首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Somata of 26 of the motorneurons situated on the right side of the metathoracis ganglion of the locust S. gregaria were identified by correlating their electrical activity with extracellularly or intracellularly recorded muscle potentials evoked either reflexly or by direct elctrical stimulation of the somata through the recording microelectrode. The neurons identified included most of those innervating the major leg muscles. Each neuron occupies a relatively fixed site on the ventral surface of the ganglion. The identified neurons were filled with procion yellow, the ganglia fixed and photographed as whole mounts, and then serially sectioned to determine the three dimensional topography of the major dendrites and the pathway of the axons through the neuropil. The topographical features of individual motorneurons were sufficiently characteristic to permit identification, Nevertheless, it was not found possible to classify the neurons on the basis of branching pattern. There is no relation between location in the ganglion and the muscle innervated, but locomotor motorneurons are clustered togethers in anterior, ventral, and lateral pockets.  相似文献   

2.
3.
Summary The muscles of the pyloric region of the stomach of the crab,Cancer borealis, are innervated by motorneurons found in the stomatogastric ganglion (STG). Electrophysiological recording and stimulating techniques were used to study the detailed pattern of innervation of the pyloric region muscles. Although there are two Pyloric Dilator (PD) motorneurons in lobsters, previous work reported four PD motorneurons in the crab STG (Dando et al. 1974; Hermann 1979a, b). We now find that only two of the crab PD neurons innervate muscles homologous to those innervated by the PD neurons in the lobster,Panulirus interrruptus. The remaining two PD neurons innervate muscles that are innervated by pyloric (PY) neurons inP. interruptus. The innervation patterns of the Lateral Pyloric (LP), Ventricular Dilator (VD), Inferior Cardiac (IC), and PY neurons were also determined and compared with those previously reported in lobsters. Responses of the muscles of the pyloric region to the neurotransmitters, acetylcholine (ACh) and glutamate, were determined by application of exogenous cholinergic agonists and glutamate. The effect of the cholinergic antagonist, curare, on the amplitude of the excitatory junctional potentials (EJPs) evoked by stimulation of the pyloric motor nerves was measured. These experiments suggest that the differences in innervation pattern of the pyloric muscles seen in crab and lobsters are also associated with a change in the neurotransmitter active on these muscles. Possible implications of these findings for phylogenetic relations of decapod crustaceans and for the evolution of neural circuits are discussed.Abbreviations ACh acetylcholine - Carb carbamylcholine - cpv muscles of the cardio-pyloric valve - cpv7n nerve innervating muscle cpv7 - cv muscles of the ventral cardiac ossicles - cv1n nerve innervating muscle cvl - cv2n nerve innervating muscle cv2 - EJP excitatory junctional potential - IC inferior cardiac neuron - IV inferior ventricular neuron - IVN inferior ventricular nerve - LP lateral pyloric neuron - LPG lateral posterior gastric neuron - lvn lateral ventricular nerve - mvn medial ventricular nerve - p muscles of the pylorus - PD pyloric dilator neuron - PD in intrinsic PD neuron - PD ex extrinsic PD neuron - pdn pyloric dilator nerve - PY pyloric neuron - pyn pyloric nerve - STG stomatogastric ganglion - VD ventricular dilator neuron  相似文献   

4.
The organization of the antennal muscles, nerves, and motor neurons has been investigated in the cockroach, Periplaneta americana. Antennal movements have been observed by video analysis, muscle actions have been determined by dissection and direct mechanical testing, and the motor neurons innervating each muscle have been defined with a recently developed selective backfill method. A model of the antennomotor system of Periplaneta has thus been established and compared with that of crickets. Five muscles located within the head capsule insert on the most proximal antennal segment, the scape. By their action, they allow the scape to move in essentially any direction within the dorsoventral and anteroposterior planes. An additional pair of muscles, one dorsal and one ventral, are found within the scape. They insert on the pedicel and move the pedicel in the dorsal-ventral plane. These seven muscles are controlled by at least 17 motor neurons with somata located in the deutocerebrum. By their action, these motor neurons enable cockroaches to move the long flagellum of each antenna through a wide range of positions in the frontal space, medio-laterally, and also allow depression toward the substrate and elevation well above the level of the head. The antennal motor neurons have been classified into five morphological types based on soma and axon location. Each morphological type has been correlated with a particular pattern of muscle innervation and control. The neurites of all motor neurons are located along the medial aspect of the dorsal lobe of the deutocerebrum. This research was supported by grant nos. IBN 96-04629 and 04-22883 from the National Science Foundation.  相似文献   

5.
Summary In the grass frogRana temporaria, various classes of tectal neurons were identified by means of intracellular recording and iontophoretic staining using potassium-citrate/Co3+-lysine-filled micropipettes, which have been defined previously by extracellular recording methods. Class T5(1) neurons had receptive fields (RF) of 33°±5° diameter. In response to a moving 8°×8° square (S), a 2°×16° worm-like (W), or a 16°×2° antiworm-like (A) moving stripe, these cells showed excitatory postsynaptic potentials (EPSPs) and spikes which were interrupted occasionally by small inhibitory postsynaptic potentials (IPSPs). The excitatory responses (R) were strongest towards the square (RS) and less to the worm (RW). For the antiworm (RA) the responses were smallest or equal to the worm stimulus yielding the relationship RS>RWRA. Some of these cells were identified as pear-shaped or large ganglionic neurons, whose somata were located in the tectal cell layer 8. The somata of other large ganglionic neurons were found in layer 7 and the somata of other pear-shaped neurons at the top of layer 6, both displaying T5(1) properties. Class T5(2) neurons (RF=34°±3°) responded with large EPSPs and spikes, often interrupted by small IPSPs, when their RF was traversed by the square stimulus. The excitatory activity was somewhat less to the worm stimulus, whereas no activity at all, or only IPSPs, were recorded in response to the antiworm-stimulus; thus yielding the relationship for the excitatory activity RS>RW>RA 0. Such a cell was identified as pyramidal neuron; the soma was located at the top of layer 6, with the long axon travelling into layer 7 to the medulla oblongata. Class T5(3) neurons (RF=29°±6°) showing EPSPs and spikes according to the relationship RS>RA>RW have been identified as large ganglionic neurons. Their somata were located in layer 8. Class T5(4) neurons (RF=24±7°) responded only to the square stimulus with EPSPs and spikes, sometimes interrupted by IPSPs and yielding the relationship RS>RARW0. The somata of these large ganglionic or pear-shaped neurons were located in layer 8. Class T1(1) neurons (RF=30°–40°) were most responsive to stimuli moving at a relatively long distance in the binocular visual field, and have been identified as pear-shaped neurons. Their somata were located in layer 6.Further neurons are described and morphologically identified which have not yet been classified by extracellular recording methods. For example,IPSP neurons (RF=20°–30°) responded (R) with IPSPs only according to the relationship RS>RA RW. The somata of these pear-shaped neurons were located in layer 6.The properties of tectal cells in response to electrical stimulation of the optic tract and to brisk changes of diffuse illumination suggest certain neuronal connectivity patterns. The results support the idea ofintegrative functional units (assemblies) of connected cells which are involved in various perceptual processes, such as configurational prey selection expressed by T5(2) prey-selective neurons.Abbreviations A antiworm-like 16°×2° stripe stimulus with long axis perpendicular to the direction of movement - W wormlike 2°×16° stripe stimulus with long axis oriented parallel to the direction of movement - S square 8°×8° moving stimulus - ERF excitatory receptive field - IRF inhibitory receptive field - RF receptive field - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential  相似文献   

6.
The protein composition of each of the coxal depressor muscles from the leg of the cockroach, Periplaneta americana, was analyzed by SDS polyacrylamide gel electrophoresis. The proteins from each muscle were fractionated according to their extractability in Ringer's solution, 1% Triton X-100 and 1% SDS. The gel protein patterns of the fractionated muscles revealed some biochemical differences that could be correlated with mechanical and ultrastructural differences observed among the muscles. In addition, proteins were detected that were considered to be candidate recognition macromolecules that are responsible for the intercellular recognition process that enables regenerating motor neurons to specifically recognize and make stable, functional connections only with the muscles to which they were originally connected. The major evidence for this identification of candidate recognition macromolecules was that their presence in the muscle could best be correlated with innervation by an identified motor neuron. In addition, these proteins remain present in denervated muscles for at least as long as it takes for the original innervation pattern to be reformed by the regenerating motor neurons.  相似文献   

7.
Prior behavioral and neurophysiological studies provide evidence that the nudibranch mollusk Tritonia orients to the earth’s magnetic field. Earlier studies of electrophysiological responses in certain neurons of the brain to changing ambient magnetic fields suggest that although certain identified brain cells fire impulses when the ambient field is changed, these neuron somata and their central dentritic and axonal processes are themselves not primary magnetic receptors. Here, using semi-intact animal preparations from which the brain was removed, we recorded from peripheral nerve trunks. Using techniques to count spikes in individual nerves and separately also to identify, then count individual axonal spikes in extracellular records, we found both excitatory and inhibitory axonal responses elicited by changes in the direction of ambient earth strength magnetic fields. We found responses in nerves from many locations throughout the body and in axons innervating the body wall and rhinophores. Our results indicate that primary receptors for geomagnetism in Tritonia are not focally concentrated in any particular organ, but appear to be widely dispersed in the peripheral body tissues.  相似文献   

8.
Summary This study describes the neural basis of respiratory behavior in a pulmonate mollusc, Lymnaea stagnalis. We describe and identify muscles of the respiratory orifice (pneumostome) and mantle cavity as well as relevant motor neurons innervating these muscles. All of these identified motor neurons are active during spontaneously occurring respiratory behavior and a sporadically occurring synaptic input, termed Input 3, controls the activities of these motor neurons. This spontaneous input can also be recorded from isolated brain preparations, suggesting that the respiratory motor program is generated centrally. However, evidence is also presented that in semi-intact preparations the role of peripheral feedback is important for the initiation and termination of respiratory behavior in Lymnaea.  相似文献   

9.
SYNOPSIS. The neuromuscular system of the cockroach containsmotor neurons and muscles that can be identified in all individualinsects When the axons of these motor neurons are damaged theyregenerate and eventually reform synapses only with the originaltarget muscles However at early times after axotomy transientinappropriate functional connections are made between regeneratingneurons and muscles that theynever normally innervate Laterthe inappropriate synapses are inactivated, the inappropriateaxon branches eliminated and the original innervation patternreformed A cellcell recognition between identified motor neuronsand muscles is required to explain these observations, particularlyin light of experiments demonstrating the absence of competitionbetween appropriate and inappropriate axon terminals withinthe muscle. A minimum biochemical requirement of such a cell-cell recognitionis the existence of molecules whose presence in muscles correlateswith the innervation by identified motor neurons Using fluoresceinlabelled plant lectins to detect muscle surface glycoproteinssuch molecules have been identified In addition, there shouldbe molecular differences among the surfaces of the axon terminalsof the various identified motor neurons Hybrid oma techniqueshave enabled us to obtain monoclonal antibodies that bind tosurfaces of axon terminals of some motor neurons and not othersThese lectin receptors and antigens are good candidate recognitionmacromolecules Other molecules essential for axonal regenerationhave been identified by their presence in embryonic and adultregenerating neurons and their absence from intact adult neurons.  相似文献   

10.
The ontogeny of muscles, motor neurons, and the central circuitryinvolved in producing patterned motor outputs is often thoughtof as a series of relatively independent and stereotyped events.Although mature neuromuscular systems are indeed often highlystereotyped, there is mounting evidence that the developmentalmechanisms that give rise to such stereotypy may often be interactive.The medicinal leech, Hirudo medicinalis, has stereotyped neuronsand muscles, yet at least some of the neuromuscular componentsseem to depend upon a particular sequence of cell-cell interactionsto differentiate, express identifiable phenotypes, or selectsynaptic partners. Three examples are summarized to illustratethese possibilities. First, a pattern-forming cell (the C-cell) develops at an earlystage and projects parallel processes that are used as a scaffoldupon which myocytes assemble. In the absence of the C-cell,oblique muscle fascicles never become organized. Second, atleast one way to match neuronal phenotype to that appropriatefor a segment-specific target is for homologous neurons to receivea signal from that target locally to partially respecify furtherdifferentiation of that neuron. Third, how do identified motorneurons select appropriate target muscles and how do interneuronalcircuits become matched to particular muscles when an interposedmotor neuron disallowsdirect interactions? A well-defined pattern-generatingsystem driving the muscular heart tubes in this leech is beginningto provide insights into these issues.  相似文献   

11.
1. The close association of muscle and neurons in Ascaris suum makes it difficult to determine whether spikes recorded from nerve cords originate in muscle or neurons. We have developed criteria that distinguish muscle and neuronal activity. There are two categories of extracellular spikes. 2. The first category consists of spikes with a wide range of amplitudes, marked by large spikes. These spikes, which can be recorded over lateral muscle and over the dorsal and ventral nerve cords, are abolished when muscle is disrupted or removed, or when curare is applied. Large spikes are relatively infrequent, are correlated with intracellularly recorded muscle events, and respond to polarizations of motor neurons, implying that they originate in muscle. 3. The second spike category, small amplitude spikes, is exclusive to the ventral nerve cord, occurs more frequently than large spikes and displays patterned firing. Small spikes are not affected by muscle removal or by curare, and are correlated with motor neuronal post-synaptic potentials, but not with intracellularly recorded muscle events. We infer that they originate in neurons. 4. Low level activity recorded extracellularly over nerve cords may represent muscle activity due to tonic motor neuronal synaptic transmission. It responds to motor neuronal polarization and is suppressed by curare or muscle removal.  相似文献   

12.
To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes, illustrating the reversibility of these synaptic defects. Deafferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention.  相似文献   

13.
We have used specific antisera against protein-conjugated -aminobutyric acid (GABA) and rat-brain glutamic acid decarboxylase (GAD) in immunocytochemical preparations to study the distribution of putatively GABAergic neurons in the fused thoracic ganglion of the crab Eriphia spinifrons. In the thoracic neuromeres, about 2000 neurons with somata arranged in clusters or located singly in the cell cortex exhibited both GABA-like and GAD-like immunoreactivity. In addition, more than a hundred cells showed only GABA-like immunoreactivity. Fibrous immunoreactive staining to GAD and GABA was distributed throughout the neuropil of the thoracic ganglion, and several fiber tracts contained immunoreactive processes. Sets of serially homologous neurons exhibited GABA-like and GAD-like immunoreactivity in the thoracic neuromeres. Especially prominent were one medial and four ventro-lateral clusters of somata, together with thirteen individually recognized cells in each neuromere. Six of these cells in the ventro-medial cell cortex may be the somata of inhibitory motoneurons. The leg nerves contained three immunoreactive fibers, corresponding to the previously described common inhibitory motoneuron and the two specific inhibitors. The results present further evidence for GABA being the neurotransmitter of all inhibitory leg motorneurons, and suggest its presence and role as a neurotransmitter in a considerable number of interneurons in the thoracic ganglion of the crab.  相似文献   

14.
The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today''s vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter­motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports “sensory-inter-motorneurons” as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly providing the endogenous equivalent to an optogenetic machinery.  相似文献   

15.
《Journal of Physiology》1998,92(1):37-42
Electrophysiological investigations of neurons of the C6 segment of the spinal cord were made in α-chloralose anesthetized animals. It was established in the experiments that a part of long descending propriospinal neurons originating in the sixth cervical segment (C6) that projected to sacral segments (S1/S2) gave off collateral branches at the level of the fourth lumbar segment (L4). Several types of neurons were distinguished according to the ipsilateral, contralateral or bilateral course of axons at the thoracic level as well as their lumbar or sacral projections. The cell bodies of 58 identified neurons were distributed in Rexed's laminae VII and VIII of the gray matter. Axons descended in lateral funiculi and their conduction velocities varied from 50 to 85 m/s. The existence of collaterals to various segments of the lumbosacral enlargement indicates that the same information conveyed by long descending propriospinal neurons can reach separate motor centers controlling various muscles of the hindlimbs.  相似文献   

16.
Motor patterns during kicking movements in the locust   总被引:2,自引:2,他引:0  
Locusts (Schistocerca gregaria) use a distinctive motor pattern to extend the tibia of a hind leg rapidly in a kick. The necessary force is generated by an almost isometric contraction of the extensor tibiae muscle restrained by the co-contraction of the flexor tibiae (co-contraction phase) and aided by the mechanics of the femoro-tibial joint. The stored energy is delivered suddenly when the flexor muscle is inhibited. This paper analyses the activity of motor neurons to the major hind leg muscles during kicking, and relates it to tibial movements and the resultant forces.During the co-contraction phase flexor tibiae motor neurons are driven by apparently common sources of synaptic inputs to depolarized plateaus at which they spike. The two excitatory extensor motor neurons are also depolarized by similar patterns of synaptic inputs, but with the slow producing more spikes at higher frequencies than the fast. Trochanteral depressors spike at high frequency, the single levator tarsi at low frequency, and common inhibitors 2 and 3 spike sporadically. Trochanteral levators, depressor tarsi, and a retractor unguis motor neuron are hyperpolarized.Before the tibia extends all flexor motor neurons are hyperpolarized simultaneously, two common inhibitors, and the levator trochanter and depressor tarsi motor neurons are depolarized. Later, but still before the tibial movement starts, the extensor tibiae and levator tarsi motor neurons are hyperpolarized. After the movement has started, the extensor motor neurons are hyperpolarized further and the depressor trochanteris motor neurons are also hyperpolarized, indicating a contribution of both central and sensory feedback pathways.Variations in the duration of the co-contraction of almost twenty-fold, and in the number of spikes in the fast extensor tibiae motor neuron from 2–50 produce a spectrum of tibial extensions ranging from slow and weak, to rapid and powerful. Flexibility in the networks producing the motor pattern therefore results in a range of movements suited to the fluctuating requirements of the animal.  相似文献   

17.
Male silkworm moths, Bombyx mori, move their heads side-to-side during zigzag walking toward a source of sex pheromone. High-speed video analysis revealed that changes in walking direction were synchronized with this head turning. Thus the direction of the walking is indicated by the direction of the head turning. Head turning was regulated by neck motor neurons which innervate the cervical ventral muscles and the ventral muscles through the second cervical nerve. To determine the role of the `flipflop' state transition in spike activity carried by descending interneurons from the brain to the thoracic ganglion, we recorded pheromonal responses simultaneously from flipflop descending interneurons and a single cervical ventral 1 neck motor neuron. The activity of the cervical ventral 1 neck motor neuron was synchronized to that of the flipflop descending interneurons. The cervical ventral 1 neck motor neuron was morphologically identified using confocal imaging. Our results demonstrate that the flipflop signals play an important role in instructing turning signals during the pheromone-mediated behavior in a male B. mori. Accepted: 11 June 1998  相似文献   

18.
Summary The front legs of the whip spider H. elaphus are strongly modified to serve sensory functions. They contain several afferent nerve fibers which are so large that their action potentials can be recorded externally through the cuticle. In recordings from the tarsus 7 different types of afferent spikes were identified; 6 additional types of afferent spikes were discriminated in recordings from the tibia and femur. Most of the recorded potentials could be attributed to identifiable neurons serving different functions. These neurons include giant interneurons and giant fibers from diverse mechanoreceptors such as slit sense organs, trichobothria, and a joint receptor. In the present report these neurons are characterized using electrophysiological and histological methods. Their functions are discussed in the context of the animal's behavior.Abbreviations GN giant neuron - S segment  相似文献   

19.
Summary A set of motor neurons and interneurons in the thoracic nervous system of the meal beetle Tenebrio molitor L. is described that persist during metamorphosis. The motor neurons under discussion innervate the thoracic ventral longitudinal muscles and were identified by retrograde transport of intramuscularly injected horseradish peroxidase. Persisting motor neurons exhibit a complex repetitive pattern that changes only slightly during development. Additionally, the characterization of serotonin-immunoreactive neurons defines a complex set of interneurons that also persist throughout development. The fate of these identified neurons is outlined in detail with special reference to variations in their dendritic arborizations. All motor and interneurons are affected by a similar change in their shape during development. The larval neurons lack the contralateral arborization that is found in the adult beetle and is already distinguishable in the prepupa. Essentially only quantitative changes of the neuronal shape were observed during the pupal instar. No pupa-specific degeneration of certain axo-dendritic structures of these neurons was found. Removal of descending interneurons by sectioning the promesothoracic connectives causes specific degeneration of the dendritic tree of an identified serotonin-immunoreactive interneuron.  相似文献   

20.
Summary Intracellular recording and labeling of cells from the toad's (Bufo bufo spinosus) medulla oblongata in response to moving visual (and tactual) stimuli yield the following results. (i) Various response types characterized by extracellular recording in medullary neurons were also identified intracellularly and thus assigned to properties of medullary cell somata. (ii) Focussing on monocular small-field and cyclic bursting properties, somata of such neurons were recorded most frequently in the medial reticular formation and in the branchiomotor column but less often in the lateral reticular formation. (iii) Visual object disrimination established in pretectal/tectal networks is increased in its acuity in 4 types of medullary small-field neurons. The excitatory and inhibitory inputs to these neurons evoked by moving visual objects suggest special convergence likely to increase the filter properties. (iv) Releasing conditions, temporal pattern, and refractoriness of cyclic bursting neurons resemble membrane characteristics of vertebrate and invertebrate neurons known to play a role in premotor/motor activity. (v) Integrating functions of medullary cells have an anatomical correlate in the extensive arborizations of their dendritic trees; 5 morphological types of medullary neurons have been distinguished.Abbreviations A stripe moving in antiworm configuration - (W) moving in worm configuration - S square - BMC branchiomotor column - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - RetF medullary reticular formation - RF receptive field - M neurons response properties of medullary neurons - T neurons classes of tectal neurons - TH neurons classes of thalamic/pretectal neurons - tr.tb.d. tractus tecto-bulbaris directus - tr.tbs.c. tractus tecto-bulbaris et spinalis cruciatus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号