首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A temperature-sensitive group II mutant of influenza virus, ts-52, with a presumed defect in viral RNA synthesis, readily produced von Magnus-type defective interfering virus (DI virus) when passed serially (four times) at high multiplicity in MDBK cells. The defective virus (ts-52 DI virus) had a high hemagglutinin and a low infectivity titer, and strongly interfered with the replication of standard infectious viruses (both ts-52 and wild-type ts+) in co-infected cells. Progeny virus particles produced by co-infection of DI virus and infectious virus were also defective and also had low infectivity, high hemagglutinating activity, and a strong interfering property. Infectious viruses ts+ and ts-52 were indistinguishable from ts-52 DI viruses by sucrose velocity or density gradient analysis. Additionally, these viruses all possessed similar morphology. However, when the RNA of DI viruses was analyzed by use of polyacrylamide gels containing 6 M urea, there was a reduction in the amount of large RNA species (V1 to V4), and a number of new smaller RNA species (D1 to D6) with molecular weights ranging from 2.9 X 10(5) to 1.05 X 10(5) appeared. Since these smaller RNA species (D1 to D6) were absent in some clones of infectious viruses, but were consistently associated with DI viruses and increased during undiluted passages and during co-infection of ts-52 with DI virus, they appeared to be a characteristic of DI viruses. Additionally, the UV target size of interfering activity and infectivity of DI virus indicated that interfering activity was 40 times more resistant to UV irradiation than was infectivity, further implicating small RNA molecules in interference. Our data suggest that the loss of infectivity observed among DI viruses may be due to nonspecific loss of a viral RNA segment(s), and the interfering property of DI viruses may be due to interfering RNA segments (DIRNA, D1 to D6). ts-52 DI virus interfered with the replication of standard virus (ts+) at both permissive (34 degrees C) and nonpermissive temperatures. The infectivity of the progeny virus was reduced to 0.2% for ts+ and 0.05% for ts-52 virus without a reduction in hemagglutinin titer. Interference was dependent on the concentration of DI virus. A particle ratio of 1 between DI virus (0.001 PFU/cell) and infectious virus (1.0 PFU/cell) produced a maximal amount of interference. Infectious virus yield was reduced 99.9% without any reduction of the yield of DI viruses Interference was also dependent on the time of addition of DI virus. Interference was most effective within the first 3 h of infection by infectious virus, indicating interference with an early function during viral replication.  相似文献   

2.
Vaccinia virus was irradiated in vacuo with low-voltage electrons of restricted ranges. It was found that the pock-forming ability of the virus was not decreased after bombardment with electrons penetrating 100 A beneath the virus surface. There was very slight reduction in titer with large doses of electrons penetrating 330 A, but a sudden marked drop in infectivity occurred after exposure to electrons penetrating 500 to 700 A. Electrons of higher energies, including those capable of penetrating the virus particle completely, did not produce significant further fall in infectivity titer. It is concluded that a highly radiation-sensitive unit essential for pock formation is situated 500 to 700 A beneath the surface of the virus particle, possibly in the form of a shell. The relation of this finding to the known structure of the virus and to other radiation data on the dimensions of the infectious unit is discussed.  相似文献   

3.
ELISA in situ can be used to titrate hepatitis A virus (HAV) particles and real-time polymerase chain reaction (RT-PCR) has been shown to be a fast method to quantify the HAV genome. Precise quantification of viral concentration is necessary to distinguish between infectious and non-infectious particles. The purpose of this study was to compare cell culture and RT-PCR quantification results and determine whether HAV genome quantification can be correlated with infectivity. For this purpose, three stocks of undiluted, five-fold diluted and 10-fold diluted HAV were prepared to inoculate cells in a 96-well plate. Monolayers were then incubated for seven, 10 and 14 days and the correlation between the ELISA in situ and RT-PCR results was evaluated. At 10 days post-incubation, the highest viral load was observed in all stocks of HAV via RT-PCR (105 copies/mL) (p = 0.0002), while ELISA revealed the highest quantity of particles after 14 days (optical density = 0.24, p < 0.001). At seven days post-infection, there was a significant statistical correlation between the results of the two methods, indicating equivalents titres of particles and HAV genome during this period of infection. The results reported here indicate that the duration of growth of HAV in cell culture must be taken into account to correlate genome quantification with infectivity.  相似文献   

4.
5.
An inhibitor in faba bean sap decreased the infectivity of bean yellow mosaic virus in undiluted sap to 0.2% of its potential infectivity calculated from diluted preparations.  相似文献   

6.
The uptake of (32)P-labeled polyoma virus deoxyribonucleic acid (DNA) (I and II + III) by mouse embryo cells was increased from two- to fivefold in the presence of 500 mug of diethylaminoethyl-dextran (DEAE-D) per ml. This concentration of DEAE-D gives maximal enhancement of infectivity; however, the increase is many thousand-fold. As the DEAE-D concentration was increased from 0 mug/ml, uptake and infectivity increased to flat maxima and then decreased in a similar manner, except that at low DEAE-D concentrations uptake was relatively much greater than infectivity. Several other polycations also increased DNA uptake but did not enhance infectivity, and uptake of viral DNA was unaffected by the presence of mouse DNA, although infectivity was reduced. Thus, increased uptake is not the sole basis for the enhancement of infectivity produced by DEAE-D. The possibilities that DNA complexed with DEAE-D penetrates more rapidly or is stabilized against degradation do not completely account for enhancement since complexes formed in mixtures of DNA and DEAE-D, which sedimented heterogeneously from 40 to 60S, were infectious only for monolayers treated with DEAE-D. A more likely factor in enhancement is inhibition of the cellular nuclease activity detected, since virus DNA exposed to cells was much more degraded in the absence than in the presence of DEAE-D. The nuclease activity produced single-strand breaks in double-stranded DNA. Treatment of monolayers with deoxyribonuclease after adsorption of DNA in the presence of DEAE-D reduced cell-associated radioactivity by about 70%, although the number of plaques formed was not affected. In the absence of DEAE-D, 90 to 100% was removed by deoxyribonuclease. Thus, in both cases most of the DNA was adsorbed extracellularly. The greater deoxyribonuclease-resistant fraction in the presence of DEAE-D would be consistent with another possibility: that enhancement results from an increase in DNA penetration rate due to some action of DEAE-D on the cell.  相似文献   

7.
We have studied the virus produced by a clone, termed 8A, that was isolated from a culture of murine sarcoma virus-transformed mouse cells after superinfection with Moloney murine leukemia virus (MuLV-M). Clone 8A produced high levels of type C virus particles, but only a low titer of infectious murine sarcoma virus and almost no infectious MuLV. When fresh cultures of mouse cells were infected with undiluted clone 8A culture fluids, they released no detectable pogeny virus for several weeks after infection. Fully infectious MuLV was then produced in these cultures. This virus was indistinguishable from MuLV-M by nucleic acid hybridization tests and in its insensitivity to Fv-1 restriction. It also induced thymic lymphomas in BALB/c mice. To explain these results, we propose that cone 8A is infected with a replication-defective variant of MuLV-M. Particles produced by clone 8A, containing this defective genome, can establish an infection in fresh cells but cannot produce progency virus at detectable levels. Several weeks after infection, the defect in the viral genome is corrected by back-mutation or by recombination with endogenous viral genomes, resulting in the formation of fully infectious progeny MuLV. The progeny MuLV'S that arose in two different experiments were found to be genetically different from each other. This is consistent with the hypothesis that, in each experiment, the progeny virus is formed clone 8A cells and assayed for infectivity by the calcium phosphate transfection technique. No detectable MuLV was produced by cells treated with this DNA. This finding, along with positive results obtained in control experiments, indicates that clone 8A cells do not contain a normal MuLV provirus.  相似文献   

8.
Stocks of simian immunodeficiency virus (SIV) from the supernatants of infected cell cultures were used to examine the sensitivity of envelope glycoprotein gp120 to enzymatic deglycosylation and the effects of enzyme treatment on infectivity. Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and Western blot analysis revealed little or no change in the mobility of virion-associated gp120 after digestion with high concentrations of N-glycosidase F, endoglycosidase F, endoglycosidase H, and endo-beta-galactosidase. Soluble gp120, which was not pelletable after the enzymatic reaction, was sensitive to digestion by the same enzymes within the same reaction mix and was only slightly less sensitive than gp120 that had been completely denatured by boiling in the presence of SDS and beta-mercaptoethanol. Digestion by three of the seven glycosidases tested significantly changed the infectivity titer compared to that of mock-treated virus. Digestion by endo-beta-galactosidase increased infectivity titers by about 2.5-fold, and neuraminidase from Newcastle disease virus typically increased infectivity titers by 8-fold. Most or all of the increase in infectivity titer resulting from treatment with neuraminidase could be accounted for by effects on the virus, not the cells; SIV produced in the presence of the sialic acid analog 2,3-dehydro-2-deoxy-N-acetylneuraminic acid also exhibited increased infectivity, and the effects could not be duplicated by neuraminidase treatment of cells. Digestion with mannosidase reduced infectivity by fivefold. Our results indicate that carbohydrates on native oligomeric gp120 as it exists on the surface of virus particles are largely occluded and are refractory to digestion by glycosidases. Furthermore, the sialic acid residues at the ends of carbohydrate side chains significantly reduce the inherent infectivity of SIV.  相似文献   

9.
When African green monkey kidney cell lines, infected with simian virus 40, were exposed to benzo[a]pyrene-7,8-dihydrodiol or anti-benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, inhibition of progeny virus formation was observed. Alkylation of SV40 DNA with anti-BPDE inhibits the infectivity of this viral DNA; however, the inactivation does not follow a single-hit mechanism. Studies on [3H]thymidine incorporation indicate that SV40 DNA synthesis is markedly impaired for the first 12 hours following BPDE treatment; 24 to 36 hours later, however, SV40 DNA synthesis is almost normal. These data suggest that the inhibition of SV40 DNA synthesis by BP derivatives is reversible and that the observed reduction in viral titer requires some other explanation.  相似文献   

10.
Comparative infectivity and virus neutralization studies on occluded and nonoccluded viruses of Bombyx mori nuclear polyhedrosis revealed that the infectious unit causing peroral infection differed from that causing hemocoelic infection. There were functional differences between the occluded (mainly virons with envelopes) and the nonoccluded virus (mainly virions without envelopes) preparations. The peroral infection was largely due to the virion with an envelope (peroral infectious unit), and the hemocoelic infection was due largely to the virion without an envelope (hemocoelic infectious unit). The apparent change of the virions with envelope to those without envelopes was detected as a slight increase in hemocoelic infectivity when the occluded virus was diluted and incubated at 4°C for more than 6 days.  相似文献   

11.
A trivalent parainfluenza virus vaccine has been tested in guinea pigs. The parainfluenza 2 virus vaccine component was superior in the magnitude of antibody titers, and in the ability to convert animals serologically after two doses of an undiluted or a 10-fold diluted vaccine. The parainfluenza 1 virus vaccine gave a higher percentage of conversion than parainfluenza 3 virus vaccine after administration of two doses of either undiluted or 10-fold diluted vaccine.  相似文献   

12.
Efficacious systems are described for the large-scale growth in tissue culture and concentration of infectious (P3HR-1) and transforming (B95-8) Epstein-Barr virus. Also recorded here are our updated procedures for growing stock cultures and protocols to harvest fluids containing biologically active virus which is infectious or transforming. Various methods of concentrating biologically active Epstein-Barr virus have been evaluated. Cellular debris can be removed efficiently and rapidly from culture harvest fluids by clarification through a JCF-Z continuous-flow rotor. Efficient and reliable virus concentration was achieved by molecular filtration with Millipore Pellicon cassettes, using flow rates to 10 liters/h to produce fivefold concentrates followed by pelletization in a fixed-angle rotor. Data from recent production lots showed an average infectivity titer for P3HR-1 virus of 10(4.5) early antigen units per ml (100-fold concentrate) and 10(5.7) transforming units per ml (200-fold concentrate) for B95-9 virus lots.  相似文献   

13.
Efficacious systems are described for the large-scale growth in tissue culture and concentration of infectious (P3HR-1) and transforming (B95-8) Epstein-Barr virus. Also recorded here are our updated procedures for growing stock cultures and protocols to harvest fluids containing biologically active virus which is infectious or transforming. Various methods of concentrating biologically active Epstein-Barr virus have been evaluated. Cellular debris can be removed efficiently and rapidly from culture harvest fluids by clarification through a JCF-Z continuous-flow rotor. Efficient and reliable virus concentration was achieved by molecular filtration with Millipore Pellicon cassettes, using flow rates to 10 liters/h to produce fivefold concentrates followed by pelletization in a fixed-angle rotor. Data from recent production lots showed an average infectivity titer for P3HR-1 virus of 10(4.5) early antigen units per ml (100-fold concentrate) and 10(5.7) transforming units per ml (200-fold concentrate) for B95-9 virus lots.  相似文献   

14.
Phosphorylation of Simian Virus 40 Proteins in a Cell-Free System   总被引:8,自引:8,他引:0       下载免费PDF全文
We have shown previously that all the structural proteins of simian virus 40 (SV40) are phosphoproteins. Virus phosphorylated in vivo could be further phosphorylated with exogenous cellular protein kinases in a cell-free system containing gamma-(32)P-ATP as phosphate donor. In intact infectious virus only polypeptides 1 and 2 (mol wt 49,000 and 40,800, respectively) were further phosphorylated in vitro. However, when infectious SV40 was partially disrupted, treated with nucleases, and then phosphorylated in vitro, all five structural polypeptides accepted additional phosphate groups. Similarly, all polypeptides of intact empty capsids, derived from infected cells, were further phosphorylated in vitro. Phosphorylation of empty capsids and infectious SV40 in vitro was enhanced from 4- to 11-fold after prior treatment of virus with alkali. The phosphate group was linked only to serine residues of the viral polypeptides phosphorylated both in vitro and in vivo.  相似文献   

15.
Synchronized CV-1 cells were transfected with SV40 (simian virus 40) DNA-calcium phosphate co-precipitates. In the presence of carrier DNA, the transfection efficiency of SV40 DNA was decreased 5-fold in S-phase cells and was increased 4-fold in preparations of mitotically enriched cells as compared with asynchronous controls. No difference was observed when carrier DNA was omitted, when cells had progressed through S-phase and into G2-phase, or when the infectivity of cells to intact SV40 virus was tested. These results highlight the importance of cell-cycle-dependent factors on DNA-mediated gene transfer.  相似文献   

16.
目的:建立一种基于半数组织培养感染剂量(median tissue culture infective dose,TCID50)检测9型腺相关病毒(adeno-associated virus type 9,AAV9)载体制品感染性滴度的方法。方法:利用含AAV2 repcap基因的1型单纯疱疹病毒(herpes simplex virus type1,HSV1)做为辅助病毒与梯度稀释的AAV9载体制品共同感染HEK-293细胞,培养48 h后用实时荧光定量PCR(quantitative real-time PCR,qPCR)扩增AAV特异性反向末端重复序列(inverted terminal repeats,ITR),根据阳性及阴性感染孔数,利用Kärber法计算样品的TCID50。结果:采用携带增强绿色荧光蛋白报告基因的AAV9载体制品确定辅助病毒HSV1-rc最佳感染复数(multiplicity of infection,MOI)为5,AAV9-101的感染性滴度为1.6×109 TCID50/mL。结论:对AAV9载体制品进行感染性滴度检测,且具有可重复性。  相似文献   

17.
Deoxyribonucleic acid (DNA) was extracted from virus-free simian virus 40 (SV40)-transformed hamster, mouse, and monkey cells and was inoculated into simian cells in the presence of diethylaminoethyl (DEAE)-dextran; infectious SV40 was recovered by using DNA from cell lines which fail to yield virus by the fusion technique as well as from cell lines which readily yield virus by fusion. The rescued virus was identified as SV40 by three methods: (i) neutralization of plaque formation by specific antiserum; (ii) induction of synthesis of viral-specific antigens detected by immunofluorescence; and (iii) presence of papovavirus particles seen by the electron microscope. Treatment of the transformed cell DNA with deoxyribonuclease or omission of the DEAE-dextran prevented the rescue of virus. Large amounts of transformed cell DNA were required (>10 mug/culture of 10(6) cells) to effect rescue of SV40 by passage through monkey cells. A linear response was obtained between the input of DNA with inocula between 10 and 45 mug of DNA/culture and the yield of SV40 recovered. Biological activity was demonstrable irregularly when the transformed cell DNA was assayed directly in the presence of DEAE-dextran. The DNA induced plaque formation in about 50% of the trials as well as the synthesis of SV40 tumor and viral antigens in rare simian cells. The infectious DNA appeared to be associated with cellular DNA. The infectivity was found in the pellet of precipitated DNA obtained by the Hirt technique and was inactivated by boiling for 15 min. These properties are characteristic of linear cellular DNA and not of free, circular SV40 DNA.  相似文献   

18.
Sendai virus grown in fertile eggs (egg Sendai) infects L cells in which the synthesis of L Sendai (grown in L cells) occurs by the one-step mechanism. L Sendai is not infectious for L cells when tested by the tube titration method although it is infectious for chick embryos. When L cells infected with egg Sendai were dispersed by trypsin and plated on a monolayer culture of L cells, the viral agents spread to the adjacent recipient cells in which the synthesis of L Sendai occurred. The newly infected L cells became infectious for L cells again by trypsin treatment. Kinetic experiments suggested that the target of trypsin is the mature virus, of L Sendai nature, just budding from the L-cell surface. By using an immunofluorescent cell-counting technique, recovery of the infectivity of L Sendai for L cells due to a direct enzymatic action of trypsin was demonstrated. Under the optimal condition, the infectivity increased 1,000-fold for L cells and 10-fold for chick embryos, and both the titers could favorably be compared. No increasing effect of trypsin was observed on the infectivity of egg Sendai. Density centrifugation studies revealed a difference between egg Sendai and L Sendai in the density. Trypsin treatment which induced the maximal enhancement of L Sendai infectivity did not affect both the densities, showing that variations of Sendai virus in the infectivity for L cells and in the density are independent types of host-controlled modification.  相似文献   

19.
《Biologicals》1999,27(1):1-10
Oral poliovaccines derived from the strains developed by Sabin have been the basis of vaccination against poliomyelitis in the U.K. since 1962. Contamination of earlier materials with the monkey virus SV40, particularly inactivated Salk type poliovaccines, is well documented. Precautions have been in place for more than 30 years to prevent SV40 contamination of oral poliovaccines based on screening of donor animals and tests for SV40 infectivity. PCR was applied to examine all archived samples of oral poliovaccines available to us dating from 1966 to the present, including all vaccines used in the U.K. since 1980, for the presence of SV40 sequences. Of 132 materials examined, 118 were negative on initial testing and fourteen gave reactions which on further examination were attributed either to cross contamination during handling in the laboratory at National Institute for Biological Standards and Control (NIBSC) or to non-specific amplification. It was concluded that none of the samples contained SV40 sequences. The materials included 69 separate monovalent bulks of poliovirus type 1, 2 or 3 grown on monkey kidney cells from four different manufacturers and 74 bulks grown on human diploid cells from two manufacturers.One additional seed material from 1962 contained low levels of unique and characteristic SV40 sequences. The seed had been treated by the manufacturer to inactivate DNA viruses and tests by the manufacturer and at NIBSC failed to demonstrate the presence of infectious SV40 virus. Monovalent bulks prepared by the manufacturer from this seed were negative for SV40 sequences by PCR.The PCR studies provide no evidence of contamination of oral poliovaccines used in the UK with infectious SV40 and suggest that the steps taken to ensure the absence of infectious SV40 are satisfactory.  相似文献   

20.
This study investigated the role of prion infection of the olfactory mucosa in the shedding of prion infectivity into nasal secretions. Prion infection with the HY strain of the transmissible mink encephalopathy (TME) agent resulted in a prominent infection of the olfactory bulb and the olfactory sensory epithelium including the olfactory receptor neurons (ORNs) and vomeronasal receptor neurons (VRNs), whose axons comprise the two olfactory cranial nerves. A distinct glycoform of the disease-specific isoform of the prion protein, PrPSc, was found in the olfactory mucosa compared to the olfactory bulb, but the total amount of HY TME infectivity in the nasal turbinates was within 100-fold of the titer in the olfactory bulb. PrPSc co-localized with olfactory marker protein in the soma and dendrites of ORNs and VRNs and also with adenylyl cyclase III, which is present in the sensory cilia of ORNs that project into the lumen of the nasal airway. Nasal lavages from HY TME-infected hamsters contained prion titers as high as 103.9 median lethal doses per ml, which would be up to 500-fold more infectious in undiluted nasal fluids. These findings were confirmed using the rapid PrPSc amplification QuIC assay, indicating that nasal swabs have the potential to be used for prion diagnostics. These studies demonstrate that prion infection in the olfactory epithelium is likely due to retrograde spread from the olfactory bulb along the olfactory and vomeronasal axons to the soma, dendrites, and cilia of these peripheral neurons. Since prions can replicate to high levels in neurons, we propose that ORNs can release prion infectivity into nasal fluids. The continual turnover and replacement of mature ORNs throughout the adult lifespan may also contribute to prion shedding from the nasal passage and could play a role in transmission of natural prion diseases in domestic and free-ranging ruminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号