首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monitoring river periphyton with artificial benthic substrates   总被引:2,自引:2,他引:0  
The objective of this research was to identify the materials and methods necessary to study the attached algal community on a river bottom in deep water. The study site was the Susquehanna River near Falls, Pennsylvania. Artificial substrates of smooth glass, frosted glass, Vermont slate, sandy slate (flagstone) and acrylic plate were placed on the stream bottom in detritus free sample holders by scuba divers. Both monthly and long-term cumulative samples were collected from the plates employing scuba and a Bar-Clamp sampler. River stones (natural substrates) were collected for comparison. Samples were analyzed in a Palmer Cell under a Bausch and Lomb research microscope. Diatoms were the most important colonizers of river stones, with the genera Nitzschia and Navicula most abundant. Highest periphyton densities occurred on natural substrates in winter with a maximum of 2.2 × 104 units/ mm2. Artificial substrates with one month exposure periods accumulated maximum periphyton density from May through October with relatively low densities in winter. Cumulative artificial substrates were most like river stones in patterns of colonization. Frosted acrylic is recommended for future studies employing benthic artificial periphyton substrates.This study was partially supported by the Pennsylvania Power and Light Company  相似文献   

2.
The effects of planktivorous and benthivorous fish on benthic fauna, zooplankton, phytoplankton and water chemistry were studied experimentally in two eutrophic Swedish lakes using cylindrical enclosures. In enclosures in both lakes, dense fish populations resulted in low numbers of benthic fauna and planktonic cladocerans, high concentration of chlorophyll, blooms of blue-green, algae, high pH and low transparency. In the soft-water Lake Trummen, total phosporus increased in the enclosure with fish, but in the hard-water Lake Bysjön total phosphorus decreased simultaneously with precipitation of calcium carbonate. Enclosures without fish had a higher abundance of benthic fauna and large planktonic cladocerans, lower phytoplankton biomass, lower pH and higher transparency.The changes in enclosures with fish can be described as eutrophication, and those in enclosures without fish as oligotrophication. The possibility of regulation of fish populations as a lake restoration method is discussed.This paper was presented at the XXth SIL Congress in Copenhagen in 1977.  相似文献   

3.
Theiss  J.  Zielinski  K.  Lang  H. 《Hydrobiologia》1990,200(1):59-68
In 1988 and 1989Daphnia magna were introduced into the Gewerbepark Pond and into the University Pond, and also into a limnocorral (10 m diameter, 5 m deep) in Postfelden Reservoir. Limnological parameters were regularly monitored in all the three water bodies over three months or longer. The objective of the experiments was to induce a clear-water period in turbid eutrophic waters by direct manipulation of the zooplankton community. Introduction of four million individuals ofD. magna (10 ind. 1−1) caused a long lasting clear-water period in the limnocorral. While Secchi-disc transparency in the reservoir decreased from 1.3 m to<1 m during summer, transparency increased to a stable level of about 4 m in the corral. Despite very low phytoplankton biomass,D. magna was still abundant. The experiment was terminated after three months because of oxygen depletion in the corral. In the Gewerbepark Pond 3.3 million individuals ofD. magna (0.6 ind. 1−1) were introduced at the beginning of August. The daphnids soon increased 60-fold in their density causing a persistently high water transparency and low phytoplankton biomass up to November. Ammonia concentration rose steeply, whereas that of nitrate and oxygen decreased. Subsequently in summer, concentrations of chlorophyll as well as of inorganic phosphorus and nitrogen were extremely low. Instead of the phytoplankton,Elodea canadensis grew enormously and covered 12% of the pond surface. The biomanipulation experiment in University Pond failed, probably due to predation by carp.  相似文献   

4.
Hosper  S. H.  Jagtman  E. 《Hydrobiologia》1990,200(1):523-534

Eutrophication control is one of the major issues in the environmental policy in The Netherlands. As a result of international action programmes the average phosphorus loading of freshwater systems should decrease by 50% between 1985 and 1995. However, in many cases the restoration of water quality requires additional measures. Recovery is hampered by the structure and functioning of the present food-chain.

The feeding behaviour of the dominant fish species in Dutch lakes, bream and roach, tend to impose a homeostasis on the system, resisting restoration of water quality. In shallow lakes, biomanipulation, including drastic reduction of fish-stocks, may induce a shift from a stable ‘turbid-water state’ to a stable ‘clear-water state’.

To assess the possibilities of biomanipulation for the restoration of a particular lake, three questions are relevant: (1) is a drastic reduction of fish-stocks feasible?, (2) will a shift occur from ‘turbid to clear’ after the fish reduction? and (3) will the new situation of clear water be stable? This paper focuses attention on the last two questions. The increase in water clarity, following fish reduction, largely depends on the increase in the density of the Daphnia-population and the contribution of benthivorous fish to the resuspension of sediments. A ‘turbid to clear’ shift may be expected if the total biomass of planktivorous and benthivorous fish is reduced to levels<50 kg ha?1. The stability of the achieved clear-water state largely depends on the development of submerged macrophytes in the lake and on the level of nutrient loading. It is tentatively concluded that a stable clear-water state may be expected at initial total-P concentrations<0.10 mg l?1.

Because the water managers in The Netherlands have no fishing rights, they have to.co-operate with anglers and commercial fishermen to apply biomanipulation as a tool for water management.

  相似文献   

5.
Eutrophication of Dutch lakes has led to massive algal growth, disappearance of most of the macrophytes and disturbance of the food chain. The pike population has fallen sharply and bream developed very strongly, in the absence of this predator. Eutrophication problems are primarily being tackled by reducing nutrient loading. Restoration of water quality, however, seems to be impeded by the present structure of the food chain,i.e. the large bream stock. Biomanipulation, especially fish stock control with the aim of reducing the bream stock and increasing that of predatory fish, can accelerate the process of restoration. For the further development of biomanipulation it is very important that water authorities and managers of fish stocks agree on a common strategy.  相似文献   

6.
Moss  Brian 《Hydrobiologia》1990,200(1):367-377
Engineering approaches (nutrient removal, sediment pumping, hypolimnion oxygenation, alum treatments) may be most appropriate to deep lakes where the aim of restoration from eutrophication is simply to reduce the production and crop of one component, the phytoplankton. They do not always give the desired results because the nutrient loading may only be reduced to a limited extent. There are additional problems in shallow lakes where change of state between community dominance (aquatic plants versus plankton) is wanted. Each community has powerful buffering mechanisms and biomanipulation may be essential to switch one state to another even with considerable nutrient reduction. For the phytoplankton-dominated community the buffers include the advantages of early growth, lower diffusion pathways for CO2, overhead shading, and an absence of large cladoceran grazers. This later is because open-water shallow environments provide no refuges against predation for the large Cladocera which are both the most efficient grazers and the most favoured prey for fish. Restoration of aquatic plants may then require provision of refuges for the grazers. Different sorts of refuge are discussed using case studies of Hoveton Great Broad and Cockshoot Broad in the Norfolk Broadland.  相似文献   

7.
1. This study investigated the combined effects of light and phosphorus on the growth and phosphorus content of periphyton. To investigate the potential for colimitation of algal growth by these two resources, diatom‐dominated periphyton communities in large flow‐through laboratory streams were exposed under controlled conditions to simultaneous gradients of light and phosphorus. 2. Periphyton growth rate was predictably light‐limited by the subsaturating irradiances (12–88 μmol photons m?2 s?1) used in this experiment. However, phosphorus concentration also limited growth rate: growth increased hyperbolically with increasing soluble reactive phosphorus (SRP), reaching a threshold of growth saturation between 22 and 82 μg L?1. 3. Periphyton phosphorus content was strongly and nonlinearly related with SRP, reaching a maximum at 82 μg L?1 SRP. Contrary to the Light : Nutrient Hypothesis, periphyton phosphorus content did not decrease with increasing light, even at the lowest concentrations of SRP. Periphyton phosphorus was highly correlated with periphyton growth rate (Spearman's ρ = 0.63, P < 0.005). 4. Multiple regression analysis reinforced evidence of simultaneous light and phosphorus limitation. Both light and periphyton phosphorus content were significant variables in multiple regressions with growth parameters as dependent variables. Light alone accounted for 67% of the variance in periphyton biomass, and the addition of periphyton phosphorus as an additional independent variable increased the total amount of variance explained to 81%. 5. Our results did not support the hypothesis that extra phosphorus is required for photoacclimation to low light levels. Rather, the effect of additional phosphorus may have been to accommodate increased requirements for P‐rich ribosomal RNA when growth was stimulated by increased light. The potential colimitation of periphyton growth by phosphorus and light at subsaturating irradiances has important implications in both theoretical and applied aquatic ecology.  相似文献   

8.
1. To examine how the vertical distribution of periphytic biomass and primary production in the upper 0–1 m of the water column changes along an inter‐lake eutrophication gradient, artificial substrata (plastic strips) were introduced into the littoral zones of 13 lakes covering a total phosphorus (TP) summer mean range from 11 to 536 μg L?1. Periphyton was measured in July (after 8 weeks) and September (after 15 weeks) at three water depths (0.1, 0.5 and 0.9 m). 2. Periphyton chlorophyll a concentration and dry weight generally increased with time and the communities became more heterotrophic. Mean periphytic biomass was unimodally related to TP, reaching a peak between 60 and 200 μg L?1. 3. The proportion of diatoms in the periphyton decreased from July to September. A taxonomic shift occurred from dominance (by biovolume) of diatoms and cyanobacteria at low TP to dominance of chlorophytes at intermediate TP and of diatoms (Epithemia sp.) in the two most TP‐rich lakes. 4. The grazer community in most lakes was dominated by chironomid larvae and the total biomass of grazers increased with periphyton biomass. 5. Community respiration (R), maximum light‐saturated photosynthetic rate (Pmax), primary production and the biomass of macrograzers associated with periphyton were more closely related to periphyton biomass than to TP. Biomass‐specific rates of R, Pmax and production declined with increasing biomass. 6. Mean net periphyton production (24 h) was positive in most lakes in July and negative in all lakes in September. Net production was not related to the TP gradient in July, but decreased in September with increasing TP. 7. The results indicate that nutrient concentrations alone are poor predictors of the standing biomass and production of periphyton in shallow lakes. However, because periphyton biomass reaches a peak in the range of phosphorus concentration in which alternative states occur in shallow lakes, recolonisation by submerged macrophytes after nutrient reduction may potentially be suppressed by periphyton growth.  相似文献   

9.
1. Two experiments in the Experimental Lakes Area (ELA) in north-western Ontario, Canada examined the effects of light and two key elements on the net accumulation and elemental composition of epilithon. In Lake (L) 224, benthic algae were grown under different light intensity and phosphorus supply, while in L302S we provided three levels of two different carbon sources (bicarbonate and glucose) to algae colonizing nutrient-diffusing substrata. After 1 month of accumulation, we sampled biofilms for chlorophyll (chl), carbon (C), phosphorus (P) and algal C.
2. Increased C supply did not significantly affect algal growth (C or chl) or elemental composition (C/P ratios) in L302S. However, P enrichment increased chl and algal C, dramatically reduced the C/P ratio of epilithon, and did not affect total organic C in L224. Phosphorus enrichment also increased the proportion of algal material in the total particulate organic matter and altered the taxonomic composition of algae in L224 biofilms. Shading had no significant effect on the C/P ratio and total organic C in epilithon from the L224 experiment.
3. Our results demonstrate that P supply affects the elemental composition of organic matter that collects on rock substrata. It thus appears that low availability of P relative to C and light drives the formation and retention of high C/P organic matter on rock surfaces in oligotrophic boreal lakes.  相似文献   

10.
The collection of time-series of periphyton biomass is a difficult task due to the destructive nature of the standard methods. A non-destructive method based on photography and digitalization, for the estimation of Chla of periphyton colonizing artificial substrata is presented. The standard spectrophotometric method was used to obtain a calibration curve. The relative errors of the proposed method were similar to those of other published methods. The photographic method should be used when a large quantity of samples from the same community is needed and a high precision on the individual measurement is not required.  相似文献   

11.
12.
1. The main focus of this study was to investigate the effects of single and multiple moderate doses of lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) on eutrophic hardwater lakes. This information would contribute to strategies to manage phytoplankton and macrophyte biomass in eutrophic lakes.
2. Water chemistry and biota were monitored for up to 7 years after initial lime treatment and results were compared with reference systems.
3. Complementary studies investigated the effect of lime on macrophytes in ponds, irrigation canals and microcosm experiments.
4. When water pH was kept within its natural range (≤ 10), single and multiple lime applications to lakes and ponds controlled macrophyte biomass, without negatively affecting invertebrate communities.
5. Single lime treatments at moderate dosages of lakes and ponds resulted in variable and mostly temporary changes in chlorophyll a (chl a ) and phosphorus (P) concentration. Although sediment P release was reduced in single-dose lakes during the first winter following treatment, reductions appeared temporary.
6. Multiple treatments of lakes and ponds were effective at reducing both chl a and P concentrations over longer periods. Mean winter P release rate was also reduced after initial treatment.
7. In laboratory studies, sediment cores were incubated with eight different treatments to assess P release. Redox-sensitive treatments were no more effective at lowering total P concentration in overlying water than some redox-insensitive treatments. Lime reduced total P concentrations, but was not as effective as treatments with alum.
8. The use of lime in managing macrophyte and phytoplankton biomass in shallow, hardwater lakes and ponds may be preferable over other treatments, because lime is economical and non-toxic as long as pH is kept within a natural range.  相似文献   

13.
14.
Hugo Coops  Roel W. Doef 《Hydrobiologia》1996,340(1-3):115-120
Submerged macrophyte vegetation in two shallow lakes in the Netherlands, Lake Veluwemeer and Lake Wolderwijd, has been affected by eutrophication in the late 1960's and 1970's. Recent changes in the vegetation occurred in the period following lake restoration measures. Between 1987 and 1993, the dominance of Potamogeton pectinatus decreased, while Charophyte meadows expanded over the same time interval. The pattern of change of the dominant macrophyte species might result from changes in the underwater light climate. Seasonally persistent clear water patches associated with the Chara meadows have been observed in the last few years. The interaction between submerged macrophyte vegetation succession and water transparency in the lakes is discussed.  相似文献   

15.
Features of the Loodsrecht Lakes, with emphasis on the main lake, are discussed with reference to restoration.Characteristics of the present situation are: (1) very low water transparency-Secchi-disc readings around 0.3 m occur in all seasons; (2) relatively small seasonal changes in sestonic matter; (3) important input of resuspended particles into the seston; (4) predominance of filamentous blue-green algae for most of the year; (5) relative scarcity of crustacean zooplankton, while rotifers are abundant; (6) poor development of littoral communities, and absence of benthic producers. The blue-green algae maintain high population density at very low growth rates: rates of loss are low. The zooplankton grazing rate is low due to inefficient filtering, but predation of larger crustaceans by fish may also be important. Studies on epipelon indicated that loss by deposition may be largely compensated by resuspension.Starting in 1984, the external phosphorus loading was markedly reduced. Results for 1984 and 1985 indicate that complementary measures are needed in order to improve water quality. Action should be directed towards increasing the phytoplankton turnover rates. Accelerated specific growth rate can be expected to accompany lower biomass, more successful competition by other algal groups, and enhancement of grazing pressure.Considering the shallowness of the system, promotion of littoral development and return of submerged vegetation may be important in establishing a new equilibrium of the system.  相似文献   

16.
Grimm  M. P.  Backx  J. J. G. M. 《Hydrobiologia》1990,200(1):557-566
The feasibility of biomanipulation is related particularly to reducing the production and recruitment of planktivorous fish stocks. For assessing the level of predation needed to suppress planktivorous fish stocks, the relation between fish P and B, on one hand, and nutrient concentration on the other were analyzed. The carrying capacity of shallow lakes in terms of biomass is related to the total phosphorus concentration and nature of the lake bottom substrate. The production of planktivorous fish was 60–80% of the maximum carrying capacity. It is argued that aquatic vegetation and northern pike are effective tools to maintain water quality, but these are limited by the maximum nutrient concentration aquatic vegetation can sustain.  相似文献   

17.
Experiences with reducing point sources of phosphorus to lakes   总被引:1,自引:3,他引:1  
Experiences over the last 25 years have demonstrated that eutrophication can be reversed, and that phosphorus is most often the nutrient through which control should be exerted.The reduction of the external load of phosphorus to a eutrophic lake is a necessary condition for lake restoration, but may not in itself be sufficient. Three main response patterns to a reduction in external load are identified. These include reduction in lake phosphorus that leads to sufficient reduction in chlorophyll to change the trophic category, to make the lakes less eutrophic or have small or no effect. The factors that determine the actual response are discussed.It is clear that interventions to restore eutrophic lakes have not always given the results expected. Limnological studies are necessary for well-grounded predictions.  相似文献   

18.
Periphyton removal related to phosphorus and grazer biomass level   总被引:4,自引:0,他引:4  
1. The proliferation of nuisance periphyton in enriched streams may be dependent on the biomass of the grazing macroinvertebrates present. In the present study, the effectiveness of grazer size and biomass in controlling periphyton and the extent to which grazing effectiveness was affected by enrichment level were determined. 2. Two sets of experiments with two caddisfly grazers were conducted in laboratory channels during spring and summer 1995 and 1996. The first set tested the combined effect of phosphorus enrichment and grazing, while the second set tested the effect of variable grazer biomass on periphyton biomass. 3. Grazing reduced periphyton biomass in excess of 80%, compared to ungrazed controls. Grazers were equally effective in controlling filamentous green algae, Stigeoclonium, diatoms and small colonial greens. Near complete removal of periphyton biomass by grazing occurred at even at the lowest grazer biomass level (750 mg m??2, i.e. approximately one-third of natural levels). 4. Grazing controlled periphyton biomass more than did enrichment with soluble reactive phosphorus (SRP). 5. Grazing rates in the phosphorus-grazing interaction experiments averaged about 6 mg chl a g invertebrate??1 day??1, which was similar to past work in these channels and elsewhere, while rates were about five-fold higher in the variable grazer biomass experiments. 6. Simulating effects of SRP and grazing with a calibrated model suggests that higher SRP levels would be necessary to exceed a nuisance periphyton biomass level if grazers were present. However, if grazer biomass was more than 1500 mg m??2, a nuisance level would probably not be exceeded at any SRP.  相似文献   

19.
Jeppesen  E.  Søndergaard  M.  Mortensen  E.  Kristensen  P.  Riemann  B.  Jensen  H. J.  Müller  J. P.  Sortkjær  O.  Jensen  J. P.  Christoffersen  K.  Bosselmann  S.  Dall  E. 《Hydrobiologia》1990,200(1):205-218
The use of fish manipulation as a tool for lake restoration in eutrophic lakes has been investigated since 1986 in three shallow, eutrophic Danish lakes. The lakes differ with respect to nutrient loading and nutrient levels (130–1000 μg P l−1, 1–6 mg N l−1). A 50% removal of planktivorous fish in the less eutrophic cyanobacteria-diatom dominated Lake V?ng caused marked changes in lower trophic levels, phosphorus concentration and transparency. Only minor changes occurred after a 78% removal of planktivorous fish in eutrophic cyanobacteria dominated Frederiksborg Castle Lake. In the hypertrophic, green algae dominated Lake S?byg?rd a low recruitment of all fish species and a 16% removal of fish biomass created substantial changes in trophic structure, but no decrease in phosphorus concentration. The different response pattern is interpreted as (1) a difference in density and persistence of bloomforming cyanobacteria caused by between-lake variations in nutrient levels and probably also mixing- and flushing rates, (2) a difference in specific loss rates through sedimentation of the algal community prevaling after the fish manipulation, (3) a decreased impact of planktivorous fish with increasing mean depth and (4) a lake specific difference in ability to create a self-increasing reduction in the phosphorus level in the lake water. This in turn seems related to the phosphorus loading.  相似文献   

20.
The Reeuwijk Lakes (The Netherlands) present a typical example of eutrophication in the lower Rhine catchment area. In 1986 restoration of these lakes started by reducing the external P-loading. Two lakes, Lake Elfhoeven and Lake Nieuwenbroek, differing in P-load and residence time were selected for monitoring water quality parameters before (1983–1985) and after (1986–1987) these restoration measures. Reduction of the external P-loading did not result in lower P-concentrations in both lakes. In contrast, P and N increased. This may have been caused by an increase in diffuse discharges. However, seasonal cycles of P and N point to a strong internal loading of nutrients. The concentrations of chlorophyll a and carotene decreased, indicating a lower phytoplankton biomass. However, as C-phycocyanine concentrations increased the relative abundance of cyanobacteria became higher. Seston concentrations and zooplankton densities did not change. Transparency in the lakes slightly decreased after P-reduction and is far too low for the development of any vegetation of submerged waterplants. The typical differences between both lakes remained after restoration measures. The inverse relationship between the concentrations of chlorophyll a and total phosphorus at the two sampled stations remained constant. The differences in phytoplankton composition and the zooplankton biomass give a plausible explanation for this inverse relationship, between the two stations. Restoring the lakes after four decades of P-loading can presumably, not simply be done by lowering the external P-load alone. Supplementary in-lake measures may accelerate the restoration process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号