首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Achieving high sexual size dimorphism in insects: females add instars   总被引:2,自引:0,他引:2  
Abstract.  1. In arthropods, the evolution of sexual size dimorphism (SSD) may be constrained by a physiological limit on growth within each particular larval instar. A high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larval instars.
2. Based on a survey of published case studies, the present review shows that sex-related difference in the number of instars is a widespread phenomenon among insects. In the great majority of species with a sexually dimorphic instar number, females develop through a higher number of instars than males.
3. Female-biased sexual dimorphism in final sizes in species with sexually dimorphic instar number was found to considerably exceed a previously estimated median value of SSD for insects in general. This suggests a causal connection between high female-biased SSD, and additional instars in females. Adding an extra instar to larval development allows an insect to increase its adult size at the expense of prolonged larval development.
4. As in the case of additional instars, SSD is fully formed late in ontogeny, larval growth schedules and imaginal sizes can be optimised independently. No conflict between selective pressures operating in juvenile and adult stages is therefore expected.
5. In most species considered, the number of instars also varied within the sexes. Phenotypic plasticity in instar number may thus be a precondition for a sexual difference in instar number to evolve.  相似文献   

2.
1. Ontogenetic changes during the life cycle of aquatic insects are important not only in life‐history studies but also in evaluating food‐web structure. They require information on the growth and number of larval instars but such information is lacking for many species, including Plecoptera. Therefore, the chief objectives of the present study were to determine inter‐ and intra‐specific differences in the number of larval instars in British populations of 24 species of stoneflies, to test Dyar’s hypothesis that growth followed a geometric progression, and to synthesise this information with previously published values for four British species. 2. Larvae were reared at constant temperatures in the laboratory from eggs from 63 populations (one to six populations per species). First instars from each population were divided into three batches and each batch was reared at one of three constant temperatures. For each species, the rearing temperature and source population had no significant effect on the mean size of each larval instar. 3. The relationship between the geometric mean length of each instar and instar number was well described by an exponential equation (P < 0.001, r2 > 0.9 for all species), thus supporting Dyar’s hypothesis. Only one species, Brachyptera risi, had the same number of instars for males and females (12–13). For the other 15 herbivorous species and the four smaller carnivorous ones, the number of instars was higher for females than males (range 11–16 for males, 12–17 for females). The larger size of the females was due to their additional instars, not a sex difference in growth rates. In contrast, there was a clear growth separation of the sexes after the 9th or 10th instar for the four largest carnivores. The number of larval instars was highest for these four species (range 16–19 for males, 18–23 for females), and females were much larger than males. 4. A multiple regression equation with data from the present and previous studies (n = 27) showed that variability in the mean length of the first instar and the maximum number of larval instars for each species accounted for 88% and 91% of the variability in the mean length of the final instar for males and females, respectively. 5. Values for Plecoptera in other countries were in general agreement with those in the present study, especially in the same families. Two old, but widely quoted, high values are doubtful. The present study and four previous ones provide a sound basis for ontogenetic studies on 28 species of Plecoptera and their role in aquatic ecosystems.  相似文献   

3.
The intraspecific variation in larval instars is a widely distributed phenomenon amongst holometabolous insects. Several factors can affect the number of instars, such as temperature, humidity, and density. Only a few references could be found in the literature because the invariability in the number of larval instars is considered normal, and the issue has raised little to no interest. Despite this, no study to date has intended to assess or focus on the larval development. Here, we analyzed the effect of different rearing temperature on the larval stage of Dermestes maculatus DeGeer (Coleoptera: Dermestidae). The results indicated that at all temperatures, L5 represented a decisive point for individuals as well as the other later larval instars, because the next step to follow was to pupate or molt to the next larval instar. Furthermore, there were mainly two populations, L5 and L6, although in different proportions according to temperature. We also found that at a greater number of instars, the larval development at all temperatures lasted longer. Moreover, the exponential model was the best adjustment in the developmental time of all populations as well as for the accumulated developmental time of L1–L4. Thus, we conclude that random factors such as genetics could probably cause interspecific variability in D. maculatus larval development.  相似文献   

4.
Many field studies of insects have focused on the adult stage alone, likely because immature stages are unknown in most insect species. Molecular species identification (e.g., DNA barcoding) has helped ascertain the immature stages of many insects, but larval developmental stages (instars) cannot be identified. The identification of the growth stages of collected individuals is indispensable from both ecological and taxonomic perspectives. Using a larval–adult body size relationship across species, I present a novel technique for identifying the instar of field-collected insect larvae that are identified by molecular species identification technique. This method is based on the assumption that classification functions derived from discriminant analyses, performed with larval instar as a response variable and adult and larval body sizes as explanatory variables, can be used to determine the instar of a given larval specimen that was not included in the original data set, even at the species level. This size relationship has been demonstrated in larval instars for many insects (Dyar’s rule), but no attempt has been made to include the adult stage. Analysis of a test data set derived from the beetle family Carabidae (Coleoptera) showed that classification functions obtained from data sets derived from related species had a correct classification rate of 81–100%. Given that no reliable method has been established to identify the instar of field-collected insect larvae, these values may have sufficient accuracy as an analytical method for field-collected samples. The chief advantage of this technique is that the instar can be identified even when only one specimen is available per species if classification functions are determined for groups to which the focal species belongs. Similar classification functions should be created for other insect groups. By using those functions together with molecular species identification, future studies could include larval stages as well as adults.  相似文献   

5.
Elsa Etilé  Emma Despland 《Oikos》2008,117(1):135-143
In insects, size and age at adult emergence depend on larval growth that occurs in discrete steps or instars. Understanding the mechanisms controlling stepwise larval growth and the onset of metamorphosis is essential to the study of insect life history. We examined the patterns of growth of forest tent caterpillars Malacosoma disstria to quantify variation in the number of instars that larvae undergo before pupation, to identify the mechanisms underlying variation in larval development, and to evaluate the life history consequences of this variation. All caterpillars were reared under the same conditions; at each molt, the date, the head capsule width and the mass of the freshly molted insect were recorded. Logistic regression analysis showed that a threshold size (measured either as mass or head capsule width) must be reached at the beginning of a stadium for pupation to occur at the next molt. This threshold size was higher for females than for males, and as a result, females attained a higher pupal mass than males. To achieve this larger size, females often required more instars than males, despite a higher growth ratio (size increase within an instar). Within each sex, slow growing individuals exhibited more larval instars and longer larval development time, but attained the same pupal mass as faster growing individuals. The combination of a threshold size for pupation, discrete growth steps and variation in the number of these steps can thus complicate relationships between growth rate, pupal mass and larval development time. In our study, growth ratio and number of instars were correlated with development time but not with pupal mass, and no relationship was observed between development time and pupal mass. These findings imply that, in species with variable instar number, one cannot extrapolate overall larval growth from growth during a single instar. Given the constraints of discrete larval growth, variation in instar number provides greater flexibility for insects to compensate for poor growing conditions. In this case, inferior larval growth conditions don't necessarily lead to smaller adult size.  相似文献   

6.
The tobacco hornworm Manduca sexta has been an important model system for understanding physiological control of growth, development and metamorphosis of insects for more than half a century. Like all Manduca, M. sexta typically has five larval instars, with developmental commitment to metamorphosis occurring early in the 5th (final) instar. Here we show that M. sexta from a field population in North Carolina (USA) shows substantial intraspecific variation in the number of larval instars when feeding on a modified artificial diet. Individuals with six instars consistently exhibited slower growth rates during early larval development than individuals with five instars. The frequency of individuals with six instars decreased with increased rearing temperature. In contrast, M. sexta from a laboratory colony consistently had five instars, and had more rapid larval growth rates than M. sexta from the field. We identify a threshold body size at the start of the 5th instar that predicts whether an individual will have five (greater than 600mg) or six instars (less than 600mg). Variation in field populations in Manduca provides an important resource for understanding physiological control, developmental plasticity and evolution of growth rate, body size and instar number.  相似文献   

7.
Females of numerous insect species are known to be polyandrous, but there have been relatively few studies of factors associated with the degree of polyandry in females in the field. Number of copulations by females is negatively associated with ejaculate size across bush-cricket species. Assessing intraspecific variability is important when looking for and interpreting trait evolution. Therefore the aim of this study was to test the association between ejaculate size (i.e. volume of spermatodose–spermatophore-like structure formed within the spermatheca) and mating rate (i.e. number of spermatodoses) of females of Pholidoptera griseoaptera, while accounting for female body size (pronotum length) and age (number of hind leg’s cuticular bands). The results based on field-caught individuals suggested that there were statistically significant negative association between smallest and mean spermatodose volume, respectively, and number of copulations in this nuptial gift-giving bush-cricket species. This is in accordance with interspecific associations between ejaculate size and polyandry. However, lower slope of the intraspecific relationship may suggest lower importance of the ejaculate size in explaining females’ mating rate variability in this nuptial gift-giving species.  相似文献   

8.
The hemlock looper [Lambdina fiscellaria (Guenée)], a widespread and highly polyphagous Geometridae, is considered one of the most economically important defoliators of North American coniferous forests. Variations in the number of larval instars between geographic populations of this species have been previously reported in the literature. However, whether such developmental polymorphism occurs within a given population is unknown. In this study, we report the presence of both four and five larval instar individuals within a population of hemlock looper in Newfoundland when reared on balsam fir. For both sexes, the majority of individuals reared on balsam fir shoots went through four larval instars, but more than one third of the females (35.3%) went through five larval instars. Females with four larval instars developed faster and had smaller pupal weight than females with five larval instars. However, a growth-related index (weight gain per unit of time) was similar for the two ecotypes (four or five larval instars). No significant difference was observed between the two ecotypes in terms of reproductive capacity (fecundity and egg size). We also found significant differences in life history traits between males and females. Results indicate that developmental polymorphism, in this case, the variation in the number of larval instars, might provide some adaptive attributes that allowed exploitation of a broader ecological niche.  相似文献   

9.
Different levels of sexual size dimorphism (SSD) have usually been explained by selective forces operating in the adult stage. Developmental mechanisms leading to SSD during the juvenile development have received less attention. In particular, it is often not clear if the individuals of the ultimately larger sex are larger already at hatching/birth, do they grow faster, or do they grow for a longer time. In the case of insects, the question about sexually dimorphic growth rates is still open because most previous studies fail to adequately consider the complexity of larval growth curve, the existence of distinct larval instars in particular. Applying an instar-specific approach, we analysed ontogenetic determination of female-biased SSD in a number of distantly related species of Lepidoptera. The species studied showed a remarkable degree of similarity: SSD appeared invariably earlier than in the final instar, and tended to accumulate during development. The higher weight of the females was shown to be primarily a consequence of longer development within several larval instars. There was some evidence of higher instantaneous growth rates of females in the penultimate instar but not in the final instar. Egg size, studied in one species, was found not to be sexually dimorphic. The high across-species similarity may be seen as an indication of constraints on the set of possible mechanisms of size divergence between the two sexes. The results are discussed from the perspective of the evolution of insect body size in general. In particular, this study confirms the idea about limited evolvability of within-instar growth increments. An evolutionary change towards larger adult size appears always to be realised via moderate changes in relative increments of several larval instars, whereas a considerable change in just one instar may not be feasible.  相似文献   

10.
Abstract.  1. Many moth and butterfly larvae are gregarious early in development, but become solitary in late instars. This ontogenetic variation in behaviour is probably the result of temporal changes in the costs and benefits associated with gregariousness. This study provides observational and experimental evidence that, in one particular moth species, a series of different ecological factors influence larval behaviour at different times during development.
2. Field observations show that young caterpillars of the limocodid Doratifera casta form large aggregations while foraging, but that mature larvae are largely solitary.
3. A field experiment revealed that individual first to third instar larvae in larger groups develop more rapidly, but that group size had no detectable influence on survival. The developmental advantage associated with gregariousness is affected by host plant species, but not by predator exclusion, suggesting that group living in these cryptic early instar larvae promotes feeding facilitation, but does not provide individuals with protection from natural enemies.
4. Laboratory experiments revealed that aposematic fourth instar caterpillars in large groups were less likely to be attacked by a generalist insect predator than those in small groups.
5. Field observations provided no evidence that group living affects body temperature, suggesting that microclimatic factors do not favour gregariousness in this species.
6. It is concluded that gregariousness in D. casta confers at least two different advantages on larvae at different stages early in development, but that these advantages disappear, or are outweighed by costs associated with intraspecific competition, in final instars.  相似文献   

11.
Number of larval instars, age structure and environmental effects on these parameters represent basic information in the study of insect population biology. When species have economic importance, this information is essential in order to choose the best period to apply different control methods and to determine the stages of the life cycle of the insect that are most susceptible to each treatment. The family Simuliidae has many species of medical/veterinary importance in the world, and some studies in the temperate region have suggested that the number of larval instars and the larval size can vary according to the season, gender and some environmental factors, such as temperature and diet. This study, with the zoophilic species Simulium perflavum Roubaud, is the first in the Neotropics observing some of these factors and will serve as a template for other species of medical importance in the region. S. perflavum larvae were collected in five streams in Central Amaz?nia (Manaus and Presidente Figueiredo counties, State of Amazonas), in Sept./Oct. 1996 (dry season) and Feb./Mar. 1997 (rainy season). These larvae were measured (lateral length of head capsule and width of cephalic apodema) to determine the number of larval instars (n=3985), to compare the larval size between seasons and genders (last and penultimate larval instars, n=200). Seven larval instars were determined for this species using frequency distributions, t-tests and Crosbys growth rule. Significant differences were not detected (t-test, p>0.05) in larval size between seasons and genders. Our results differ from some found in temperate regions suggesting that in the Neotropical region the larval size in different seasons and different genders remains constant, although some environmental parameters, such as diet, change depending on the season.  相似文献   

12.
Effects of repeated carbon-dioxide anaesthesia during larval development on the number of moults, larval duration, and the body size of resulting adults were investigated. Concentration of carbon dioxide administered was 70%, and each period of anaesthesia lasted for 3 min. Anaesthesia administered twice a week until the 3rd instar increased the number of instars required to reach maturity. However, repeated anaesthesia after the 4th instar scarcely influenced the number of instars. On the other hand, repeated anesthesia prolonged larval duration whenever administered during the early or late instars. It is thus suggested that anaesthesia by carbon dioxide during larval development has two distinct effects: increasing the number of moults and prolonging larval duration. The former is stage specific and effective only during early instars, whereas the latter is effective during any particular instars until the last instar. The body size of resulting adults remained almost the same as for controls even after the repeated carbon-dioxide anaesthesia as many as 14 times. Some further observations concerning correlations between the number of moults, larval duration and adult body size are shown, and differences between the sexes regarding the number of instars and larval duration are also presented.  相似文献   

13.
W. Wipking 《Oecologia》1988,77(4):557-564
Summary Zygaena trifolii is a long-day insect with temperature-dependent photoperiodic responses. All larval instars are sensitive to photoperiod; however, diapause may occur at the third larval stage or any subsequent larval instars. There were quantitative differences within populations in the threshold photoperiod for diapause induction. The diapause response was polymorphic, so that larvae might enter diapause at different instars under the same culture conditions. Furthermore, decreasing photoperiods below a critical daylength shifted the diapausing instar towards earlier stages. Geographic strains of Z. trifolii showed discontinuous clinal variation. Near the northern edge of the distribution [Cologne (Köln), FRG], there is first an obligatory diapause, mainly during early instars, and additional facultative (repeat) diapauses during later larval instars in subsequent years. In the southern part of its distribution, this burnet moth is partially bivoltine in the field with a facultative first developmental arrest and a decreased capacity for repeated diapause (Valencia, Spain; Marseille, France). Further experiments indicated that the photoperiodically controlled diapause reaction is also influenced by the number of photoperiodic cycles experienced during the period spent in each larval instar, which depends on temperature. The adaptive significance of obligatory and facultative repeated diapause, varying even among the offspring of a single female, may be to buffer the populations against the more extreme and, from year to year, unpredictable fluctuations in climatic conditions at the northern edge of the distribution.Abbreviations L3 feeding 3rd larval instar - L4D diapausing 4th larval instar - L5D2 repeat-diapausing larval instar with second diapause at the 5th larval stage - LD light-dark cycle - KT shortday conditions (e.g. LD 8:16) - LT long-day conditions (e.g. LD 16:8)  相似文献   

14.
Most studies linking dietary variation with insect fitness focus on a single dietary component and late larval growth. We examined the effects of variation in multiple dietary factors over most life stages of the sphingid moth, Manduca sexta. Larvae received artificial diets in which protein, sucrose, and water content were varied. The relationship between larval size, growth and consumption rates differed significantly across diets. Larvae on control and low-sucrose diets grew most rapidly and attained the largest pupal and adult sizes. Conversely, larvae on low-water and low-protein diets initially grew slowly, but accelerated in the fifth instar and became pupae and adults comparable to control animals in size. There were no fundamental differences in protein:carbohydrate consumption patterns or strategies among experimental diets and larval instars. However, inadequate dietary water appeared to be more important for early than late instar larvae. Larvae on all artificial diets showed increasing fat content throughout all stages, including wandering and metamorphosis. Compensatory feeding among low-water and low-protein larvae was correlated with significantly higher fat content in larvae, pupae and adults, whereas low-sucrose animals were substantially leaner than those on the control diet. These differences may have strong effects on adult physiology, reproduction, and foraging patterns.  相似文献   

15.
16.
DNA synthesis in prothoracic gland cells of the silkworm, Bombyx mori, was studied immunocytochemically after in vivo labeling with 5-bromo-2'-deoxyuridine (BrdU), and its developmental changes during the 3rd, 4th, and last larval instars were examined. During the early stages of both the 3rd and 4th larval instars, a dramatic increase in the number of DNA-synthesizing cells of the prothoracic glands was detected. However, during the latter stages of each instar, the number of DNA-synthesizing cells greatly decreased. The determination of glandular protein content showed that dramatic increases occurred during the latter stages of each larval instar. Comparison of changes in prothoracic gland cell DNA synthesis with ecdysteroidogenic activity showed that the increase in DNA synthesis precedes ecdysteroidogenesis. The cellular mechanism underlying changes in prothoracic gland cell DNA synthesis during the last two larval instars was further analyzed by determining the in vitro DNA synthesis of the glands, their responsiveness to hemolymph growth factors, and changes in the growth-promoting activity of hemolymph during development. It was found that both growth factors and the responsiveness of the prothoracic gland cells to growth factors from hemolymph may play roles in regulating DNA synthesis of gland cells.  相似文献   

17.
In studies of frugivorous tephritids, determining when offspring (i.e. egg and three larval instars) mortality occurs within the fruit can greatly improve the mechanistic understanding of the fly/host interaction. Previous research has demonstrated that the Queensland fruit fly, Bactrocera tryoni, has differential offspring performance in two tomato cultivars Cherry and Roma, but when juvenile mortality was occurring was not determined. We examined B. tryoni egg and larval survival in three different ripening stages (immature-green (IG), colour-break (CB) and fully-ripe (FR)) of Cherry and Roma tomato cultivars through destructive fruit sampling at 72 and 120 hr for eggs, and 48 (1st instar), 96 (2nd instar) and 120 hr (3rd instar) after fruit inoculation with neonates for larvae. Cultivar and ripening stage had no significant effect on egg survival, nor larval survival at 48 hr: the overall percentage of egg survival was at least 80% across all treatments, while 1st-instar larval was less than 52% across all treatments. In immature-green tomatoes of both varieties, nearly all mortality occurred during the first and second instars, but at 96 and 120 hr, there were significant interaction effects between cultivar and ripening stage on larval survival. In both colour-break Cherry and Roma tomatoes, there was significant larval mortality between 96 and 120 hr. However, in fully-ripe Cherry, no further significant larval mortality happened after 48 hr, while in fully-ripe Roma significant larval mortality occurred between the first and second larval instars but not thereafter. The difference in timing of larval mortality with ripening stage provides indirect evidence of active fruit defence which is strongest in immature-green fruit, less in colour-break fruit and absent in fully-ripe fruit.  相似文献   

18.
The morphology and ultrastructure of the larval spiracle system of three phlebotomine sandfly species, Phlebotomus perniciosus, P. perfiliewi and P. papatasi, were examined by scanning (SEM) and transmission (TEM) electron microscopy and by confocal scanning laser microscopy (CSLM). During larval development, thoracic and abdominal spiracles show considerable modifications. In fourth instar larvae, the spiracles consist of a plate with a sclerotized central portion and a peripheral circle of papillae. The latter is distinctive in the larvae of P. papatasi, which are readily distinguished from the other species. Opening clefts across the papillae communicate with an internal chamber that encircles an electrondense plug. Many cylindrical projections cross the chamber, uniting the central plug with the larval body, forming an air filter. Spiracular development in successive larval instars has both a taxonomic and adaptive value.  相似文献   

19.
Environmental perturbations such as starvation and poor diet often prevent animals from attaining their optimal sizes. When the perturbation has a transient character, compensatory responses are expected in terms of faster growth or a prolonged developmental period. In the case of insect larvae, details of such responses are insufficiently known at the proximate level. Attention to responses at the level of particular larval instars should promote an understanding of insect developmental plasticity also in a more general context. To provide an instar‐specific analysis of compensatory growth, larvae of the moth Orgyia antiqua (L.) are reared on inferior diet during one larval instar. Responses in growth parameters are recorded in the course of the manipulated instars, as well as at the level of the entire larval period. The negative relationship between development time and size in response to the inferior food quality, typical of the entire larval periods, is also observed within the manipulated instars taken separately. The manipulated larvae remain smaller than the larvae of the control group (significant in males only), even by the end of the subsequent instar during which all individuals are provided with superior host. In males, close to full size compensation by the time of pupation is achieved only by means of adding an extra larval instar. The inability of larvae to fully compensate during one and even two instars is considered as an indication of the presence of constraints on the within‐instar growth pattern. An alternative, adaptational explanation for the incomplete compensation could be based on the cost of prolonged development period. Given the ecological context of the species' life history, such an explanation appears less likely.  相似文献   

20.
栗山天牛幼虫龄数和龄期的测定   总被引:1,自引:0,他引:1  
栗山天牛Massicus raddei (Blessig)是危害我国东北柞树天然林的重要蛀干害虫, 长期营隐蔽性生活, 3年发生1代, 防治困难。幼虫的龄数和龄期测定是害虫预测预报以及制订其科学治理策略的重要依据。本研究于2008-2011年通过林间定期解剖受害树进行取样, 在辽宁省宽甸县采集不同发育阶段的栗山天牛幼虫, 分别测量幼虫上颚长、 主单眼间距、 前胸背板宽、 中胸气门长和体长等5项形态指标, 利用频次分析的统计方法, 测定了栗山天牛幼虫的龄数。结果表明: 栗山天牛幼虫有6龄, 雌雄性幼虫龄数相同。上颚长、 主单眼间距和前胸背板宽3项指标均可用于分龄, 中胸气门长和体长变异较大, 不宜用作幼虫龄数划分。利用种群众数龄期法计算1-6龄幼虫的平均龄期分别为9.25, 266.85, 48.09, 51.29, 260.33和385.71 d, 幼虫期共1 021.52 d。在我国东北地区, 自然条件下栗山天牛世代发生非常整齐而且高度同步, 完成1代发育需跨越4个年份, 幼虫经历3次越冬, 第1年以2-3龄幼虫越冬, 第2年主要以4-5龄幼虫越冬, 第3年全部以末龄幼虫越冬。研究结果进一步明确了栗山天牛幼虫期的生物学特性, 为生产上合理防治该害虫提供了参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号