首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using spin-labeled fatty acid derivatives and maleimide, the effect of temperature on the structural state of various parts of the lipid bilayer of sarcoplasmic reticulum (SR) membranes and the segmental motion of the Ca-ATPase molecule were investigated. The mobility of the spin probes localized in the hydrophobic zone and the outer part of the SR membrane was shown to increase with a rise in temperature from 4 to 44 degrees C, the temperature of 20 degrees C being critical for these changes. In the presence of ATP, critical changes in the spin probe mobility occur at lower temperatures, while in the presence of ATP and Ca2+ they are observed at 20 degrees C for a spin probe localized in the outer part of the SR membrane. The mobility of a spin probe localized in the hydrophobic part of the membrane increases linearly with a rise in temperature. In the absence of ligands, the segmental motion of Ca-ATPase changes linearly within a temperature range of 10-30 degrees C. However, when ATP alone or ATP and Ca2+ are simultaneously added to the incubation mixture, the protein mobility undergoes critical changes at 20 degrees C. The Arrhenius plots for ATPase activity and Ca2+ uptake rate in SR membrane preparations also have a break at 20 degrees C. It is assumed that changes in the structural state of membrane lipids produce conformational changes in the Ca-ATPase molecule; the enzyme seems to be unsensitive to the structural state of the membrane lipid matrix in the absence of the ligands.  相似文献   

2.
The effects on membrane structure of including various fatty acids and cholesterol in the growth medium of Acholeplasma laidlawii were investigated by the use of spin-labeled fatty acids. Although the order-mobility parameters varied significantly at some temperatures with the nature of the fatty acid incorporated, the value measured at the growth temperature was only slightly affected by changes in the fatty acid composition of the membranes. The data confirm previous assertions that despite a high level of incorporation of fatty acids of various chain lengths or degree of unsaturation, A. laidlawii regulates its overall membrane fluidity within close limits at the growth temperature. Incorporation of cholesterol increased the degree of order at all temperatures. The coexistence of two lipid phases, one protein-dependent, could be observed in membranes. The order-mobility parameter of spin probes proved less satisfactory for the observation of a gel to liquid crystal transition of the membrane lipid than the partition parameter of a fatty acid spin probe. Order parameters measured by fatty acid spin probes were somewhat higher than those measured by the analogous 2H nmr probes.  相似文献   

3.
Doxyl stearate spin probes which differed in the attachment of the nitroxide free radical to the fatty acid have been used to study membrane fluidity in ozone-treated bovine erythrocytes and liposomes. Analysis of EPR spectra of spin labels incorporated into lipid bilayer of the erythrocyte membranes indicates an increase in the mobility and decrease in the order of membrane lipids. In isolated erythrocyte membranes (ghosts) the most significant changes were observed for 16-doxylstearic acid. In intact erythrocytes statistically significant were differences for 5-doxylstearic acid. The effect of ozone on liposomes prepared from a lipid extract of erythrocyte lipids was marked in the membrane microenvironment sampled by all spin probes. Ozone apparently leads to alterations of membrane dynamics and structure but does not cause increased rigidity of the membrane.  相似文献   

4.
The effect of enzymatic lipid peroxidation on the molecular order of microsomal membranes was evaluated by ESR spectroscopy using the spin probes 5-, 12-, and 16-doxyl-stearic acid. Rat liver microsomal membranes were peroxidized by the NADPH-dependent reaction in the presence of the chelate ADP-Fe3+. Peroxidation resulted in a preferential depletion of polyenoic fatty acids and an increase in the percentage composition of shorter fatty acyl chains. There was no change in the cholesterol/phospholipid ratio of the peroxidized microsomes. The molecular order of both control and peroxidized membranes decreased toward the central region of the bilayer, and the order parameter (S) of each probe was temperature dependent. Peroxidation of the microsomal membrane lipids resulted in an increase in the order parameter determined with the three stearic acid spin probes. Of the three probes, 12-doxylstearic acid was the most sensitive to the changes in membrane organization caused by peroxidation. These data indicate that ESR spectroscopy is a sensitive method of detecting changes in membrane order accompanying peroxidation of membrane lipids.  相似文献   

5.
T F Taraschi  A Wu  E Rubin 《Biochemistry》1985,24(25):7096-7101
Ethanol, in vitro, is known to perturb the molecular order of the phospholipids in biological membranes, while chronic ethanol exposure, in vivo, leads to resistance to disordering. Such changes have usually been measured by electron spin resonance, utilizing fatty acid spin probes. The use of such probes is controversial, since their orientation in the membrane may not accurately represent that of individual phospholipids. We, therefore, compared ethanol-induced structural perturbations in the membranes of rat hepatic microsomes measured with the spin probe 12-doxylstearic acid (SA 12) with those assayed with various phospholipid spin probes. With SA 12, the addition of increasing amounts of ethanol (50-250 mM) in vitro caused a progressive decrease in the membrane molecular order, as measured by electron spin resonance (ESR). By contrast, microsomes obtained from rats chronically fed ethanol were resistant to the disordering effect of ethanol. Microsomes labeled with the phospholipid spin probes 1-palmitoyl-2-(12-doxylstearoyl)phosphatidylcholine, -phosphatidylethanolamine, or -phosphatidic acid also exhibited increased disordering with the addition of increasing amounts of ethanol. However, the effect noted with phospholipid spin probes was less than that observed with the fatty acid probe. Microsomes obtained from the livers of chronically intoxicated animals labeled with the phospholipid probes were also resistant to the disordering effects of ethanol in vitro. These results suggest that fatty acid spin probes are qualitatively valid for measuring membrane perturbations in biological membranes, ethanol affects all microsomal phospholipids, regardless of chemical dissimilarities (e.g., head-group structure), in a qualitatively similar fashion, and the fluidization of fatty acyl chains in microsomal membranes is comparable in different membrane phospholipids.  相似文献   

6.
Differential scanning calorimetry (DSC) was used to examine the relationship of the gel to liquid-crystalline phase transition of lipids to fatty acid composition with membrane lipids and spheroplast membranes isolated from cells of a wild strain and an unsaturated fatty acid auxotroph of Escherichia coli grown under various conditions. These lipids and membranes underwent thermotropic phase transitions at different temperatures depending on the thermal properties of their constituent fatty acids. The lipid phase transition occurred at higher temperatures in biomembranes than in extracted lipids. DSC thermograms of lipids synthesized by bacterial cells which were observed at a temperature scanning rate as slow as 0.3 K min-1 were characterized by a distinctly plain peak summit. Endothermic peaks given by samples derived from elaidic acid-enriched cells were relatively narrow and asymmetric. The discrepancy between the transition temperatures measured with extracted lipids and with membraneous fractions, and the shape of the endothermic peaks, are discussed.  相似文献   

7.
C E Martin  G A Thompson 《Biochemistry》1978,17(17):3581-3586
Fluorescence polarization of 1,6-diphenylhexatriene (DPH) was used to study the effects of temperature acclimation on Tetrahymena membranes. The physical properties of membrane lipids were found to be highly dependent on cellular growth temperature. DPH polarization in lipids from three different membrane fractions correlated well with earlier freeze-fracture and electron spin resonance observations showing that membrane fluidity progressively decreases in the order microsomes greater than pellicles greater than cilia throughout a wide range of growth temperatures. Changes in membrane lipid fluidity following a shift from high to low growth temperatures proceed rapidly in the microsomes, whereas there is a pronounced lag in the changes of peripheral cell membrane lipids. These data support previous observations that adaptive changes in membrane fluidity proceed via lipid modifications in the endoplasmic reticulum, followed by dissemination of lipid components to other cell membranes. The rapid changes in polarization observed in the microsomal lipids following a temperature shift correspond closely with the time-dependent alterations in both lipid fatty acid composition and freeze-fracture patterns of membrane particle distribution, suggesting that, in the endoplasmic reticulum, lipid phase separation is the primary cause of membrane particle rearrangements.  相似文献   

8.
In order to investigate the utility of the fluorine-19 nucleus as a spectroscopic probe, a fluorinated analog of myristic acid has been incorporated into the membrane lipids of an unsaturated fatty acid auxotroph of Salmonella typhimurium. It is capable of supporting limited growth at temperatures above 37 degrees C. Freeze-fracture electron microscopic examinations of the membrane ultrastructure show a temperature and fatty acid supplement-dependent segregation of intramembranous protein particles into distinct patches in the auxotrophic membrane leaving intramembranous protein-denuded areas. The occurrence of these patches seems to be related to the phase separation of membrane lipids. Corresponding changes in the transport and accumulation of methyl thio-beta-D-galactopyranoside and tetracycline are observed. However, transport of histidine does not appear to be dependent on the physical state of the membrane lipids. The auxotroph shows differences in growth and morphological characteristics from those of the wild type. Functions of both inner and outer membranes are shown to be affected as a response to the fatty acid chain composition of the lipids.  相似文献   

9.
C D Linden  J K Blasie  C F Fox 《Biochemistry》1977,16(8):1621-1625
The lipid fatty acid composition of the cytoplasmic membranes of Escherichia coli can be varied by growing an unsaturated fatty acid auxotroph in the presence of different fatty acid supplements. Electron spin resonance (ESR) studies of spin-label partitioning into the cytoplasmic membranes of different lipid fatty acid compositions as a function of temperature have been interpreted as indicating a broad order-to-disorder transition in the membrane lipids, the end points of the transition depending upon the fatty acid composition. We have utilized x-ray diffraction to confirm the ESR studies for three different fatty acid supplements (oleic, elaidic, and bromostearic). We found that the characteristic end-point temperatures detected by ESR were indeed the end-point temperatures of a broad order-to-disorder transition of the cytoplasmic membrane lipids. In addition, Patterson functions calculated from lamellar x-ray diffraction from partially oriented cytoplasmic membranes indicate a decrease in average membrane thickness upon fatty acid chain melting.  相似文献   

10.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 degrees C was characterized by a decrease in phospholipid content relative to sterol content, a shift in phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes. Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 1/20 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 degrees C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (-10 degrees C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40-45 degrees C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0-35 degrees C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

11.
The degree of fatty acid unsaturation and average chain length are closely similar for microsomal membranes from exponential-phase trophozoites and cysts ofAcanthamoeba castellanii despite significant differences in fatty acid composition. The same trend was apparent for total fatty acids extracted from whole cells. The observations suggest that the organism regulates these lipid parameters during differentiation in order to maintain optimum membrane lipid viscosity, and are consistent with previous electron spin resonance measurements indicating that the fluidity of microsomal membranes does not change during encystment. About 75% of the microsomal fatty acids are unsaturated for both cysts and amoebae. Wide-angle X-ray diffraction of phospholipid liposomes prepared from lipid extracts of the membranes has indicted that this high level of unsaturation renders the phospholipid exclusively liquid-crystalline at temperatures as low as 9°C for rough microsomes and-1.5°C for smooth microsomes. Thus, by retaining a high proportion of unsaturated fatty acids throughout its differentiation cycle, the organism gains some protection in its natural soil habitat against lateral phase separation of membrane lipids.  相似文献   

12.
The physical state of the membrane lipids, as determined by fatty acid composition and environmental temperature, has a marked effect on both the temperature range within which Acholeplasma laidlawii B cells can grow and on growth rates within the permissible temperature ranges. The minimum growth temperature of 8 °C is not defined by the fatty acid composition of the membrane lipids when cells are enriched in fatty acids giving rise to gel to liquid-crystalline membrane lipid phase transitions occurring below this temperature. The elevated minimum growth temperatures of cells enriched in fatty acids giving rise to lipid phase transitions occurring at higher temperatures, however, are clearly defined by the fatty acid composition of the membrane lipids. The optimum and maximum growth temperatures are also influenced indirectly by the physical state of the membrane lipids, being significantly reduced for cells supplemented with lower melting, unsaturated fatty acids. The temperature coefficient of growth at temperatures near or above the midpoint of the lipid phase transition is 16 to 18 kcalmol, but this value increases abruptly to 40 to 45 kcalmol at temperatures below the phase transition midpoint. Both the absolute rates and temperature coefficients of cell growth are similar for cells whose membrane lipids exist entirely or predominantly in the liquid-crystalline state, but absolute growth rates decline rapidly and temperature coefficients increase at temperatures where more than half of the membrane lipids become solidified. Cell growth ceases when the conversion of the membrane lipid to the gel state approaches completion, but growth and replication can continue at temperatures where less than one tenth of the total lipid remains in the fluid state. An appreciable heterogeneity in the physical state of the membrane lipids can apparently be tolerated by this organism without a detectable loss of membrane function.  相似文献   

13.
The larval fatty acid composition of neutral lipids and membrane lipids was determined in three ethanol-tolerant strains ofDrosophila melanogaster. Dietary ethanol promoted a decrease in long-chain fatty acids in neutral lipids along with enhanced alcohol dehydrogenase (EC 1.1.1.1) activity in all of the strains. Dietary ethanol also increased the incorporation of14C-ethanol into fatty acid ethyl esters (FAEE) by two- to threefold and decreased the incorporation of14C-ethanol into free fatty acids (FFA). When cultured on sterile, defined media with stearic acid at 0 to 5 mM, stearic acid decreased ADH activity up to 33%. In strains not selected for superior tolerance to ethanol, dietary ethanol promoted a loss of long-chain fatty acids in membrane lipids. The loss of long-chain fatty acids in membranes was strongly correlated with increased fluidity in hydrophobic domains of mitochondrial membranes as determined by electron spin resonance and correlated with a loss of ethanol tolerance. In the ethanol-tolerant E2 strain, which had been exposed to ethanol for many generations, dietary ethanol failed to promote a loss of long-chain fatty acids in membrane lipids. We are grateful for the support of National Institutes of Health Grant AA06702 (B.W.G.) and National Science Foundation Grant CHE-891987 (R.G.K.).  相似文献   

14.
The membrane composition and lipid physical properties have been systematically investigated as a function of fatty acid composition for a series of Acholeplasma laidlawii B membrane preparations made homogeneous in various fatty acids by growing cells on single fatty acids and avidin, a potent fatty acid synthetic inhibitor. The membrane protein molecular weight distribution is essentially constant as a function of fatty acid composition, but the lipid/protein ratio varies over a 2-fold range when different fatty acid growth supplements are used. The membrane lipid head-group composition varies somewhat under these conditions, particularly in the ratio of the two major neutral glycolipids. Differential thermal analytical investigations of the thermotropic phase transitions of various combinations of membrane components suggest that these compositional changes are unlikely to result in qualitative changes in the nature of lipid-protein or lipid-lipid interactions, although lesser changes of a quantitative nature probably do occur. The total lipids of membranes made homogeneous in their lipid fatty acyl chain composition exhibit sharper than normal gel-to-liquid-crystalline phase transitions of which midpoint temperatures correlate very well with the phase transition temperatures of synthetic hydrated phosphatidylcholines with like acyl chains. Our results indicate that using avidin and suitable fatty acids to grow A. laidlawii B, it is possible to manipulate the position and the sharpness of the membrane lipid phase transition widely and independently without causing major modifications in other aspects of the membrane composition. This fact makes the fatty acid-homogeneous A. laidlawii B membrane a very useful biological membrane preparation in which to study lipid physical properties and their functional consequences.  相似文献   

15.
The photosynthetic responses of four alfalfa (Medicago sativa L.) cultivars to 10 and 22 C air temperatures were examined and the relationship between the photosynthetic response at 10 C and the fatty acid composition of the chloroplast membranes was determined. Chilling-resistant cultivars exhibited moderate reductions in photosynthesis at 10 C, compared to 22 C, and contained a significantly greater percentage of polyunsaturated fatty acids in the chloroplast membrane and a greater double bond index than the chilling-sensitive cultivars. The chilling-sensitive cultivars exhibited severe reductions in photosynthesis at 10 C, compared to 22 C. The reduction in photosynthesis at 10 C is shown to be negatively correlated (r = −0.94) with the double bond index of the chloroplast membranes of the cultivars observed.

The results support the hypothesis that reduced photosynthesis due to chilling temperatures is influenced by the unsaturated fatty acid composition of the chloroplast membrane which affect temperature-induced phase changes in chloroplast membrane lipids.

  相似文献   

16.
Growth temperature-induced compositional changes in membranes of Fusarium oxysporum provided a test system for study of the relationship between physical properties and composition. Growth at 15 °C was characterized by a decrease in phospholipid content relative to sterol content, a shift on phospholipid composition from phosphatidylcholine to phosphatidylethanolamine and a marked enhancement in the amount of polyunsaturated fatty acids in the phospholipid and triglyceride classes.Uptake of a spin labelled analog of stearic acid during growth and subsequent solution of the probe in the membranes allowed estimation of viscosity and molecular order of the membranes of live cells and of isolated membrane preparations. Less than 120 of the intracellular label was accessible to sodium ascorbate while none was released by sodium dodecyl sulfate. All of the label in live cells was reduced by in vivo respiratory activity above 20 °C but this process could be reversed or avoided by added ferricyanide. A cholestane spin probe was also incorporated into the membranes. The probes were not reduced as readily in isolated membranes and hence fluidity of the membranes could be assessed over a wide temperature range. At low temperatures (?10 °C) a nonlethal, liquid-solid phase transition was indicated in isolated membrane lipids while at higher (lethal) temperatures (40–45 °C), discontinuities appeared in Arrhenius plots of rotational correlation time. Activation energies for isotropic rotation of the stearate probes in the membranes changed markedly in this temperature range and this effect correlated closely with loss of viability of conidial cells. Correlation times for stearate probes showed little variation with growth temperature nor were any breaks in Arrhenius plots of this parameter detected in the range 0–35 °C in whole cells or isolated membranes. The data indicated control of membrane physical properties within close tolerances throughout the physiological temperature range regardless of growth temperature. It was concluded that this homeostatic phenomenon was due to the counteractive effects of sterol/phospholipid ratio, phospholipid composition and fatty acid polyunsaturation since the condensing and fluidizing components of the isolated total membranes vary in a reciprocal manner.  相似文献   

17.
The fatty acid distribution pattern of lipids extracted from different subcellular components of Tetrahymena pyriformis was found to be significantly different from one type of membrane to another.The growth-temperature shift caused alterations in fatty acid composition. The ratio of palmitoleic to palmitic acid, especially, showed a sharp linear decline with increase of temperature in all of the membrane fractions.The spin labels were rapidly incorporated into Tetrahymena membranes. The order parameter of 5-nitroxide stearate spin label incorporated into various membrane fractions was found to be different for the different membrane fractions, suggesting the following order of the fluidity; microsomes > pellicles > cilia.The fluidity of the surface membranes, cilia and pellicles isolated from Tetrahymena cells grown at 15°C was noticeably higher than that of the membranes from cells grown at 34°C but was not so different with microsomal fractions.The motion of the spin label in the pellicular membrane was more restricted than in its extracted lipids, thus indicating the assumption that in Tetrahymena membranes the proteins influence the fluidity.It was also suggested that a sterol-like triterpenoid compound, tetrahymanol, which is principally localized in the surface membranes, would be involved in the membrane fluidity.  相似文献   

18.
Changes in the temperature response, fluidity, function and the acyl fatty acid composition, were determined for a mitochondria-rich membrane fraction from Jerusalem artichoke (Helianthus tuberosus L.) tubers during dormancy for a crop which matured in midsummer. The temperature of both the upper and lower limits of the membrane lipid transition decreased during dormancy from 26 C and 1 C to 4 C and −5 C, respectively. This was similar to the changes observed with crops maturing in late autumn. The order parameter of a spin label intercalated into the membrane lipids decreased from about 0.6 to 0.5 during dormancy and returned to the original value before sprouting, showing that membrane fluidity increased during dormancy. The activation energy of succinate oxidase of tuber mitochondria was generally high at middormancy when membrane lipids were more fluid and decreased as the membranes became more rigid at the end of dormancy. The fatty acid composition of the membrane lipids did not alter significantly during dormancy. The results indicate that neither decreasing day length nor low soil temperature during tuber maturation is essential for the initiation of the membrane changes necessary for tubers to avoid low temperature injury during dormancy. The increase in membrane fluidity during dormancy could not be accounted for by an increase in the proportion of unsaturated fatty acids in the membrane lipids.  相似文献   

19.
Cold acclimation is a well‐known strategy for enhancing cold tolerance in ectotherms including insects. Nevertheless, information on the physiological mechanisms underpinning this phenomenon is still limited. Biological membrane integrity is critical for insects to perform at low temperatures, and an advantage is conferred on those insects that can adjust the composition of their membrane phospholipids. Such changes contribute to homeoviscous adaptation, a process that allows membranes to maintain a liquid–crystalline (fluid) state at low temperatures. Here we investigated phospholipids in the flesh fly Sarcophaga similis acclimated to various temperatures. Significant differences were observed in the composition of their fatty acyl chains: flies acclimated to low temperatures showed a higher proportion of palmitic and oleic acids at the expense of palmitoleic acid. Other fatty acids (stearic, linoleic, linolenic, arachidonic, eicosapentaenoic acids) were not significantly changed. The degree of unsaturation decreased in cold‐acclimated flies, but the difference was quite small. The weighted average chain length and number of double bonds were unchanged among flies acclimated to different temperatures. As temperatures decreased, the percentage of phosphatidylethanolamine increased to twice that of phosphatidylcholine. We discuss the role of these phospholipid changes in cold acclimation.  相似文献   

20.
The fluidity of the lipids in membrane preparations from a mutant of Escherichia coli resistant to the uncoupler CCCP, grown at different temperatures with and without CCCP, was examined by electron spin resonance using the spin probe 5-doxyl stearic acid. The fluidity of the membrane lipids at the growth temperature, as estimated using electron spin resonance, was less in cells grown at lower temperatures. Precise homeoviscous adaptation was not observed. Growth in the presence of CCCP resulted in a decrease in membrane lipid fluidity, particularly in the inner (cytoplasmic) membrane. There was no change in the proportion of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in the cell envelope. However, there was an increase in the proportion of unsaturated fatty acids in membranes from cells grown with uncoupler. This was reflected in the increased fluidity of the lipids extracted from these membranes. This result is contrary to that expected from measurements of the fluidity of the lipid in these membranes. The decreased fluidity of the lipid in these membranes may be a consequence of the observed increase in the ratio of protein to phospholipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号