首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A system of primers was designed on the basis of analysis of nucleotide sequences of the emoA gene encoding ethylenediaminetetraacetate (EDTA) monooxygenase, which are deposited in GenBank. This system of primers makes it possible to obtain emoA gene fragments approximately 750 bp long for bacterial destructors of EDTA. Polymerase chain reaction (PCR) of total DNA isolated from enrichment and pure cultures showed that this system can be effectively used for detecting the emoA gene in representatives of Alpha- and Gammaproteobacteria. Partial sequences of emoA genes of bacteria of the genera Chelativorans and Stenotrophomonas, which are able to degrade this pollutant, have been sequenced and deposited in GenBank.  相似文献   

2.
The 5.8S subunit and flanking internal transcribed spacer (ITS) regions in nuclear ribosomal DNA (rDNA) from spores of Glomus etunicatum MD107, MD127, TN101, and FL329 were amplified by polymerase chain reaction (PCR) using ITS1Kpn and ITS4Pst as primers. The amplification products (597, 599, 598, and 613 bp, respectively) were cloned and sequenced. The similarity among ITS region sequences from MD107, MD127, and TN101 was 99%, whereas the sequence similarity between the ITS regions of these three DNAs and that from FL329 was 91%. The 5.8S rDNA sequences of all four G. etunicatum isolates were identical. In contrast, major dissimilarities in the corresponding rDNA sequence regions of other glomalean taxa were observed. Oligonucleotide sequences unique to G. etunicatum were tested for their specificity in PCR amplification of genomic DNA from spores of 55 isolates comprising 29 glomalean fungi: 18 isolates of G. etunicatum, five G. intraradices, three G. claroideum, 16 other Glomus isolates, and 11 other glomalean taxa from each of four other genera. The G. etunicatum isolates were from a broad range of geographic regions and soils. The oligonucleotide pair GETU1:GETU2 primed specific amplification of an oligonucleotide sequence (approximately 400 bp) present in all G. etunicatum. This primer pair did not prime PCR when template consisted of DNA from any of the other glomalean fungi or any of the non-mycorrhizal controls, including roots of corn (Zea mays). In addition, the pair successfully detected G. etunicatum in nested PCR using a primary PCR product amplified from highly diluted extracts of colonized corn roots using modified ITS1:ITS4 primers. In the phylogenetic analysis of Glomus 5.8S and ITS2 rDNA region sequences, which included 500 bootstrap data sets, confidence in the G. etunicatum branch was very strong (90%) and clearly independent of G. claroideum and G. intraradices, to which it is very closely related. Accepted: 15 October 2000  相似文献   

3.
4.
5.
RecA protein in gram-negative bacteria, especially in Escherichia coli, has been extensively studied, but little is known about this key enzyme in other procaryotes. Described here are degenerate oligonucleotide primers that have been used to amplify by the polymerase chain reaction (PCR) recA sequences from several gram-positive bacteria and mycoplasmas. The DNA sequences of recA PCR products from Streptococcus pyogenes, Streptococcus mutans, Enterococcus faecalis, and Mycoplasma pulmonis were determined and compared. These data indicate that the M. pulmonis recA gene has diverged significantly from recA genes of other eubacteria. It should be possible to use cloned recA PCR products to construct recA mutants, thereby providing the means of elucidating homologous genetic recombination and DNA repair activities in these organisms.  相似文献   

6.
A set of primers and functional probes was developed for the detection of peptidase gene fragments of proteolytic bacteria. Based on DNA sequence data, degenerate PCR primers and internal DIG-labeled probes specific for genes encoding alkaline metallopeptidases (apr) (E.3.4.24), neutral metallopeptidases (npr) (E.3.4.24) and serine peptidases (sub) (E.3.4.21) were derived by multiple sequence alignments.Type strains with known peptidase genes and proteolytic bacteria from a grassland rhizosphere soil, a garden soil and an arable field were investigated for their genotypic proteolytic potential. For 52 out of 53 proteolytic bacterial isolates, at least one of the three peptidase classes could be identified by this approach. The amplified gene fragments were of the expected sizes with each of the three primer sets. The functional probes APR, NPR and SUB have been shown to hybridize specifically to the corresponding gene fragments. sub and npr genes were mainly found in Bacillus species. apr genes were only found in the Pseudomonas fluorescens biotypes and in two morphologically identical Flavobacterium-Cytophaga strains from two different sites. In most of the Bacillus spp., both sub and the npr and in the Flavobacterium-Cytophaga strains even all the three genes could be detected. PCR with DNA isolated from soil led to one main product of the expected size with each primer pair whose identity was additionally confirmed by Southern blot hybridization with the corresponding probes.  相似文献   

7.
Oligonucleotide primers were designed for the PCR-based detection of the wec gene cluster involved in the biosynthetic pathway leading to the production of enterobacterial common antigen (ECA). Escherichia coli DNA was detected using wec A, wec E, and wec F gene primers. The wec A primers were specific for E. coli. The wec E and wec F primers enabled the detection of the most frequent species of the Enterobacteriaceae found in blood and urine specimens as well as in water. The sensitivity of the assay was approximately 1.2 x 102 bacteria/mL of water. Thus, these primers represent an important step in the molecular diagnosis of major Enterobacteriaceae infections. Their role in the routine testing of contamination in drinking water and food may prove to be very useful. The DNA of Enterobacteriaceae species is detected in a first step PCR, followed by specific identification of important pathogens like E. coli O157, Shigella spp., Salmonella spp., and Yersinia spp.  相似文献   

8.
We describe polymerase chain reaction primers that amplify the low-copy nuclear adenine nucleotide transporter gene in decapod crustaceans. These were tested on 35 species from 14 decapod families, and a single polymerase chain reaction product amplified in 32 species. Of 49 sequences generated, only two did not contain an intron, and the longest intron identified was more than 834 nucleotides in length. The amplified fragment is likely to be useful at various taxonomic levels. While the intron is suitable for phylogeographical/population genetic studies and to identify cryptic speciation, the second exon region is sufficiently long to provide signal at both the phylogeographical and phylogenetic levels.  相似文献   

9.
A method which employs the polymerase chain reaction (PCR) to identify Escherichia coli strains containing the estA gene was developed. This gene codes for heat-stable enterotoxin type I. The use of an inosine-containing pair of amplification primers allowed the amplification of a specific 175-bp DNA fragment from several different estA alleles. The amplified fragments were identified and distinguished by allele-specific oligonucleotide hybridization and characterized by restriction endonuclease analysis. An extension of the classical two-primer PCR proved to be a very simple and rapid method to identify and characterize the estA alleles. Besides the inosine-containing pair of primers, which recognized all described alleles, additional oligonucleotides were used as primers. The sequence of each of these primers was allele specific, and each was amplification compatible with one of the inosine-containing primers. Thus, in one PCR the 175-bp fragment typical for all estA alleles and an allele-specific fragment of different size were produced. These fragments could be separated by agarose gel electrophoresis and were recognized by ethidium bromide staining. Twenty-seven E. coli strains were tested with this amplification system. The presence or lack of the genetic information for production of heat-stable enterotoxin type I was perfectly consistent with the ability of these strains to produce this enterotoxin, as determined by enzyme-linked immunosorbent assay.  相似文献   

10.
11.
An assay based on the PCR has been developed to facilitate detection and identification of Bacillus cereus in foods. Three primers for the PCR have been designed within the sequence for cereolysin AB, a cytolytic determinant that encodes lecithin-hydrolyzing and hemolytic activities of B. cereus. With the PCR and hybridization, the specificity of the primers was tested with 39 isolates of the B. cereus group, with 17 other Bacillus spp., and with 21 non-Bacillus strains. Results demonstrate a high specificity of the three oligonucleotides for isolates of the B. cereus group. With a combined PCR-hybridization assay, the detection limit for B. cereus in artificially contaminated milk was 1 CFU/ml of milk.  相似文献   

12.
The common feature of all chytridiomycetous fungi, aerobic as well as anaerobic, is an abundance of chitin in their cell wall. The genes coding for chitinases have therefore been widely used as phylogenetic markers in ascomycetes. As their utility for Chytridiomycetes has not been determined we chose the gene encoding an enzyme involved in chitin degradation and energy metabolism, the beta-(1,4)-N-acetylglucosaminidase (nag1). Primer pair Nag-forward and Nag-reverse was used to create PCR product from 5 strains of anaerobic and 7 strains of aerobic chytrids. However, Blast search of sequenced amplicons showed that these primers are specific only for fungus Emericella nidulans. Amino acid alignment of Nag1 proteins of fungal, protozoal and bacterial origin available in GenBank database was therefore performed. Five amino acid regions were found to be conserved enough to serve as a suitable domain for the design of a set of primers for the universal amplification of the nag1 gene in the Neocallimastigales fungi.  相似文献   

13.
A sensitive and selective genomagnetic assay for the electrochemical detection of food pathogens based on in situ DNA amplification with magnetic primers has been designed. The performance of the genomagnetic assay was firstly demonstrated for a DNA synthetic target by its double-hybridization with both a digoxigenin probe and a biotinylated capture probe, and further binding to streptavidin-modified magnetic beads. The DNA sandwiched target bound on the magnetic beads is then separated by using a magneto electrode based on graphite-epoxy composite. The electrochemical detection is finally achieved by an enzyme marker, anti-digoxigenin horseradish peroxidase (HRP). The novel strategy was used for the rapid and sensitive detection of polymerase chain reaction (PCR) amplified samples. Promising resultants were also achieved for the DNA amplification directly performed on magnetic beads by using a novel magnetic primer, i.e., the up PCR primer bound to magnetic beads. Moreover, the magneto DNA biosensing assay was able to detect changes at single nucleotide polymorphism (SNP) level, when stringent hybridization conditions were used. The reliability of the assay was tested for Salmonella spp., the most important pathogen affecting food safety.  相似文献   

14.
15.
Oligonucleotide-based detection schemes that avoid chemical modification possess significant advantages, including simplified design, intrinsic affinity for targets, low cost and ease to extend applications. In this contribution, we developed a label-free self-locked bifunctional oligonucleotide probe (signaling probe) for the detection of different disease markers in parallel. Two signal enhancement techniques based on isothermal circular strand-displacement polymerization reaction, cyclical nucleic acid strand-displacement polymerization (CNDP) and cyclical common (nonnucleic acid) target-displacement polymerization (CCDP), were employed to implement the amplification assay for p53 gene and PDGF-BB, respectively. The attractive assay properties confirmed the effectiveness of isothermal polymerization in common biosensing systems without evolving any chemical modification: PDGF could be detected down to 0.87ng/mL, and a dynamic response range of 8-5000ng/mL was achieved; The capability to screen the p53 gene was also considerably improved, including the detection limit, sensitivity, dynamic range and so on. Moreover, because no any chemical modification of the signaling probe was acquired and different targets were separately detected in homogeneous solution. This interrogating platform exhibits the design flexibility, convenience, simplicity and cost-effectiveness. The success achieved here is expected to serve as a significant step toward the development of robust label-free oligonucleotide probes in biomarker profiling and disease diagnostics.  相似文献   

16.
Consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) have proven to be a powerful tool for the identification of novel genes. CODEHOPs are designed from highly-conserved regions of multiply-aligned protein sequences from members of a gene family and are used in PCR amplification to identify distantly-related genes. The CODEHOP approach has been used to identify novel pathogens by targeting amino acid motifs conserved in specific pathogen families. We initiated a program utilizing the CODEHOP approach to develop PCR-based assays targeting a variety of viral families that are pathogens in non-human primates. We have also developed and further improved a computer program and website to facilitate the design of CODEHOP PCR primers. Here, we detail the method for the development of pathogen-specific CODEHOP PCR assays using the papillomavirus family as a target. Papillomaviruses constitute a diverse virus family infecting a wide variety of mammalian species, including humans and non-human primates. We demonstrate that our pan-papillomavirus CODEHOP assay is broadly reactive with all major branches of the virus family and show its utility in identifying a novel non-human primate papillomavirus in cynomolgus macaques.  相似文献   

17.
Pseudomonas syringae pathovars are important pathogens among phytopathogenic bacteria causing a variety of diseases in plants. These pathogens can rapidly disseminate in a large area leading to infection and destruction of plants. To prevent the incidence of the bacteria, appropriate detection methods should be employed. Routinely serological tests, being time-consuming and costly, are exploited to detect these pathogens in plants, soil, water and other resources. Over the recent years, DNA-based detection approaches which are stable, rapid, specific and reliable have been developed and sequence analysis of various genes are widely utilized to identify different strains of P. syringe. However, the greatest limitation of these genes is inability to detect numerous pathovars of P. syringae. Herein, by using bioinformatic analysis, we found the hrcV gene located at pathogenicity islands of bacterial genome with the potential of being used as a new marker for phylogenetic detection of numerous pathovars of P. syringae. Following design of specific primers to hrcV, we amplified a 440 bp fragment. Of 13 assayed pathovars, 11 were detected. Also, through experimental procedures and bioinformatic analysis it was revealed that the designed primers have the capacity to detect 19 pathovars. Our findings suggest that hrcV could be used as a gene with the merit of detecting more pathovars of P. syringae in comparison with other genes used frequently for detection purposes.  相似文献   

18.
19.
The rapid and accurate detection and identification of food-borne pathogenic bacteria is critical for food safety. In this paper, we describe a rapid (<4 h) high-throughput detection and identification system that uses universal polymerase chain reaction (PCR) primers to amplify a variable region of bacterial the 16S rRNA gene, followed by reverse hybridization of the products to species-specific oligonucleotide probes on a chip. This procedure was successful in discriminating 204 strains of bacteria from pure culture belonging to 13 genera of bacteria. When this method was applied directly to 115 strains of bacteria isolated from foods, 112/115 (97.4%) were correctly identified; two strains were indistinguishable due to weak signal, while one failed to produce a PCR product. The array was used to detect and successfully identify two strains of bacteria from food poisoning outbreak samples, giving results through hybridization that were identical to those obtained by traditional methods. The sensitivity of the microarray assay was 102 CFU of bacteria. Thus, the oligonucleotide microarray is a powerful tool for the detection and identification of pathogens from foods. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
rRNA-based studies, which have become the most common method for assessing microbial communities, rely upon faithful amplification of the corresponding genes from the original DNA sample. We report here an analysis and reevaluation of commonly used primers for amplifying the DNA between positions 27 and 1492 of bacterial 16S rRNA genes (numbered according to the Escherichia coli rRNA). We propose a formulation for a forward primer (27f) that includes three sequences not usually present. We compare our proposed formulation to two common alternatives by using linear amplification-providing an assessment that is independent of a reverse primer-and in combination with the 1492 reverse primer (1492r) under the PCR conditions appropriate for making community rRNA gene clone libraries. For analyses of DNA from human vaginal samples, our formulation was better at maintaining the original rRNA gene ratio of Lactobacillus spp. to Gardnerella spp., particularly under stringent amplification conditions. Because our 27f formulation remains relatively simple, having seven distinct primer sequences, there is minimal loss of overall amplification efficiency and specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号