首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota) is an assemblage of ecologically diverse species, ranging from mutualistic lichenised fungi to human opportunistic pathogens. Recent contributions from molecular studies have changed our understanding of the composition of this subclass. Among others, ant-associated fungi, deep-sea fungi and bryophilous fungi were also shown to belong to this group of ascomycetes. The delimitation of orders and families within this subclass has not previously been re-assessed using a broad phylogenetic study and the phylogenetic position of some taxa such as the lichenised family Celotheliaceae or the Chaetothyrialean bryophilous fungi is still unclear. In our study, we assemble new and published sequences from 132 taxa and reconstruct phylogenetic relationships using four markers (nuLSU, nuSSU, mtSSU and RPB1). Results highlight several shortfalls in the current classification of this subclass, mainly due to un-assigned paraphyletic taxa. The family Epibryaceae is therefore described to circumscribe a previously un-assigned lineage. Celotheliales ad int. is suggested for the lineage including the lichen genus Celothelium and various plant pathogens. The delimitation of the family Trichomeriaceae is also broadened to include the genus Knufia and some anamorphic taxa. As defined here, Chaetothyriomycetidae includes four orders (Celotheliales ad int., Chaetothyriales, Pyrenulales, and Verrucariales) and ten families (Adelococcaceae, Celotheliaceae, Chaetothyriaceae, Cyphellophoraceae, Epibryaceae fam. nov., Herpotrichiellaceae, Pyrenulaceae, Requienellaceae, Trichomeriaceae, and Verrucariaceae).  相似文献   

2.
Hansen K  Perry BA  Pfister DH 《Mycologia》2005,97(5):1023-1033
Parsimony, maximum-likelihood and Bayesian analyses of SSU rDNA sequences of representative taxa of Pezizomycetes, Eurotiomycetes, Dothideomycetes, Leotiomycetes and Sordariomycetes, all strongly support the cleistothecial fungi Orbicula parietina and Lasiobolidium orbiculoides to be of pezizalean origin. Previous hypotheses of close affinities with cleistothecial or highly reduced fungi now placed in the Thelebolales, Eurotiales or Onygenales are rejected. Orbicula parietina and L. orbiculoides are deeply nested within Pyronemataceae (which subsumes the families Ascodesmidaceae, Glaziellaceae and Otideaceae). LSU rDNA sequences suggest that Orbicula is nested within the apothecia-forming genus Pseudombrophila (including Nannfeldtiella and Fimaria) and that L. orbiculoides is closely related. Ascodesmis and Lasiobolus, which have been suggested as closely related to Orbicula and Lasiobolidium, are identified as a sister lineage to the Pseudombrophila lineage. Cleistothecial forms that have lost the ascus operculum and ability to discharge spores actively have evolved at least once in the Pseudombrophila lineage. Some species of Pseudombrophila produce subglobular ascomata initials that are closed early in development and open only in the mid-mesohymenial phase. We hypothesize that, in the Pseudombrophila lineage, ascomata forms that never open are derived from ascomata that open late in development. The placement of O. parietina and L. orbiculoides within Pseudombrophila is supported by morphological characters, ecology and temperature optima for fruiting.  相似文献   

3.
Pezizomycotina is the largest subphylum of Ascomycota and includes the vast majority of filamentous, ascoma-producing species. Here we report the results from weighted parsimony, maximum likelihood and Bayesian phylogenetic analyses of five nuclear loci (SSU rDNA, LSU rDNA, RPB1, RPB2 and EF-lalpha) from 191 taxa. Nine of the 10 Pezizomycotina classes currently recognized were represented in the sampling. These data strongly supported the monophyly of Pezizomycotina, Arthoniomycetes, Eurotiomycetes, Orbiliomycetes and Sordariomycetes. Pezizomycetes and Dothideomycetes also were resolved as monophyletic but not strongly supported by the data. Lecanoromycetes was resolved as paraphyletic in parsimony analyses but monophyletic in maximum likelihood and Bayesian analyses. Leotiomycetes was polyphyletic due to exclusion of Geoglossaceae. The two most basal classes of Pezizomycotina were Orbiliomycetes and Pezizomycetes, both of which comprise species that produce apothecial ascomata. The seven remaining classes formed a monophyletic group that corresponds to Leotiomyceta. Within Leotiomyceta, the supraclass clades of Leotiomycetes s.s. plus Sordariomycetes and Arthoniomycetes plus Dothideomycetes were resolved with moderate support.  相似文献   

4.
A new genus Rhopalophora is described for Phialophora clavispora, a lignicolous species formerly placed in Phialophora section Catenulatae that possesses pigmented conidiophores, phialides with a single conidiogenous locus that occasionally appear as schizophialides, and clavate, aseptate conidia arranged in chains or sometimes in heads. Sexual morphs are not known for this taxon. Phylogenetic analysis of DNA sequences from five loci (nucSSU, ITS, nucLSU, mitSSU, rpb1 and rpb2) of this and related fungi supports the introduction of a new family, Sclerococcaceae, for which we establish the order Sclerococcales. This order belongs to the new subclass Sclerococcomycetidae, a strongly supported clade within the Eurotiomycetes that is basal to a lineage containing the Chaetothyriomycetidae, Coryneliomycetidae and Eurotiomycetidae. Rhopalophora clavispora fits in this new family and is closely related to an isolate of Fusichalara minuta. The Sclerococcales also encompass marine, lignicolous species of Dactylospora, two species of the lichenicolous genus Sclerococcum, and a lineage comprised of strains from the digestive tracts of Neotropical wood-inhabiting beetles. We confirm that Dactylospora is polyphyletic; the phylogenetic placement of D. parasitica, the generic type, remains unknown.  相似文献   

5.
周家喜  王茂胜  喻理飞  刘京  邹晓 《菌物学报》2019,38(10):1610-1619
烟草内生真菌是烟田生态系统的重要组成,根系是烟草内生真菌重要来源途径。本研究通过高通量测序技术分析了5个品种的烟草根部内生真菌群落结构及功能特征。结果表明,烟草根部内生真菌群落多样性较低;粪壳菌纲Sordariomycetes、座囊菌纲Dothideomycetes、散囊菌纲Eurotiomycetes、伞菌纲Agaricomycetes及锤舌菌纲Leotiomycetes为主要菌群,肉座菌目Hypocreales、煤炱目Capnodiales和散囊菌目Eurotiales为优势真菌目,丛赤壳科Nectriaceae、小戴维霉科Davidiellaceae和发菌科Trichocomaceae为优势真菌科,未定义腐生菌和动物病原菌是主要的生态功能群,但不同品种之间的真菌群落组成和生态功能分布差异显著。本研究为进一步挖掘利用烟草内生真菌资源,阐明烟草内生真菌的生态功能提供了参考。  相似文献   

6.
Calicioid lichens and fungi are a polyphyletic grouping of tiny ascomycetes that accumulate a persistent spore mass (mazaedium) on top of their usually well-stalked ascomata (‘mazaediate fungi’). In addition to extant forms, six fossils of the group were previously known from European Paleogene amber. Here we report nine new fossils and analyze the preserved features of all fossils to assess their applicability for dating molecular phylogenies. Many fossils are extremely well preserved, allowing detailed comparisons with modern taxa. SEM investigation reveals that even fine details of ascospore wall ultrastructure correspond to those seen in extant specimens. All fossils can confidently be assigned to modern genera: three to Calicium (Caliciaceae, Lecanoromycetes), five to Chaenotheca (Coniocybaceae, Coniocybomycetes), six to Chaenothecopsis (Mycocaliciaceae, Eurotiales), and one to Phaeocalicium (Mycocaliciaceae, Eurotiales). Several Calicium and Chaenotheca fossils are assignable to specific lineages within their genera, while the Chaenothecopsis fossils demonstrate the extent of intraspecific variation within one such lineage. Some features in the morphology of Chaenotheca succina nov. sp. seem to be ancestral as they have not been reported from modern species of the genus.  相似文献   

7.
《Fungal biology》2021,125(12):1026-1035
The diversity and functionality of ericoid mycorrhizal (ErM) fungi are still being understudied. Members of Chaetothyriomycetidae evolved a specific lifestyle of inhabiting extreme, poor, or toxic environments. Some taxa in this subclass, especially in Chaetothyriales, are also putative ErM taxa, but their mycorrhizal ability is mostly unknown because the members are generally hard to isolate from roots. This study herein focused on eight root isolates and provided their phylogeny and morphology of root colonization. Phylogenetic analysis based on rRNA sequences clarified that the isolated strains were not classified into Chaetothyriales, but in an unnamed lineage in Chaetothyriomycetidae. This lineage also contains rock isolates, bryosymbionts, and a resinicolous species as well as various environmental sequences obtained from soil/root samples. All strains grew extremely slow by mycelia on cornmeal or malt extract agar (2.9–8.5 mm/month) and formed hyphal coils in vital rhizodermal cells of sterile blueberry seedlings in vitro. This study illustrated the presence of a novel putative ErM lineage in Chaetothyriomycetidae.  相似文献   

8.
Nuclear-encoded small-subunit ribosomal DNA was used to examine phylogenetic relationships in Paecilomyces sensu lato. Phylogenetic analysis of the 18S nr DNA demonstrates that Paecilomyces is polyphyletic across two subclasses, Sordariomycetidae and Eurotiomycetidae. The type species, Paecilomyces variotii, and thermophilic relatives belong in the order Eurotiales (Trichocomaceae), while mesophilic species related to Paecilomyces farinosus are in the order Hypocreales (Clavicipitaceae and Hypocreaceae). One species, Paecilomyces inflatus, had affinities for the order Sordariales. Within the Eurotiales, Paecilomyces is monophyletic. Within the Hypocreales, species of Paecilomyces are polyphyletic, although the data failed to fully resolve these relationships.  相似文献   

9.
Nonribosomal peptides (NRPs) and polyketides (PKs) are ecologically important secondary metabolites produced by bacteria and fungi using multidomain enzymes called nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), respectively. Previous phylogenetic analyses of fungal NRPSs and PKSs have suggested that a few of these genes were acquired by fungi via horizontal gene transfer (HGT) from bacteria, including a hybrid NPS/PKS found in Cochliobolus heterostrophus (Dothideomycetes, Ascomycota). Here, we identify this hybrid gene in fungi representing two additional classes of Ascomycota (Aspergillus spp., Microsporum canis, Arthroderma spp., and Trichophyton spp., Eurotiomycetes; Chaetomium spp. and Metarhizium spp., Sordariomycetes) and use phylogenetic analyses of the most highly conserved domains from NRPSs (adenylation (A) domain) and PKSs (ketoacyl synthase (KS) domain) to examine the hypothesis that the hybrid NPS7/PKS24 was acquired by fungi from bacteria via HGT relatively early in the evolution of the Pezizomycotina. Our results reveal a unique ancestry of the A domain and KS domain in the hybrid gene relative to known fungal NRPSs and PKSs, provide strong evidence for HGT of the hybrid gene from a putative bacterial donor in the Burkholderiales, and suggest the HGT event occurred early in the evolution of the filamentous Ascomycota.  相似文献   

10.
Calicioid or mazaediate fungi constitute a heterogeneous assemblage of fungi sharing the presence of a mazaedium. These fungi were once treated as an order (Caliciales) of the Ascomycota but many are now known to be nested within the Arthoniomycetes, Eurotiomycetes, Lecanoromycetes and Leotiomycetes. In this study we employ multigene phylogenetic analyses of main mazaediate groups (based on nuclear 18S, 28S, 5.8S rDNA, mitochondrial 16S, and the protein coding RPB1 and Mcm7) of 116 taxa corresponding to most major groups of the inoperculate ascomycetes (“Leotiomyceta”) and a selection of Pezizomycetes, to trace the evolution of the mazaedium in the Pezizomycotina (the “Euascomycetes”). In particular, we studied the placement of three calicioid groups of uncertain position, Calycidiaceae, Coniocybaceae and Microcaliciaceae. Here, we show that the Calycidiaceae is closely related to the Sphaerophoraceae in the Lecanoromycetidae (Lecanoromycetes), as supported by overall morphology and the production of sphaerophorin. The Coniocybaceae constitute an early divergent line in the inoperculate ascomycetes and here we propose to recognize this group formally as the new class and order Coniocybomycetes, Coniocybales. The Microcaliciaceae is nested within the Ostropomycetidae (Lecanoromycetes). Both Coniocybaceae and Microcaliciaceae, although highly distinctive, lack morphological similarities to related main fungal groups. Ancestral state reconstruction suggests that the ancestor of all inoperculate ascomycetes and the ancestor of all main inoperculate ascomycete groups, with the exception of the Coniocybomycetes, was non‐mazediate, and thus confirms the large amount of parallel evolution and independent gains of the mazaedium in the history of the Ascomycota.  相似文献   

11.
Aims: For identification of members of the fungal order Eurotiales, an 18S rRNA gene‐based oligonucleotide microarray was developed and optimized. Methods and Results: Eurotiales‐specific probes covering most members of the Eurotiales as well as species‐specific probes were designed and evaluated with three pure cultures (two fungi from the Eurotiales and one fungus from the Hypocreales). Nearly complete 18S rRNA genes of each reference culture were amplified and fluorescently labelled by random priming. Conclusions: Positive and negative hybridization results confirmed that the Eurotiales probes tested in this study could correctly identify members of the Eurotiales. The species‐specific probes were also capable of species‐level detection. Significance and Impact of the Study: These findings demonstrate the potential applications of a phylogenetic oligonucleotide microarray approach to characterizing fungal species and populations in environmental and other samples.  相似文献   

12.
We have used three independent phylogenomic approaches (concatenated alignments, single-, and multi-gene supertrees) to reconstruct the fungal tree of life (FTOL) using publicly available fungal genomes. This is the first time multi-gene families have been used in fungal supertree reconstruction and permits us to use up to 66% of the 1,001,217 genes in our fungal database. Our analyses show that different phylogenomic datasets derived from varying clustering criteria and alignment orientation do not have a major effect on phylogenomic supertree reconstruction. Overall the resultant phylogenomic trees are relatively congruent with one another and successfully recover the major fungal phyla, subphyla and classes. We find that where incongruences do occur, the inferences are usually poorly supported. Within the Ascomycota phylum, our phylogenies reconstruct monophyletic Saccharomycotina and Pezizomycotina subphyla clades and infer a sister group relationship between these to the exclusion of the Taphrinomycotina. Within the Pezizomycotina subphylum, all three phylogenies infer a sister group relationship between the Leotiomycetes and Sordariomycetes classes. However, there is conflict regarding the relationships with the Dothideomycetes and Eurotiomycetes classes. Within the Basidiomycota phylum, supertrees derived from single- and multi-gene families infer a sister group relationship between the Pucciniomycotina and Agaricomycotina subphyla while the concatenated phylogeny infers a poorly supported relationship between the Agaricomycotina and Ustilagomycotina. The reconstruction of a robust FTOL is important for future fungal comparative analyses. We illustrate this point by performing a preliminary investigation into the phyletic distribution of yeast prion-like proteins in the fungal kingdom.  相似文献   

13.

Background  

Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi.  相似文献   

14.
The endophytic lifestyle has played an important role in the evolution of the morphology of reproductive structures (body) in one of the most problematic groups in fungal classification, the Leotiomycetes (Ascomycota). Mapping fungal morphologies to two groups in the Leiotiomycetes, the Rhytismatales and Hemiphacidiaceae reveals significant divergence in body size, shape and complexity. Mapping ecological roles to these taxa reveals that the groups include endophytic fungi living on leaves and saprobic fungi living on duff or dead wood. Finally, mapping of the morphologies to ecological roles reveals that leaf endophytes produce small, highly reduced fruiting bodies covered with fungal tissue or dead host tissue, while saprobic species produce large and intricate fruiting bodies. Intriguingly, resemblance between asexual conidiomata and sexual ascomata in some leotiomycetes implicates some common developmental pathways for sexual and asexual development in these fungi.  相似文献   

15.
Gene fusions, yielding the formation of multidomain proteins, are evolutionary events that can be utilized as phylogenetic markers. Here we describe a fusion gene comprising the α and β subunits of succinyl-coA synthetase, an enzyme of the TCA cycle, in Pezizomycotina fungi. This fusion is present in all Pezizomycotina with complete genome sequences and absent from all other organisms. Phylogenetic analysis of the α and β subunits of succinyl-CoA synthetase suggests that both subunits were duplicated and retained in Pezizomycotina while one copy was lost from other fungi. One of the duplicated copies was then fused in Pezizomycotina. Our results suggest that the fusion of the α and β subunits of succinyl-CoA synthetase can be used as a molecular marker for membership in the Pezizomycotina subphylum. If a species has the fusion it can be reliably classified as Pezizomycotina, while the absence of the fusion is suggestive that the species is not a member of this subphylum.  相似文献   

16.
Several morphologically dissimilar ascomycete fungi includingSchizosaccharomyces, Taphrina, Saitoella, Pneumocystis, andNeolecta have been grouped into the taxon Taphrinomycotina (Archiascomycotaor Archiascomycotina), originally based on rRNA phylogeny. Theseanalyses lack statistically significant support for the monophylyof this grouping, and although confirmed by more recent multigeneanalyses, this topology is contradicted by mitochondrial phylogenies.To resolve this inconsistency, we have assembled phylogenomicmitochondrial and nuclear data sets from four distantly relatedtaphrinomycotina taxa: Schizosaccharomyces pombe, Pneumocystiscarinii, Saitoella complicata, and Taphrina deformans. Our phylogenomicanalyses based on nuclear data (113 proteins) conclusively supportthe monophyly of Taphrinomycotina, diverging as a sister groupto Saccharomycotina + Pezizomycotina. However, despite the improvedtaxon sampling, Taphrinomycotina continue to be paraphyleticwith the mitochondrial data set (13 proteins): Schizosaccharomycesspecies associate with budding yeasts (Saccharomycotina) andthe other Taphrinomycotina group as a sister group to Saccharomycotina+ Pezizomycotina. Yet, as Schizosaccharomyces and Saccharomycotinaspecies are fast evolving, the mitochondrial phylogeny may beinfluenced by a long-branch attraction (LBA) artifact. Afterremoval of fast-evolving sequence positions from the mitochondrialdata set, we recover the monophyly of Taphrinomycotina. Ourcombined results suggest that Taphrinomycotina is a legitimatetaxon, that this group of species diverges as a sister groupto Saccharomycotina + Pezizomycotina, and that phylogeneticpositioning of yeasts and fission yeasts with mitochondrialdata is plagued by a strong LBA artifact.  相似文献   

17.

Background

Horizontal gene transfer (HGT) is the stable transmission of genetic material between organisms by means other than vertical inheritance. HGT has an important role in the evolution of prokaryotes but is relatively rare in eukaryotes. HGT has been shown to contribute to virulence in eukaryotic pathogens. We studied the importance of HGT in plant pathogenic fungi by identifying horizontally transferred genes in the genomes of three members of the genus Colletotrichum.

Results

We identified eleven HGT events from bacteria into members of the genus Colletotrichum or their ancestors. The HGT events include genes involved in amino acid, lipid and sugar metabolism as well as lytic enzymes. Additionally, the putative minimal dates of transference were calculated using a time calibrated phylogenetic tree. This analysis reveals a constant flux of genes from bacteria to fungi throughout the evolution of subphylum Pezizomycotina.

Conclusions

Genes that are typically transferred by HGT are those that are constantly subject to gene duplication and gene loss. The functions of some of these genes suggest roles in niche adaptation and virulence. We found no evidence of a burst of HGT events coinciding with major geological events. In contrast, HGT appears to be a constant, albeit rare phenomenon in the Pezizomycotina, occurring at a steady rate during their evolution.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-16-2) contains supplementary material, which is available to authorized users.  相似文献   

18.
Sugiyama J  Hosaka K  Suh SO 《Mycologia》2006,98(6):996-1005
The early diverging Ascomycota lineage, detected primarily from nSSU rDNA sequence-based phylogenetic analyses, includes enigmatic key taxa important to an understanding of the phylogeny and evolution of higher fungi. At the moment six representative genera of early diverging ascomycetes (i.e. Taphrina, Protomyces, Saitoella, Schizosaccharomyces, Pneumocystis and Neolecta) have been assigned to "Archiascomycetes" sensu Nishida and Sugi ama (1994) or the subphylum "Taphrinomycotina" sensu Eriksson and Winka (1997). The group includes fungi that are ecologically and morphologically diverse, and it is difficult therefore to define the group based on common phenotypic characters. Bayesian analyses of nSSU rDNA or combined nSSU and nLSU rDNA sequences supported previously published Ascomycota frameworks that consist of three major lineages (i.e. a group of early diverging Ascomycota. [Taphrinomycotina], Saccharomycotina and Pezizomycotina); Taphrinomycotina is the sister group of Saccharomycotina and Pezizomycotina. The 50% majority rule consensus of 18000 Bayesian MCMCMC-generated trees from multilocus gene sequences of nSSU rDNA, nLSU rDNA (D1/D2), RPB2 and beta-tubulin also showed the monophyly of the three subphyla and the basal position of Taphrinomycotina in Ascomycota with significantly higher statistical support. However to answer controversial questions on the origin, monophyly and evolution of the Taphrinomycotina, additional integrated phylogenetic analyses might be necessary using sequences of more genes with broader taxon sampling from the early diverging Ascomycota.  相似文献   

19.
A combined data set of nuclear SSU rDNA, LSU rDNA, and mitochondrial SSU rDNA sequences was analyzed in order to examine the relationships of the major clades of euascomycetes. Partial sequences of 14 ascomycetes were determined and aligned with the corresponding sequences of 16 other ascomycetes retrieved from Genbank. The alignment was analyzed using maximum parsimony (MP) and a Bayesian analysis with Markov chain Monte Carlo (B/MCMC). The classification based on single-gene studies is supported, but the confidence is enhanced in the concatenated analysis. The monophyly of the superclass Leotiomyceta, which includes all euascomycetes with inoperculate asci, is strongly supported. The polyphyly of ascolocularous fungi is supported. The group is divided into two groups: the Dothideomycetes basal to all other Leotiomyceta and the Chaetothyriomycetes as sister-group to Eurotiomycetes. The Lecanoromycetes appear as a monophyletic group with strong support and form a sister-group to the Chaetothyriomycetes/Eurotiomycetes clade, but this lacks support. The Leotiomycetes and Sordariomycetes form a strongly supported sister-group. Alternative topologies are tested using parametric bootstrapping; a basal position of the Eurotiomycetes and Leotiomycetes in the Leotiomyceta cannot be rejected, while such a position can be rejected for Chaetothyriomycetes, Lecanoromycetes and Sordariomycetes. The character evolution with regard to ascoma type, ascus type and ascoma-ontogeny is examined using MP and maximum likelihood (ML). While it appears most likely that the ancestor of the inoperculate ascomycetes had apothecia and an ascohymenial ascoma-ontogeny using MP methods, the ML approach shows that there is some uncertainty at the current state of knowledge. The improvement of confidence of the combined data set in comparison with single-gene studies makes us confident that analyses with additional data sets will further improve the confidence and eventually uncover the branching order of euascomycetes.  相似文献   

20.
中国种子植物内生真菌资源及菌植协同进化   总被引:4,自引:0,他引:4  
综述了中国种子植物内生真菌资源研究概况,比较了裸子植物和被子植物内生真菌种类,它们都具有肉座菌目(Hypocreales),粪壳菌目(Sordariales),散囊菌目(Eurotiales),毛霉目(Mucorales)及不产孢类(Myceliasterilia)内生真菌。裸子植物内生真菌涉及52个属,既包括高等的子囊菌和担子菌,也包括低等的卵菌(Oomycetes)和接合菌(Zygomycetes)类。被子植物涉及60个属,主要为高等的子囊菌(Ascomycetes)和担子菌(Basidiomycetes),低等的卵菌和接合菌报道很少。双子叶植物涉及40个属,单子叶植物内生真菌涉及30个属,两类被子植物所报道的内生真菌只有11个属相同。裸子植物与双子叶植物内生真菌相似程度较高,都具有炭角菌目(Xylariales)、格孢腔菌目(Pleosporales)、柔膜菌目(Helotiales)和白粉菌目(Erysiphales),刺盘孢菌属(Colletotrichum)、拟茎点霉属(Phomopsis)、枝孢霉属(Cladosporium)、地霉属(Geotrichum)等内真菌,共20个属相同。各类种子植物具有自己独特的一些内生真菌。还对植物与其内生真菌的协同进化关系进行了分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号