首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Meeting of minds: the medial frontal cortex and social cognition   总被引:7,自引:0,他引:7  
Social interaction is a cornerstone of human life, yet the neural mechanisms underlying social cognition are poorly understood. Recently, research that integrates approaches from neuroscience and social psychology has begun to shed light on these processes, and converging evidence from neuroimaging studies suggests a unique role for the medial frontal cortex. We review the emerging literature that relates social cognition to the medial frontal cortex and, on the basis of anatomical and functional characteristics of this brain region, propose a theoretical model of medial frontal cortical function relevant to different aspects of social cognitive processing.  相似文献   

2.
The hypothesis that the enlarged brain size of the primates was selected for by social, rather than purely ecological, factors has been strongly influential in studies of primate cognition and behaviour over the past two decades. However, the Machiavellian intelligence hypothesis, also known as the social brain hypothesis, tends to emphasize certain traits and behaviours, like exploitation and deception, at the expense of others, such as tolerance and behavioural coordination, and therefore presents only one view of how social life may shape cognition. This review outlines work from other relevant disciplines, including evolutionary economics, cognitive science and neurophysiology, to illustrate how these can be used to build a more general theoretical framework, incorporating notions of embodied and distributed cognition, in which to situate questions concerning the evolution of primate social cognition.  相似文献   

3.
Studies of the factors affecting reproductive success in group-living monkeys have traditionally focused on competitive traits, like the acquisition of high dominance rank. Recent research, however, indicates that the ability to form cooperative social bonds has an equally strong effect on fitness. Two implications follow. First, strong social bonds make individuals'' fitness interdependent and the ‘free-rider’ problem disappears. Second, individuals must make adaptive choices that balance competition and cooperation—often with the same partners. The proximate mechanisms underlying these behaviours are only just beginning to be understood. Recent results from cognitive and systems neuroscience provide us some evidence that many social and non-social decisions are mediated ultimately by abstract, domain-general neural mechanisms. However, other populations of neurons in the orbitofrontal cortex, striatum, amygdala and parietal cortex specifically encode the type, importance and value of social information. Whether these specialized populations of neurons arise by selection or through developmental plasticity in response to the challenges of social life remains unknown. Many brain areas are homologous and show similar patterns of activity in human and non-human primates. In both groups, cortical activity is modulated by hormones like oxytocin and by the action of certain genes that may affect individual differences in behaviour. Taken together, results suggest that differences in cooperation between the two groups are a matter of degree rather than constituting a fundamental, qualitative distinction.  相似文献   

4.
Research in comparative social cognition addresses how challenges of social living have formed the cognitive structures that control behaviours involved in communication, social learning and social understanding. In contrast to the traditional psychological approach, recent investigations take both evolutionary and functional questions into account, but the main emphasis is still on the mechanisms of behaviour. Although in traditional research ‘comparative’ meant mainly comparisons between humans and other primates, ethological influences have led to a broadening of the spectrum of species under study. In this review, we evaluated how the study of dogs broadens our understanding of comparative social cognition. In the early days of ethology, dogs enjoyed considerable interest from ethologists, but during the last 20 years, dogs have rarely been studied by ethological methods. Through a complex evolutionary process, dogs became adapted for living in human society; therefore, the human environment and social setting now represents a natural ecological niche for this species. We have evidence that dogs have been selected for adaptations to human social life, and that these adaptations have led to marked changes in their communicative, social, cooperative and attachment behaviours towards humans. Until now, the study of dogs was hindered by the view that they represent an ‘artificial’ species, but by accepting that dogs are adapted to their niche, as are other ‘natural’ species, comparative investigations can be put into new light.  相似文献   

5.
The accessibility of new genomic resources, high‐throughput molecular technologies and analytical approaches such as genome scans have made finding genes contributing to fitness variation in natural populations an increasingly feasible task. Once candidate genes are identified, we argue that it is necessary to take a mechanistic approach and work up through the levels of biological organization to fully understand the impacts of genetic variation at these candidate genes. We demonstrate how this approach provides testable hypotheses about the causal links among levels of biological organization, and assists in designing relevant experiments to test the effects of genetic variation on phenotype, whole‐organism performance capabilities and fitness. We review some of the research programs that have incorporated mechanistic approaches when examining naturally occurring genetic and phenotypic variation and use these examples to highlight the value of developing a comprehensive understanding of the relationship between genotype and fitness. We give suggestions to guide future research aimed at uncovering and understanding the genetic basis of adaptation and argue that further integration of mechanistic approaches will help molecular ecologists better understand the evolution of natural populations.  相似文献   

6.
Fujii N  Hihara S  Iriki A 《PloS one》2007,2(4):e397
Social brain function, which allows us to adapt our behavior to social context, is poorly understood at the single-cell level due largely to technical limitations. But the questions involved are vital: How do neurons recognize and modulate their activity in response to social context? To probe the mechanisms involved, we developed a novel recording technique, called multi-dimensional recording, and applied it simultaneously in the left parietal cortices of two monkeys while they shared a common social space. When the monkeys sat near each other but did not interact, each monkey's parietal activity showed robust response preference to action by his own right arm and almost no response to action by the other's arm. But the preference was broken if social conflict emerged between the monkeys-specifically, if both were able to reach for the same food item placed on the table between them. Under these circumstances, parietal neurons started to show complex combinatorial responses to motion of self and other. Parietal cortex adapted its response properties in the social context by discarding and recruiting different neural populations. Our results suggest that parietal neurons can recognize social events in the environment linked with current social context and form part of a larger social brain network.  相似文献   

7.
8.
9.
Cook R 《Biology letters》2012,8(5):856-859
Since their discovery, mirror neurons-units in the macaque brain that discharge both during action observation and execution-have attracted considerable interest. Whether mirror neurons are an innate endowment or acquire their sensorimotor matching properties ontogenetically has been the subject of intense debate. It is widely believed that these units are an innate trait; that we are born with a set of mature mirror neurons because their matching properties conveyed upon our ancestors an evolutionary advantage. However, an alternative view is that mirror neurons acquire their matching properties during ontogeny, through correlated experience of observing and performing actions. The present article re-examines frequently overlooked neurophysiological reports of 'tool-use' and 'audiovisual' mirror neurons within the context of this debate. It is argued that these findings represent compelling evidence that mirror neurons are a product of sensorimotor experience, and not an innate endowment.  相似文献   

10.
Previous research suggests overlap between brain regions that show task-induced deactivations and those activated during the performance of social-cognitive tasks. Here, we present results of quantitative meta-analyses of neuroimaging studies, which confirm a statistical convergence in the neural correlates of social and resting state cognition. Based on the idea that both social and unconstrained cognition might be characterized by introspective processes, which are also thought to be highly relevant for emotional experiences, a third meta-analysis was performed investigating studies on emotional processing. By using conjunction analyses across all three sets of studies, we can demonstrate significant overlap of task-related signal change in dorso-medial prefrontal and medial parietal cortex, brain regions that have, indeed, recently been linked to introspective abilities. Our findings, therefore, provide evidence for the existence of a core neural network, which shows task-related signal change during socio-emotional tasks and during resting states.  相似文献   

11.
Dinstein I 《Current biology : CB》2008,18(20):R956-R959
Claims to have identified mirror neurons in human cortex have been controversial. A recent study has applied an fMRI adaptation protocol to the problem and come up with novel evidence for the existence of movement-selective mirror neurons in human cortex.  相似文献   

12.
13.
14.
Humans and other animals have a variety of psychological abilities tailored to the demands of asocial foraging, that is, foraging without coordination or competition with other conspecifics. Human foraging, however, also includes a unique element: the creation of resource pooling systems. In this type of social foraging, people contribute when they have excess resources and receive provisioning when in need. Is this behavior produced by the same psychology as asocial foraging? If so, foraging partners should be judged by the same criteria used to judge asocial patches of resources: the net energetic benefits they provide. The logic of resource pooling speaks against this. Maintaining such a system requires the ability to judge others not on their short-term returns, but on the psychological variables that guide their behavior over the long term. We test this idea in a series of five studies using an implicit measure of categorization. Results showed that (a) others are judged by the costs they incur (a variable not relevant to asocial foraging), whereas (b) others are not judged by the benefits they provide when benefits provided are unrevealing of underlying psychological variables (despite this variable being relevant to asocial foraging). These results are suggestive of a complex psychology designed for both social and asocial foraging.  相似文献   

15.
16.
17.
18.
The structure of the prohormone for mammalian gonadotropin releasing hormone (proGnRH) includes the GnRH decapeptide followed by a 56 amino acid GnRH-associated peptide (GAP). In this study, we compared immunostaining of brain neurons and fibers for GAP and GnRH in fetal rhesus monkeys and juvenile baboons. We used antisera against different portions of human and rat GAP (proGnRH 14-24, proGnRH 40-53, and proGnRH 52-66) or against GnRH and the PAP technique. Liquid phase absorption with GAP or GnRH confirmed the specificity of these antisera. Major accumulations of GAP immunoreactive (GAP+) perikarya occurred in the medial septal and preoptic areas and the nucleus of the diagonal band of Broca (44.6% in rhesus, 49.6% in baboon), supraoptic region including the area dorsal to the optic tract (21.9% in rhesus, 23.0% in baboon), and the medial basal hypothalamus (15.7% in rhesus, 16.4% in baboon), especially at the infundibular lip. Occasional cell bodies were scattered throughout the hypothalamic and forebrain regions studied. GAP+ fibers were widely distributed, but formed well-defined pathways such as the periventricular and ventral hypothalamic tract. In addition, GAP+ nerve terminals with various densities occurred in the lamina terminalis, the zona externa of the infundibulum, and behind the infundibular stalk. Fetal rhesus macaques had more GAP+ cell bodies, denser fiber networks, and more distinct pathways than juvenile baboons. However, fiber and terminal immunostaining was somewhat less intense for GAP than GnRH in comparable regions. These results indicate that proGnRH (GAP) is present in the same population of neurons as GnRH in the primate brain. They also suggest that post-translational products of proGnRH are present in perikarya, axons and terminals, and that GnRH and GAP and/or further cleavage products are consecreted into hypophysial portal blood in the primate.  相似文献   

19.
20.
Ribozymes are RNA molecules that possess the dual properties of RNA sequence-specific recognition and site-specific cleavage of other RNA molecules. These properties provide powerful tools for studies requiring gene inhibition, when the DNA sequence is known. The use of these molecules goes beyond basic research, with a potential impact in therapeutical practice in medicine in the near future. In this review, we briefly describe the progress towards developing this class of molecules and its applications for the control of gene expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号