首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Homyk, Rodriguez and Weil (1976) have described T4 mutants, called sip, that partially suppress the inability of T4rII mutants to grow in λ lysogens. We have found that mutants sip1 and sip2 are resistant to folate analogs and overproduce FH2 reductase. The results of recombination and complementation studies indicate that sip mutations are in the mot gene. Like other mot mutations (Mattson, Richardson and Goodin 1974; Chace and Hall 1975; Sauerbier, Hercules and Hall 1976), the sip2 mutation affects the expression of many genes and appears to affect promoter utilization. The mot gene function is not required for T4 growth on most hosts, but we have found that it is required for good growth on E. coli CTr5X. Homyk, Rodriguez and Weil (1976) also described L mutations that reverse the effects of sip mutations. L2 decreases the folate analog resistance and the inability of sip2 to grow on CTr5X. L2 itself is partially resistant to a folate analog, and appears to reverse the effects of sip2 on gene expression. These results suggest that L2 affects another regulatory gene related to the mot gene.  相似文献   

2.
The pathway of d-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198–6207). Here we report a comprehensive study of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following 13C-labeling patterns of proteinogenic amino acids after growth on [13C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that d-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate α-ketoglutarate, involving d-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and α-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal d-xylose degradation pathway that differs from the classical d-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to α-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus.d-Xylose, a constituent of the polymer xylan, is the major component of the hemicellulose plant cell wall material and thus one of the most abundant carbohydrates in nature. The utilization of d-xylose by microorganisms has been described in detail in bacteria and fungi, for which two different catabolic pathways have been reported. In many bacteria, such as Escherichia coli, Bacillus, and Lactobacillus species, xylose is converted by the activities of xylose isomerase and xylulose kinase to xylulose 5-phosphate as an intermediate, which is further degraded mainly by the pentose phosphate cycle or phosphoketolase pathway. Most fungi convert xylose to xylulose 5-phosphate via xylose reductase, xylitol dehydrogenase, and xylulose kinase. Xylulose 5-phosphate is also an intermediate of the most common l-arabinose degradation pathway in bacteria, e.g. of E. coli, via activities of isomerase, kinase, and epimerase (1).Recently, by genetic evidence, a third pathway of xylose degradation was proposed for the bacterium Caulobacter crescentus, in analogy to an alternative catabolic pathway of l-arabinose, reported for some bacteria, including species of Azospirillum, Pseudomonas, Rhizobium, Burkholderia, and Herbasprillum (2, 3). In these organisms l-arabinose is oxidatively degraded to α-ketoglutarate, an intermediate of the tricarboxylic acid cycle, via the activities of l-arabinose dehydrogenase, l-arabinolactonase, and two successive dehydration reactions forming 2-keto-3-deoxy-l-arabinoate and α-ketoglutarate semialdehyde; the latter compound is further oxidized to α-ketoglutarate via NADP+-specific α-ketoglutarate semialdehyde dehydrogenase (KGSADH).2 In a few Pseudomonas and Rhizobium species, a variant of this l-arabinose pathway was described involving aldolase cleavage of the intermediate 2-keto-3-deoxy-l-arabinoate to pyruvate and glycolaldehyde, rather than its dehydration and oxidation to α-ketoglutarate (4). Because of the presence of some analogous enzyme activities in xylose-grown cells of Azosprillum and Rhizobium, the oxidative pathway and its variant was also proposed as a catabolic pathway for d-xylose. Recent genetic analysis of Caulobacter crecentus indicates the presence of an oxidative pathway for d-xylose degradation to α-ketoglutarate. All genes encoding xylose dehydrogenase and putative lactonase, xylonate dehydratase, 2-keto-3-deoxylonate dehydratase, and KGSADH were found to be located on a xylose-inducible operon (5). With exception of xylose dehydrogenase, which has been partially characterized, the other postulated enzymes of the pathway have not been biochemically analyzed.The pathway of d-xylose degradation in the domain of archaea has not been studied so far. First analyses with the halophilic archaeon Haloarcula marismortui indicate that the initial step of d-xylose degradation involves a xylose-inducible xylose dehydrogenase (6) suggesting an oxidative pathway of xylose degradation to α-ketoglutarate, or to pyruvate and glycolaldehyde, in analogy to the proposed oxidative bacterial pentose degradation pathways. Recently, a detailed study of d-arabinose catabolism in the thermoacidophilic crenarchaeon Sulfolobus solfataricus was reported. d-Arabinose was found to be oxidized to α-ketoglutarate involving d-arabinose dehydrogenase, d-arabinoate dehydratase, 2-keto-3-deoxy-d-arabinoate dehydratase, and α-ketoglutarate semialdehyde dehydrogenase (3).In this study, we present a comprehensive analysis of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. This halophilic archaeon was chosen because it exerts several suitable properties for the analyses. For example, it can be cultivated on synthetic media with sugars, e.g. xylose, an advantage for in vivo labeling studies in growing cultures. Furthermore, a shotgun DNA microarray of H. volcanii is available (7) allowing the identification of xylose-inducible genes, and H. volcanii is one of the few archaea for which an efficient protocol was recently described to generate in-frame deletion mutants.Accordingly, the d-xylose degradation pathway was elucidated following in vivo labeling experiments with [13C]xylose, DNA microarray analyses, and the characterization of enzymes involved and their encoding genes. The functional involvement of genes and enzymes was proven by constructing corresponding in-frame deletion mutants and their analysis by selective growth experiments on xylose versus glucose. The data show that d-xylose was exclusively degraded to α-ketoglutarate involving xylose dehydrogenase, a novel xylonate dehydratase, 2-keto-3-deoxyxylonate dehydratase, and α-ketoglutarate semialdehyde dehydrogenase.  相似文献   

3.
Zhang XS 《Genetics》2008,180(1):687-695
Why does phenotypic variation increase upon exposure of the population to environmental stresses or introduction of a major mutation? It has usually been interpreted as evidence of canalization (or robustness) of the wild-type genotype; but an alternative population genetic theory has been suggested by J. Hermisson and G. Wagner: “the release of hidden genetic variation is a generic property of models with epistasis or genotype–environment interaction.” In this note we expand their model to include a pleiotropic fitness effect and a direct effect on residual variance of mutant alleles. We show that both the genetic and environmental variances increase after the genetic or environmental change, but these increases could be very limited if there is strong pleiotropic selection. On the basis of more realistic selection models, our analysis lends further support to the genetic theory of Hermisson and Wagner as an interpretation of hidden variance.A common experimental observation in quantitative genetics is a higher phenotypic variance for quantitative traits in populations that carry a major mutation or are exposed to environmental stresses (e.g., heat shock) (Scharloo 1991; for a recent review see Gibson and Dworkin 2004). Part of the added variance must be genetic because the population responds to artificial selection. The lower variability of the wild type than that of the mutants has been interpreted as evidence for robustness or canalization (Waddington 1957): that is, under the new condition the magnitudes of gene effects across all trait loci increase relative to the original condition. The importance of canalization has been recognized for a long time and has been the subject of renewed interest recently (see de Visser et al. 2003 and Hansen 2006 for reviews).An alternative population genetic theory has been proposed by Hermisson and Wagner (2004), who suggest that the increase in genetic variance VG after the change in environmental conditions or genetic background is a generic property of the population, with no need to introduce canalization (Waddington 1957). The theory appears simple. Under mutation–selection balance (MSB), the mutant alleles are at a selective disadvantage and there is a negative correlation between frequencies and effects of mutations: mutant alleles of small effects on the trait segregate at intermediate frequencies. After the change in genetic or environmental background, gene effects consequently change due to G × E interaction or epistasis, which reduces the negative correlation because genes that were previously of small effects and at intermediate frequencies may now have large effects. That is, the frequencies of alleles are determined by the previous MSB, while their new effects are at least partly determined by the new conditions. The genetic variance will therefore increase.Hermisson and Wagner (2004) found that the predicted increase in genetic variance can be substantial; however, the predicted increase is highly sensitive to the population size and can increase without bound with increasing population size (see their Figure 2 and Equation 16). Genetic variance would enlarge with the population size within a small population (Lynch and Hill 1986; Weber and Diggins 1990), but becomes insensitive to the population size within large populations (Falconer and Mackay 1996, Chap. 20). Hence the unbounded increase under the novel environmental condition appears to us as a downside of their theory, even though the predicted increase can be reduced if the changed environmental condition is not novel but there is previous adaptation to it (see their Figure 3).Open in a separate windowFigure 2.—Influence of the pleiotropic effect (sp) on the increase of genetic variance ΔG in units of the interaction parameter ξ for a “typical” situation with strength of stabilizing selection ω2 = 0.1μ2, mutation rate λ = 0.1 per haploid genome per generation, and population size Ne = 106. The allelic pleiotropic effect on fitness and its variance effect on the trait independently follow gamma distributions with shape parameters βs and βv, respectively. The mean of a2 across loci is E(v) = E(a2) = 10−4μ2.Open in a separate windowOpen in a separate windowFigure 3.—Influence of shapes of distributions of mutational effects on (a) the variances at mutation–selection balance and (b) their increases after the genetic or environmental change. The squares represent the genetic variance and its increase and the triangles the environmental variance and its increase. The mutation rate is λ= 0.1 per haploid genome per generation, the population size is Ne = 109, and the strength of real stabilizing selection is ω2 = 0.1μ2. Allelic effects on trait value (a), fitness (s), and residual variance (b) are assumed to be independently distributed such that v = a2 follows a gamma () distribution with mean 10−4μ2, s follows gamma (βs) with mean sp = 0.05, and b follows gamma (βb) with mean 10−4μ2.The basic model that Hermisson and Wagner (2004) employed is that the quantitative trait is under real stabilizing selection and mutant alleles have effects on the focal trait only by changing its so-called locus genetic variance. At the mutation–real stabilizing selection balance, some mutants can segregate at intermediate frequencies because of their small effects and therefore weak selection; and there are more such mutants the more strongly leptokurtic is the distribution of effects at individual loci. The unbounded increase of Hermisson and Wagner (2004) results from such a gene-frequency distribution; but it has been shown (see Barton and Turelli 1989; Falconer and Mackay 1996; Lynch and Walsh 1998) that solely stabilizing selection, whether modeled with a Gaussian (Kimura 1965) or a house of-cards approximation (Turelli 1984) or even the generalized form of Hermisson and Wagner (2004) (i.e., their Equation 14), cannot provide a satisfactory explanation for the high levels of genetic variance observed in natural populations under realistic values of mutation and selection parameters.A common observation is that one trait is controlled by many genes and one gene can influence many traits; i.e., pleiotropy is ubiquitous (Barton and Turelli 1989; Barton and Keightley 2002; Mackay 2004; Ostrowski et al. 2005). Recent detailed studies suggest that pleiotropy calculated as the number of phenotypic traits affected varies considerably among quantitative trait loci (QTL) (Cooper et al. 2007; Albert et al. 2008; Kenney-Hunt et al. 2008; Wagner et al. 2008). Such pleiotropic effects must influence the magnitude of the variance. Though some genes have little effect on the focal trait, they almost certainly affect other traits and therefore are not neutral. The inclusion of pleiotropic effects on fitness strengthens the overall selection on mutant alleles and, assuming such pleiotropic effects are mainly deleterious, maintains them at low frequencies. The genetic variance for a trait is therefore likely to be maintained at lower levels than that under only real stabilizing selection on the trait alone (Tanaka 1996). Although the gene-frequency distribution is much more extreme under this joint model, the relevant rate of mutation is genomewide and hence is much larger than that where mutation affects only the focal trait as is assumed in the real stabilizing selection model (Turelli 1984; Falconer and Mackay 1996). Taking into account empirical knowledge of mutation parameters, a combination of both pleiotropic and real stabilizing selection appears to be a plausible mechanism for the maintenance of quantitative genetic variance (Zhang et al. 2004). If pleiotropic selection is much stronger than real stabilizing selection, the association between frequency and effect of mutant alleles is weaker than that for a real stabilizing selection model. Further, if overall selection is stronger than recurrent mutation, the frequency distribution of mutant alleles will be extreme. Under those situations, the increase of genetic variance after the genetic or environmental change will be kept at lower levels than that of Hermisson and Wagner (2004), and hence the unbounded increase could be avoided.Further, Hermisson and Wagner (2004) assume that the environmental variance is not under genetic control (i.e., the variance of phenotypic value given genotypic value is the same for all genotypes) and therefore is not subject to change. This assumption conflicts with the increasingly accumulating empirical data that indicate otherwise (Zhang and Hill 2005; Mulder et al. 2007 for reviews). Direct experimental evidence is available that mutation can directly affect environmental variance, VE (Whitlock and Fowler 1999; Mackay and Lyman 2005), and Baer (2008) provides what is perhaps the first clear demonstration that mutations increase environmental variances, on the basis of data for body size and productivity of Caenorhabditis elegans, and finds that the magnitudes of the increases are of the same order as those in the genetic variance.As real stabilizing selection on phenotype favors genotypes possessing low VE (Gavrilets and Hastings 1994; Zhang and Hill 2005), a mutant that contributes little to VE is more favored by stabilizing selection than one that contributes a lot. With all else being the same, mutants with small effect on VE thus segregate at relatively high frequencies at MSB. That is, there is a negative correlation between the effect on VE and the frequency of mutant genes. After the genetic or environmental change, some mutants that were previously of small effects on VE have large effects due to G × E interaction or epistasis while their frequencies remain roughly the same as in the previous MSB. This certainly increases environmental variance.In this note, we first assume that mutant alleles can affect only the mean value of a focal quantitative trait and otherwise affect fitness through their pleiotropic effects (Zhang et al. 2004) and try to answer the following questions: How will the conclusion of Hermisson and Wagner (2004) be affected by taking into account the pleiotropic effect of mutants? Can the “unbounded increase” be avoided? We then further assume that mutant alleles can also directly affect the environmental variance of the focal trait (Zhang and Hill 2008) and investigate how both VG and VE change following the genetic or environmental change in the population.  相似文献   

4.
Enzymatic processes are useful for industrially important sugar production, and in vitro two-step isomerization has proven to be an efficient process in utilizing readily available sugar sources. A hypothetical uncharacterized protein encoded by ydaE of Bacillus licheniformis was found to have broad substrate specificities and has shown high catalytic efficiency on d-lyxose, suggesting that the enzyme is d-lyxose isomerase. Escherichia coli BL21 expressing the recombinant protein, of 19.5 kDa, showed higher activity at 40 to 45°C and pH 7.5 to 8.0 in the presence of 1.0 mM Mn2+. The apparent Km values for d-lyxose and d-mannose were 30.4 ± 0.7 mM and 26 ± 0.8 mM, respectively. The catalytic efficiency (kcat/Km) for lyxose (3.2 ± 0.1 mM−1 s−1) was higher than that for d-mannose (1.6 mM−1 s−1). The purified protein was applied to the bioproduction of d-lyxose and d-glucose from d-xylose and d-mannose, respectively, along with the thermostable xylose isomerase of Thermus thermophilus HB08. From an initial concentration of 10 mM d-lyxose and d-mannose, 3.7 mM and 3.8 mM d-lyxose and d-glucose, respectively, were produced by two-step isomerization. This two-step isomerization is an easy method for in vitro catalysis and can be applied to industrial production.  相似文献   

5.
David Henderson  Jon Weil 《Genetics》1975,79(2):143-174
We have isolated a new class of deletion mutants of phage lambda that extend from the prophage attachment site, att, into the gam and cIII genes. In this respect they are similar to certain of the λpbio transducing phage, but they differ in having a low burst size and in forming minute plaques. Lytically grown stocks of the deletions contain a variable proportion of phage that produce large plaques. These have been shown to carry an additional point mutation. Similar mutations, called chi, have been described by Lam et al. (1974), who showed that they result in a hot-spot for recombination produced by the host recombination system (Rec). We show that chi mutations can occur at several sites in the lambda genome and produce a Rec-dependent increase in the burst size of the one deletion tested.—In addition to reducing burst size, the one deletion tested reduces synthesis of DNA and endolysin but increases production of serum blocking protein. A chi mutation partially restores DNA synthesis and endolysin production and reduces serum blocking protein to normal levels. Our results are consistent with the hypothesis put forward by Lam et al., that chi enhances the frequency of Rec-promoted recombination, which provides the only pathway for production of maturable DNA in a red- gam- infection. The mechanism of the differential effect on protein production is, however, unclear.—Chi mutations are found to occur in DNA other than that of λ. We show that, as has been suggested elsewhere (McMilin, Stahl and Stahl 1974), the λpbio transducing phages carry a chi mutation within the E. coli DNA substitution. A chi mutation also arose in a new substitution of unknown origin isolated in the course of this work.  相似文献   

6.
Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of l- and d-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino acid analysis after acid hydrolysis, dinitrophenylation, enzymatic determination of the configuration of the chiral amino acids, and mass spectrometry. The high-performance liquid chromatography profile contained four main peaks, two monomers, and two dimers, plus a few minor peaks corresponding to anhydro forms. The first monomer was the d-lysine-containing disaccharide-tripeptide in which the d-Glu-d-Lys bond had the unusual γ→ϵ arrangement (GlcNAc-MurNAc-l-Ala-γ-d-Glu-ϵ-d-Lys). The second monomer was the conventional disaccharide-tetrapeptide (GlcNAc-MurNAc-l-Ala-γ-d-Glu-l-Lys-d-Ala). The first dimer contained a disaccharide-l-Ala as the acyl donor cross-linked to the α-amine of d-Lys in a tripeptide acceptor stem with the sequence of the first monomer. In the second dimer, donor and acceptor stems with the sequences of the second and first monomers, respectively, were connected by a d-Ala4-α-d-Lys3 cross-link. The cross-linking index was 10 with an average chain length of 30 disaccharide units. The structure of the peptidoglycan of T. maritima revealed for the first time the key role of d-Lys in peptidoglycan synthesis, both as a surrogate of l-Lys or meso-diaminopimelic acid at the third position of peptide stems and in the formation of novel cross-links of the l-Ala1(α→α)d-Lys3 and d-Ala4(α→α)d-Lys3 types.Peptidoglycan (or murein) is a giant macromolecule whose main function is the protection of the cytoplasmic membrane against the internal osmotic pressure. It is composed of alternating residues of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc)2 cross-linked by short peptides (1). The composition of the peptide stem in nascent peptidoglycan is l-Ala1-γ-d-Glu2-X3-d-Ala4-d-Ala5, where X is most often meso-diaminopimelic acid (meso-A2pm) or l-lysine in Gram-negative and Gram-positive species, respectively (2, 3). In the mature macromolecule, the last d-Ala residue is removed. Cross-linking of the glycan chains generally occurs between the carboxyl group of d-Ala at position 4 of a donor peptide stem and the side-chain amino group of the diamino acid at position 3 of an acceptor peptide stem (4→3 cross-links). Cross-linking is either direct or through a short peptide bridge such as pentaglycine in Staphylococcus aureus (2, 3). The enzymes for the formation of the 4→3 cross-links are active-site serine dd- transpeptidases that belong to the penicillin-binding protein (PBP) family and are the essential targets of β-lactam antibiotics in pathogenic bacteria (4). Catalysis involves the cleavage of the d-Ala4-d-Ala5 bond of a donor peptide stem and the formation of an amide bond between the carboxyl of d-Ala4 and the side chain amine at the third position of an acceptor stem. Transpeptidases of the ld specificity are active-site cysteine enzymes that were shown to act as surrogates of the PBPs in mutants of Enterococcus faecium resistant to β-lactam antibiotics (5). They cleave the X3-d-Ala4 bond of a donor stem peptide to form 3→3 cross-links. This alternate mode of cross-linking is usually marginal, although it has recently been shown to predominate in non-replicative “dormant” forms of Mycobacterium tuberculosis (6).Thermotoga maritima is a Gram-negative, extremely thermophilic bacterium isolated from geothermally heated sea floors by Huber et al. (7). A morphological characteristic is the presence of an outer sheath-like envelope called “toga.” Although the organism has received considerable attention for its biotechnological potential, studies about its peptidoglycan are scarce (811), and in particular the fine structure of the macromolecule is still unknown. In their initial work, Huber et al. (7) showed that the composition of its peptidoglycan was unusual for a Gram-negative species, because it contained both isomers of lysine and no A2pm. Recently, we purified and studied the properties of T. maritima MurE (12); this enzyme is responsible for the addition of the amino acid residue at position 3 of the peptide stem (13, 14). We demonstrated that T. maritima MurE added in vitro l- and d-Lys to UDP-MurNAc-l-Ala-d-Glu. Although l-Lys was added in the usual way, yielding the conventional nucleotide UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys containing a d-Glu(γ→α)l-Lys amide bond, the d-isomer was added in an “upside-down” manner, yielding the novel nucleotide UDP-MurNAc-l-Ala-d-Glu(γ→ϵ)d-Lys. We also showed that the d-Lys-containing nucleotide was not a substrate for T. maritima MurF, the subsequent enzyme in the biosynthetic pathway, whereas this ligase catalyzed the addition of dipeptide d-Ala-d-Ala to the l-Lys-containing tripeptide, yielding the conventional UDP-MurNAc-pentapeptide (12).However, both the l-Lys-containing UDP-MurNAc-pentapeptide and d-Lys-containing UDP-MurNAc-tripeptide were used as substrates by T. maritima MraY with comparable efficiencies in vitro (12). This observation implies that the unusual d-Lys-containing peptide stems are likely to be translocated to the periplasmic face of the cytoplasmic membrane and to participate in peptidoglycan polymerization. Therefore, we have determined here the fine structure of T. maritima peptidoglycan and we have shown that l-Lys- and d-Lys-containing peptide stems are both present in the polymer, the latter being involved in the formation of two novel types of peptidoglycan cross-link.  相似文献   

7.
8.
9.
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin''s cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′.  相似文献   

10.
Inositol-Requiring Mutants of SACCHAROMYCES CEREVISIAE   总被引:5,自引:5,他引:0  
Fifty-two inositol-requiring mutants of Saccharomyces cerevisiae were isolated following mutagenesis with ethyl methanesulfonate. Complementation and tetrad analysis revealed ten major complementation classes, representing ten independently segregating loci (designated ino1 through ino10) which recombined freely with their respective centromeres. Members of any given complementation class segregated as alleles of a single locus. Thirteen complementation subclasses were identified among thirty-six mutants which behaved as alleles of the ino1 locus. The complementation map for these mutants was circular.—Dramatic cell viability losses indicative of unbalanced growth were observed in liquid cultures of representative mutants under conditions of inositol starvation. Investigation of the timing, kinetics, and extent of cell death revealed that losses in cell viability in the range of 2-4 log orders could be prevented by the addition of inositol to the medium or by disruption of protein synthesis with cycloheximide. Mutants defective in nine of the ten loci identified in this study displayed these unusual characteristics. The results suggest an important physiological role for inositol that may be related to its cellular localization and function in membrane phospholipids. The possibility is discussed that inositol deficiency initiates the process of unbalanced growth leading to cell death through the loss of normal assembly, function, or integrity of biomembranes.—Part of this work has been reported in preliminary form (Culbertson and Henry 1974).  相似文献   

11.
12.
The importance of genes of major effect for evolutionary trajectories within and among natural populations has long been the subject of intense debate. For example, if allelic variation at a major-effect locus fundamentally alters the structure of quantitative trait variation, then fixation of a single locus can have rapid and profound effects on the rate or direction of subsequent evolutionary change. Using an Arabidopsis thaliana RIL mapping population, we compare G-matrix structure between lines possessing different alleles at ERECTA, a locus known to affect ecologically relevant variation in plant architecture. We find that the allele present at ERECTA significantly alters G-matrix structure—in particular the genetic correlations between branch number and flowering time traits—and may also modulate the strength of natural selection on these traits. Despite these differences, however, when we extend our analysis to determine how evolution might differ depending on the ERECTA allele, we find that predicted responses to selection are similar. To compare responses to selection between allele classes, we developed a resampling strategy that incorporates uncertainty in estimates of selection that can also be used for statistical comparisons of G matrices.THE structure of the genetic variation that underlies phenotypic traits has important consequences for understanding the evolution of quantitative traits (Fisher 1930; Lande 1979; Bulmer 1980; Kimura 1983; Orr 1998; Agrawal et al. 2001). Despite the infinitesimal model''s allure and theoretical tractability (see Orr and Coyne 1992; Orr 1998, 2005a,b for reviews of its influence), evidence has accumulated from several sources (artificial selection experiments, experimental evolution, and QTL mapping) to suggest that genes of major effect often contribute to quantitative traits. Thus, the frequency and role of genes of major effect in evolutionary quantitative genetics have been a subject of intense debate and investigation for close to 80 years (Fisher 1930; Kimura 1983; Orr 1998, 2005a,b). Beyond the conceptual implications, the prevalence of major-effect loci also affects our ability to determine the genetic basis of adaptations and species differences (e.g., Bradshaw et al. 1995, 1998).Although the existence of genes of major effect is no longer in doubt, we still lack basic empirical data on how segregating variation at such genes affects key components of evolutionary process (but see Carrière and Roff 1995). In other words, How does polymorphism at genes of major effect alter patterns of genetic variation and covariation, natural selection, and the likely response to selection? The lack of data stems, in part, from the methods used to detect genes of major effect: experimental evolution (e.g., Bull et al. 1997; Zeyl 2005) and QTL analysis (see Erickson et al. 2004 for a review) often detect such genes retrospectively after they have become fixed in experimental populations or the species pairs used to generate the mapping population. The consequences of polymorphism at these genes on patterns of variation, covariation, selection, and the response to selection—which can be transient (Agrawal et al. 2001)—are thus often unobserved.A partial exception to the absence of data on the effects of major genes comes from artificial selection experiments, in which a substantial evolutionary response to selection in the phenotype after a plateau is often interpreted as evidence for the fixation of a major-effect locus (Frankham et al. 1968; Yoo 1980a,b; Frankham 1980; Shrimpton and Robertson 1988a,b; Caballero et al. 1991; Keightley 1998; see Mackay 1990 and Hill and Caballero 1992 for reviews). However, many of these experiments report only data on the selected phenotype (e.g., bristle number) or, alternatively, the selected phenotype and some measure of fitness (e.g., Frankham et al. 1968, Yoo 1980b; Caballero et al. 1991; Mackay et al. 1994; Fry et al. 1995; Nuzhdin et al. 1995; Zur Lage et al. 1997), making it difficult to infer how a mutation will affect variation, covariation, selection, and evolutionary responses for a suite of traits that might affect fitness themselves. One approach is to document how variation at individual genes of major effect affects the genetic variance–covariance matrix (“G matrix”; Lande 1979), which represents the additive genetic variance and covariance between traits.Although direct evidence for variation at major-effect genes altering patterns of genetic variation, covariation, and selection is rare, there is abundant evidence for the genetic mechanisms that could produce these dynamics. A gene of major effect could have these consequences due to any of at least three genetic mechanisms: (1) pleiotropy, where a gene of major effect influences several traits, including potentially fitness, simultaneously, (2) physical linkage or linkage disequilibrium (LD), in which a gene of major effect is either physically linked or in LD with other genes that influence other traits under selection, and (3) epistasis, in which the allele present at a major-effect gene alters the phenotypic effect of other loci and potentially phenotypes under selection. Evidence for these three evolutionary genetic mechanisms leading to changes in suites of traits comes from a variety of sources, including mutation accumulation experiments (Clark et al. 1995; Fernandez and Lopez-Fanjul 1996), mutation induction experiments (Keightley and Ohnishi 1998), artificial selection experiments (Long et al. 1995), and transposable element insertions (Rollmann et al. 2006). For pleiotropy in particular, major-effect genes that have consequences on several phenotypic traits are well known from the domestication and livestock breeding literature [e.g., myostatin mutations in Belgian blue cattle and whippets (Arthur 1995; Grobet et al. 1997; Mosher et al. 2007), halothane genes in pigs (Christian and Rothschild 1991; Fujii et al. 1991), and Booroola and Inverdale genes in sheep (Amer et al. 1999; Visscher et al. 2000)]. While these data suggest that variation at major-effect genes could—and probably does—influence variation, covariation, and selection on quantitative traits, data on the magnitude of these consequences remain lacking.Recombinant inbred line (RIL) populations are a promising tool for investigating the influence of major-effect loci. During advancement of the lines from F2''s to RILs, alternate alleles at major-effect genes (and most of the rest of the genome) will be made homozygous, simplifying comparisons among genotypic classes. Because of the high homozygosity, individuals within RILs are nearly genetically identical, facilitating phenotyping of many genotypes under a range of environments. In addition, because of recombination, alternative alleles are randomized across genetic backgrounds—facilitating robust comparisons between sets of lines differing at a major-effect locus.Here we investigate how polymorphism at an artificially induced mutation, the erecta locus in Arabidopsis thaliana, affects the magnitude of these important evolutionary genetic parameters under ecologically realistic field conditions. We use the Landsberg erecta (Ler) × Columbia (Col) RIL population of A. thaliana to examine how variation at a gene of major effect influences genetic variation, covariation, and selection on quantitative traits in a field setting. The Ler × Col RIL population is particularly suitable, because it segregates for an artificially induced mutation at the erecta locus, which has been shown to influence a wide variety of plant traits. The Ler × Col population thus allows a powerful test of the effects of segregating variation at a gene—chosen a priori—with numerous pleiotropic effects. The ERECTA gene is a leucine-rich receptor-like kinase (LRR-RLK) (Torii et al. 1996) and has been shown to affect plant growth rates (El-Lithy et al. 2004), stomatal patterning and transpiration efficiency (Masle et al. 2005; Shpak et al. 2005), bacterial pathogen resistance (Godiard et al. 2003), inflorescence and floral organ size and shape (Douglas et al. 2002; Shpak et al. 2003, 2004), and leaf polarity (Xu et al. 2003; Qi et al. 2004).Specifically, we sought to answer the following questions: (1) Is variation at erecta significantly associated with changes to the G matrix? (2) Is variation at erecta associated with changes in natural selection on genetically variable traits? And (3) is variation at erecta associated with significantly different projected evolutionary responses to selection?  相似文献   

13.
Manganese superoxide dismutase (MnSOD), a foremost antioxidant enzyme, plays a key role in angiogenesis. Barley-derived (1.3) β-d-glucan (β-d-glucan) is a natural water-soluble polysaccharide with antioxidant properties. To explore the effects of β-d-glucan on MnSOD-related angiogenesis under oxidative stress, we tested epigenetic mechanisms underlying modulation of MnSOD level in human umbilical vein endothelial cells (HUVECs) and angiogenesis in vitro and in vivo. Long-term treatment of HUVECs with 3% w/v β-d-glucan significantly increased the level of MnSOD by 200% ± 2% compared to control and by 50% ± 4% compared to untreated H2O2-stressed cells. β-d-glucan-treated HUVECs displayed greater angiogenic ability. In vivo, 24 hrs-treatment with 3% w/v β-d-glucan rescued vasculogenesis in Tg (kdrl: EGFP) s843Tg zebrafish embryos exposed to oxidative microenvironment. HUVECs overexpressing MnSOD demonstrated an increased activity of endothelial nitric oxide synthase (eNOS), reduced load of superoxide anion (O2) and an increased survival under oxidative stress. In addition, β-d-glucan prevented the rise of hypoxia inducible factor (HIF)1-α under oxidative stress. The level of histone H4 acetylation was significantly increased by β-d-glucan. Increasing histone acetylation by sodium butyrate, an inhibitor of class I histone deacetylases (HDACs I), did not activate MnSOD-related angiogenesis and did not impair β-d-glucan effects. In conclusion, 3% w/v β-d-glucan activates endothelial expression of MnSOD independent of histone acetylation level, thereby leading to adequate removal of O2, cell survival and angiogenic response to oxidative stress. The identification of dietary β-d-glucan as activator of MnSOD-related angiogenesis might lead to the development of nutritional approaches for the prevention of ischemic remodelling and heart failure.  相似文献   

14.
The use of β-lactam antibiotics has led to the evolution and global spread of a variety of resistance mechanisms, including β-lactamases, a group of enzymes that degrade the β-lactam ring. The evolution of increased β-lactam resistance was studied by exposing independent lineages of Salmonella typhimurium to progressive increases in cephalosporin concentration. Each lineage carried a β-lactamase gene (blaTEM-1) that provided very low resistance. In most lineages, the initial response to selection was an amplification of the blaTEM-1 gene copy number. Amplification was followed in some lineages by mutations (envZ, cpxA, or nmpC) that reduced expression of the uptake functions, the OmpC, OmpD, and OmpF porins. The initial resistance provided by blaTEM-1 amplification allowed the population to expand sufficiently to realize rare secondary point mutations. Mathematical modeling showed that amplification often is likely to be the initial response because events that duplicate or further amplify a gene are much more frequent than point mutations. These models show the importance of the population size to appearance of later point mutations. Transient gene amplification is likely to be a common initial mechanism and an intermediate in stable adaptive improvement. If later point mutations (allowed by amplification) provide sufficient adaptive improvement, the amplification may be lost.THE extensive use of β-lactam antibiotics has led to the evolution and spread of many chromosomal-, plasmid-, and transposon-borne resistance mechanisms (Livermore 1995; Weldhagen 2004). Prominent among these mechanisms is a class of enzymes, β-lactamases, that hydrolyze the β-lactam ring (Ambler 1980; Poole 2004). TEM-1 β-lactamase, encoded by the blaTEM-1 gene, hydrolyzes both penicillins and early cephalosporins (Matagne et al. 1990). As bacteria developed resistance, stable extended-spectrum cephalosporins (ESCs) were introduced, leading to evolution of TEM sequence variants with improved ESC hydrolysis (Petrosino et al. 1998). Resistance to β-lactams can also result from mutations that reduce levels of outer membrane proteins involved in uptake, altered target proteins (penicillin-binding proteins) to reduce β-lactam binding, or increased expression of efflux pumps that export the antibiotics (Poole 2004; Martínez-Martínez 2008; Zapun et al. 2008).Resistance to β-lactam antibiotics is linearly correlated with the lactamase level over a large range (Nordström et al. 1972) and resistance to β-lactam antibiotics can be provided by increasing enzyme levels. An early illustration of this process is the finding that Escherichia coli can develop ampicillin resistance by amplifying its ampC gene (Edlund and Normark 1981). Similar amplification has been observed in both eubacteria and eukaryotes (Craven and Neidle 2007; Wong et al. 2007) in response to various selective pressures, including antibiotics (Andersson and Hughes 2009; Sandegren and Andersson 2009). In an unselected bacterial population, the frequency of cells with a duplication of any specific chromosomal region ranges between 10−2 and 10−5 depending on the region (Anderson and Roth 1981), whereas a point mutation in that gene is expected to be carried by perhaps 1 cell in 107–108 (Hudson et al. 2002). Thus, the rate of duplication formation is ∼10−5/cell/division and further increases ∼0.01/cell/division (Pettersson et al. 2008) while the base substitution rate is ∼10−10/cell/division/base pair (Hudson et al. 2002). Thus, it is apparent that variants with an increased level of any enzyme activity are more likely to owe the increase to a gene copy number change than to a point mutation. Furthermore, because of the high intrinsic instability of tandem amplifications, haploid segregants are expected to take over the population when the selection pressure is released (Pettersson et al. 2008).To examine the importance of gene amplification in bacterial adaptation to cephalosporins, several independent Salmonella typhimurium lineages carrying the blaTEM-1 gene were allowed to develop resistance to progressively increased concentrations of cephalothin (a first-generation cephalosporin) and cefaclor (a second-generation cephalosporin). As these lineages developed resistance to higher antibiotic levels, amplification of the blaTEM-1 gene was the primary and most common resistance mechanism, which in some cases was followed by acquisition of rare point mutations that provided stable resistance.  相似文献   

15.
Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway.  相似文献   

16.
17.
Studies of Mutations in T4 Control Genes 33 and 55   总被引:2,自引:0,他引:2       下载免费PDF全文
H. Robert Horvitz 《Genetics》1975,79(3):349-360
  相似文献   

18.
Uridine diphosphate (UDP)-glucose 4-epimerase (EC 5.1.3.2) has been purified over 1000-fold from extracts of wheat germ by MnCl2 treatment, (NH4)2SO4 fractionation, Sephadex column chromatography, and adsorption onto and elution from calcium phosphate gel. The enzyme has a pH optimum of 9.0. Km values are 0.1 mm for UDP-d-galactose and 0.2 mm for UDP-d-glucose. NAD is required for activity; Ka = 0.04 mm. NADH is an inhibitor strictly competitive with NAD; Ki = 2 μm. Wheat germ also contains UDP-l-arabinose 4-epimerase (EC 5.1.3.5) and thymidine diphosphate (TDP)-glucose 4-epimerase which are distinct from UDP-glucose 4-epimerase.  相似文献   

19.
The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The Km for l-arabinose is 54 ± 6 mm and for d-xylose 155 ± 15 mm.  相似文献   

20.
The Arabidopsis thaliana locus At5g06580 encodes an ortholog to Saccharomyces cerevisiae d-lactate dehydrogenase (AtD-LDH). The recombinant protein is a homodimer of 59-kDa subunits with one FAD per monomer. A substrate screen indicated that AtD-LDH catalyzes the oxidation of d- and l-lactate, d-2-hydroxybutyrate, glycerate, and glycolate using cytochrome c as an electron acceptor. AtD-LDH shows a clear preference for d-lactate, with a catalytic efficiency 200- and 2000-fold higher than that for l-lactate and glycolate, respectively, and a Km value for d-lactate of ∼160 μm. Knock-out mutants showed impaired growth in the presence of d-lactate or methylglyoxal. Collectively, the data indicated that the protein is a d-LDH that participates in planta in the methylglyoxal pathway. Web-based bioinformatic tools revealed the existence of a paralogous protein encoded by locus At4g36400. The recombinant protein is a homodimer of 61-kDa subunits with one FAD per monomer. A substrate screening revealed highly specific d-2-hydroxyglutarate (d-2HG) conversion in the presence of an organic cofactor with a Km value of ∼580 μm. Thus, the enzyme was characterized as a d-2HG dehydrogenase (AtD-2HGDH). Analysis of knock-out mutants demonstrated that AtD-2HGDH is responsible for the total d-2HGDH activity present in A. thaliana. Gene coexpression analysis indicated that AtD-2HGDH is in the same network as several genes involved in β-oxidation and degradation of branched-chain amino acids and chlorophyll. It is proposed that AtD-2HGDH participates in the catabolism of d-2HG most probably during the mobilization of alternative substrates from proteolysis and/or lipid degradation.l- and d-lactate dehydrogenases belong to evolutionarily unrelated enzyme families (1). l-Lactate is oxidized by l-lactate:NAD oxidoreductase (EC 1.1.1.27), which catalyzes the reaction l-lactate + NAD → pyruvate + NADH, and by l-lactate cytochrome c oxidoreductase (l-lactate cytochrome c oxidoreductase, EC 1.1.2.3), which catalyzes the reaction l-lactate + 2 cytochrome c (oxidized) → pyruvate + 2 cytochrome c (reduced). Both groups are found in eubacteria, archebacteria, and eukaryotes. All known plant sequences belong to the EC 1.1.1.27 group (1). On the other hand, d-lactate is oxidized by d-lactate:NAD oxidoreductase (d-lactate:NAD oxidoreductase, EC 1.1.1.28), which catalyzes the reaction d-lactate + NAD → pyruvate + NADH, and by d-lactate cytochrome c oxidoreductase (d-lactate cytochrome c oxidoreductase, EC 1.1.2.4), which catalyzes the reaction d-lactate + 2 cytochrome c (oxidized) → pyruvate + 2 cytochrome c (reduced).Although l-lactate dehydrogenase belongs to the most intensely studied enzyme families (2, 3), our knowledge about the structure, kinetics, and biological function of d-LDH3 is limited. d-LDHs have mainly been identified in prokaryotes and fungi where they play an important role in anaerobic energy metabolism (410). In Saccharomyces cerevisiae and Kluyveromyces lactis, a mitochondrial flavoprotein d-lactate ferricytochrome c oxidoreductase (d-lactate cytochrome c oxidoreductase), catalyzing the oxidation of d-lactate to pyruvate, is required for the utilization of d-lactate (8, 11). In S. cerevisiae it was suggested that d-LDH is involved in the metabolism of methylglyoxal (MG) (12).In eukaryotic cells, d-lactate results from the glyoxalase system (13, 14). This system is the main MG catabolic pathway, comprising the enzymes glyoxalase I (lactoylglutathione lyase, EC 4.4.1.5) and glyoxalase II (hydroxyacylglutathione hydrolase, EC 3.1.2.6). MG (CH3-CO-CHO; see structure in Fig. 4) is a cytotoxic compound formed primarily as a by-product of glycolysis through nonenzymatic phosphate elimination from dihydroxyacetone phosphate and glyceraldehyde 3-phosphate (15), and its production in various plants is enhanced under stress conditions such as salt, drought, cold, and heavy metal stress (16, 17). Moreover, the overexpression of glyoxalase I or II was shown to confer resistance to salt stress in tobacco and rice (17, 18). It is assumed that the role of the MG pathway, from MG synthase to d-lactate cytochrome c oxidoreductase in the extant metabolism, is to detoxify MG, whereas in the early state of metabolic development it might function as an anaplerotic route for the tricarboxylic acid cycle (15).Open in a separate windowFIGURE 4.Scheme showing the involvement of AtD-LDH in the methylglyoxal pathway and of AtD-2HGDH in the respiration of substrates from proteolysis and/or lipid degradation. d-Lactate resulting from the glyoxalase system is converted to pyruvate by AtD-LDH. The electrons originated may be transferred to the respiratory chain through cytochrome c in the intermembrane space. d-2-HG produced in the peroxisomes (as shown in supplemental Fig. S3) is transported to the mitochondria and converted to 2-ketoglutarate by AtD-2HGDH. Electrons are donated to the electron transport chain through the ETF/ETFQO system. Dotted files represent possible transport processes. 2-KG, 2-ketoglutarate. CIII, complex III. CIV, complex IV. e, electron. ETF, electron transfer protein. ETFQO, ETF-ubiquinone oxidoreductase. GSH, glutathione. Pyr, pyruvate. TCA cycle, tricarboxylic acid cycle; UQ, ubiquinone.Glyoxalase I catalyzes the formation of S-d-lactoylglutathione from the hemithioacetal formed nonenzymatically from MG and glutathione, although glyoxalase II catalyzes the hydrolysis of S-d-lactoylglutathione to regenerate glutathione and liberate d-lactate. Glyoxalase I and II activities are present in all tissues of eukaryotic organisms. Glyoxalase I is found in the cytosol, whereas glyoxalase II localizes to the cytosol and mitochondria (13, 19, 20). Although glyoxalase I and II were extensively characterized, there are only few reports on the characterization of d-LDH. Recently, Atlante et al. (13) showed that externally added d-lactate caused oxygen consumption by mitochondria and that this metabolite was oxidized by a mitochondrial flavoprotein in Helianthus tuberosus.The complete sequence of Arabidopsis thaliana opened the way to search for genes encoding d-LDHs. Based on similarity with the d-LDH from S. cerevisiae (DLD1), an A. thaliana ortholog was identified. In this study, the isolation and structural and biochemical characterization of the recombinant mature d-LDH from A. thaliana (AtD-LDH) and its paralog, which was found to be a d-2-hydroxyglutarate dehydrogenase (AtD-2HGDH), is described. Whereas AtD-LDH has a narrow substrate specificity and the preferred substrates are d-lactate and d-2-hydroxybutyrate, AtD-2HGDH showed activity exclusively with d-2-hydroxyglutarate. Based on gene coexpression analysis and analysis of corresponding knock-out mutants, the participation of these previously unrecognized mitochondrial activities in plant metabolism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号