, while U36 recognition was seen in other archaea and an example from the alpha-proteobacteria. Together with the corresponding phylogenetic relationships, these results suggest that despite its comparative rarity the distribution of class I LysRS conforms to the canonical archaeal-bacterial division. The only exception, suggested from both functional and phylogenetic data, appears to be the horizontal transfer of class I LysRS from a pyrococcal progenitor to a limited number of bacteria.  相似文献   

11.
Aminoacyl-tRNA synthetases produce aminoacyl-tRNAs, essential substrates for accurate protein synthesis. Beyond their central role in translation some of these enzymes or their orthologs are recruited for alternative functions, not always related to their primary cellular role. We investigate here the enzymatic properties of GenX (also called PoxA and YjeA), an ortholog of bacterial class II lysyl-tRNA synthetase. GenX is present in most Gram-negative bacteria and is homologous to the catalytic core of lysyl-tRNA synthetase, but it lacks the amino terminal anticodon binding domain of the latter enzyme. We show that, in agreement with its well-conserved lysine binding site, GenX can activate in vitro l-lysine and lysine analogs, but does not acylate tRNALys or other cellular RNAs.  相似文献   

12.
Bacterial tyrosyl-tRNA synthetases (TyrRS) possess a flexibly linked C-terminal domain of approximately 80 residues, which has hitherto been disordered in crystal structures of the enzyme. We have determined the structure of Thermus thermophilus TyrRS at 2.0 A resolution in a crystal form in which the C-terminal domain is ordered, and confirm that the fold is similar to part of the C-terminal domain of ribosomal protein S4. We have also determined the structure at 2.9 A resolution of the complex of T.thermophilus TyrRS with cognate tRNA(tyr)(G Psi A). In this structure, the C-terminal domain binds between the characteristic long variable arm of the tRNA and the anti-codon stem, thus recognizing the unique shape of the tRNA. The anticodon bases have a novel conformation with A-36 stacked on G-34, and both G-34 and Psi-35 are base-specifically recognized. The tRNA binds across the two subunits of the dimeric enzyme and, remarkably, the mode of recognition of the class I TyrRS for its cognate tRNA resembles that of a class II synthetase in being from the major groove side of the acceptor stem.  相似文献   

13.
Desogus G  Todone F  Brick P  Onesti S 《Biochemistry》2000,39(29):8418-8425
Aminoacyl-tRNA synthetases play a key role in protein biosynthesis by catalyzing the specific aminoacylation of tRNA. The energy required for the formation of the ester bond between the amino acid carboxylate group and the tRNA acceptor stem is supplied by coupling the reaction to the hydrolysis of ATP. Lysyl-tRNA synthetase from Escherichia coli belongs to the family of class II synthetases and carries out a two-step reaction, in which lysine is activated by being attached to the alpha-phosphate of AMP before being transferred to the cognate tRNA. Crystals of the thermo-inducible E. coli lysyl-tRNA synthetase LysU which diffract to 2.1 A resolution have been used to determine crystal structures of the enzyme in the presence of lysine, the lysyl-adenylate intermediate, and the nonhydrolyzable ATP analogue AMP-PCP. Additional data have been obtained from crystals soaked in a solution containing ATP and Mn(2+). The refined crystal structures give "snapshots" of the active site corresponding to key steps in the aminoacylation reaction and provide the structural framework for understanding the mechanism of lysine activation. The active site of LysU is shaped to position the substrates for the nucleophilic attack of the lysine carboxylate on the ATP alpha-phosphate. No residues are directly involved in catalysis, but a number of highly conserved amino acids and three metal ions coordinate the substrates and stabilize the pentavalent transition state. A loop close to the catalytic pocket, disordered in the lysine-bound structure, becomes ordered upon adenine binding.  相似文献   

14.
The catalytic domains of class I aminoacyl-tRNA synthetases are built around a conserved Rossmann nucleotide binding fold, with additional polypeptide domains responsible for tRNA binding or hydrolytic editing of misacylated substrates. Structural comparisons identified a conserved motif bridging the catalytic and anticodon binding domains of class Ia and Ib enzymes. This stem contact fold (SCF) has been proposed to globally orient each enzyme's cognate tRNA by interacting with the inner corner of the L-shaped tRNA. Despite the structural similarity of the SCF among class Ia/Ib enzymes, the sequence conservation is low. We replaced amino acids of the MetRS SCF with portions of the structurally similar glutaminyl-tRNA synthetase (GlnRS) motif or with alanine residues. Chimeric variants retained significant tRNA methionylation activity, indicating that structural integrity of the helix-turn-strand-helix motif contributes more to tRNA aminoacylation than does amino acid identity. In contrast, chimeras were significantly reduced in methionyl adenylate synthesis, suggesting a role for the SCF in formation of a structured active site domain. A highly conserved aspartic acid within the MetRS SCF is proposed to make an electrostatic interaction with an active site lysine; these residues were replaced with alanines or conservative substitutions. Both methionyl adenylate formation and methionine transfer were impaired, and activity was not significantly recovered by making the compensatory double substitution.  相似文献   

15.
Two enzymatically active forms of lysyl-tRNA synthetase from E. coli B   总被引:2,自引:0,他引:2  
  相似文献   

16.
Glutamine synthetase (Escherichia coli) was incubated with three different reagents that react with lysine residues, viz. pyridoxal phosphate, 5'-p-fluorosulfonylbenzoyladenosine, and thiourea dioxide. The latter reagent reacts with the epsilon-nitrogen of lysine to produce homoarginine as shown by amino acid analysis, nmr, and mass spectral analysis of the products. A variety of differential labeling experiments were conducted with the above three reagents to label specific lysine residues. Thus pyridoxal phosphate was found to modify 2 lysine residues leading to an alteration of catalytic activity. At least 1 lysine residue has been reported previously to be modified by pyridoxal phosphate at the active site of glutamine synthetase (Whitley, E. J., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). By varying the pH and buffer, one or both residues could be modified. One of these lysine residues was associated with approximately 81% loss in activity after modification while modification of the second lysine residue led to complete inactivation of the enzyme. This second lysine was found to be the residue which reacted specifically with the ATP affinity label 5'-p-fluorosulfonylbenzoyladenosine. Lys-47 has been previously identified as the residue that reacts with this reagent (Pinkofsky, H. B., Ginsburg, A., Reardon, I., Heinrikson, R. L. (1984) J. Biol. Chem. 259, 9616-9622; Foster, W. B., Griffith, M. J., and Kingdon, H. S. (1981) J. Biol. Chem. 256, 882-886). Thiourea dioxide inactivated glutamine synthetase with total loss of activity and concomitant modification of a single lysine residue. The modified amino acid was identified as homoarginine by amino acid analysis. The lysine residue modified by thiourea dioxide was established by differential labeling experiments to be the same residue associated with the 81% partial loss of activity upon pyridoxal phosphate inactivation. Inactivation with either thiourea dioxide or pyridoxal phosphate did not affect ATP binding but glutamate binding was weakened. The glutamate site was implicated as the site of thiourea dioxide modification based on protection against inactivation by saturating levels of glutamate. Glutamate also protected against pyridoxal phosphate labeling of the lysine consistent with this residue being the common site of reaction with thiourea dioxide and pyridoxal phosphate.  相似文献   

17.
Arrangement of the substrates at the active site of brain pyridoxal kinase   总被引:1,自引:0,他引:1  
The distances between enzyme-bound paramagnetic CrATP (a stable, beta, gamma-bidentate complex of Cr3+ and ATP) at the active site of sheep brain pyridoxal kinase and the protons of bound inhibitor 4-dPyr (4-deoxypyridoxine) were determined in the ternary enzyme-CrATP.4-dPyr complex by measuring the paramagnetic effects of Cr3+ on the longitudinal relaxation rates (1/T1p) of the protons of 4-dPyr. The correlation time for the Cr(3+)-4-dPyr dipolar interaction on the enzyme was estimated as 1.59 ns by the frequency dependence of 1/T1p of water protons. Temperature dependence of 1/T1p values indicated the fast exchange of 4-dPyr from the paramagnetic enzyme.CrATP.4-dPyr complex; hence the measured 1/T1p values can be used for metalnucleus distance determinations. The distances from the Cr3+ of the enzyme-bound CrATP to the 2-methyl (7.19 A), 4-methyl (7.18 A), and H6 proton (6.18 A) of the 4-dPyr are too great to permit a direct coordination of any group from 4-dPyr. However, these distances can be built into a model in which phosphorus of the gamma-phosphoryl group of ATP is 4 A away from the oxygen atom of the 5-CH2OH group of the 4-dPyr. This suggests that phosphorylation of pyridoxal can occur via direct transfer of the phosphoryl group between the bound substrates at the active site of pyridoxal kinase.  相似文献   

18.
Titration of cysteine residues of spinach glutamine synthetase with 5-5' dithiobis (2-nitrobenzoic acid) indicates that there are five such residues per monomer of enzyme and that two of these five are on the surface of the molecule. The presence of substrates, or either of the competitive inhibitors methionine sulfoximine or phosphinothricin, completely protects both of the surface sulfhydryls from titration. This suggests that both are located at the active site. In the absence of Mg2+ and ATP, both surface sulfhydryls must be modified before loss of activity. We conclude that while both of the cysteine residues are located at the active site, only one of them may be involved in catalysis. Because the cysteine residue which is implicated in catalysis can be protected by Mg2+ and ATP, we believe that it may be located at or near the binding site of these ligands.  相似文献   

19.
The specificity of transfer RNA aminoacylation by cognate aminoacyl-tRNA synthetase is a crucial step for synthesis of functional proteins. It is established that the aminoacylation identity of a single tRNA or of a family of tRNA isoacceptors is linked to the presence of positive signals (determinants) allowing recognition by cognate synthetases and negative signals (antideterminants) leading to rejection by the noncognate ones. The completion of identity sets was generally tested by transplantation of the corresponding nucleotides into one or several host tRNAs which acquire as a consequence the new aminoacylation specificities. Such transplantation experiments were also useful to detect peculiar structural refinements required for optimal expression of a given aminoacylation identity set within a host tRNA. This study explores expression of the defined yeast aspartate identity set into different tRNA scaffolds of a same specificity, namely the four yeast tRNA(Arg) isoacceptors. The goal was to investigate whether expression of the new identity is similar due to the unique specificity of the host tRNAs or whether it is differently expressed due to their peculiar sequences and structural features. In vitro transcribed native tRNA(Arg) isoacceptors and variants bearing the aspartate identity elements were prepared and their aminoacylation properties established. The four wild-type isoacceptors are active in arginylation with catalytic efficiencies in a 20-fold range and are inactive in aspartylation. While transplanted tRNA(1)(Arg) and tRNA(4)(Arg) are converted into highly efficient substrates for yeast aspartyl-tRNA synthetase, transplanted tRNA(2)(Arg) and tRNA(3)(Arg) remain poorly aspartylated. Search for antideterminants in these two tRNAs reveals idiosyncratic features. Conversion of the single base-pair C6-G67 into G6-C67, the pair present in tRNA(Asp), allows full expression of the aspartate identity in the transplanted tRNA(2)(Arg), but not in tRNA(3)(Arg). It is concluded that the different isoacceptor tRNAs protect themselves from misaminoacylation by idiosyncratic pathways of antidetermination.  相似文献   

20.
Natural evolution has resulted in protein molecules displaying a wide range of binding properties that include extremes of affinity and specificity. A detailed understanding of the principles underlying protein structure-function relationships, particularly with respect to binding properties, would greatly enhance molecular engineering and ligand design studies. Here, we have analyzed the interactions of an aminoacyl-tRNA synthetase for which strong evolutionary pressure has enforced high specificity for substrate binding and catalysis. Electrostatic interactions have been identified as one efficient mechanism for enhancing binding specificity; as such, the effects of charged and polar groups were the focus of this study. The binding of glutaminyl-tRNA synthetase from Escherichia coli to several ligands, including the natural substrates, was analyzed. The electrostatic complementarity of the enzyme to its ligands was assessed using measures derived from affinity optimization theory. The results were independent of the details of the calculational parameters, including the value used for the protein dielectric constant. Glutamine and ATP, two of the natural ligands, were found to be extremely complementary to their binding sites, particularly in regions seen to make electrostatic interactions in the structure. These data suggest that the optimization of electrostatic interactions has played an important role in guiding the evolution of this enzyme. The results also show that the enzyme is able to effectively select for high affinity and specificity for the same chemical moieties both in the context of smaller substrates, and in that of a larger reactive intermediate. The regions of greatest non-complementarity between the enzyme and ligands are the portions of the ligand that make few polar contacts with the binding site, as well as the sites of chemical reaction, where overly strong electrostatic binding interactions with the substrate could hinder catalysis. The results also suggest that the negative charge on the phosphorus center of glutaminyl-adenylate plays an important role in the tight binding of this intermediate, and thus that adenylate analogs that preserve the negative charge in this region may bind substantially tighter than analogs where this group is replaced with a neutral group, such as the sulfamoyl family, which can make similar hydrogen bonds but is uncharged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号