首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SUMMARY

Considerable attention has been directed in the last decade to the use of wetlands for wastewater treatment. They are generally very effective in reducing (by up to 95%) the concentrations of nitrogen, pathogenic bacteria and heavy metals but their efficiencies in reducing phosphorus and organic matter vary widely. While most of the processes which result in removal of wastewater constituents are qualitatively understood, quantitative data are lacking. It is therefore impossible to predict the potential of any wetland for wastewater treatment or to manage wetlands for optimum treatment efficiency. Little is known of either short- or long-term effects of wastewater addition on wetland ecosystems.

In view of the substantial economic benefits of using wetlands for wastewater treatment, it is suggested that studies on wastewater treatment by both artificial and natural wetlands in South Africa are urgently required.  相似文献   

2.
SUMMARY

Concepts dealing with factors affecting the origin, transport and deposition of inorganic sediments as well as their role in the functioning of wetland systems are discussed. The lack of quantitative data, particularly for South African systems, is emphasised. Research priorities, which will lead to a better understanding of inorganic sediment: wetland interactions and allow for rational exploitation of wetlands, are proposed.  相似文献   

3.
SUMMARY

Emphasis is given to the importance of wetlands and the need for a rational and multi-use approach to their development. Their occurence in the landscape is explained and a brief account is given of characteristic soils and other related features.

Wetlands are widely distributed in certain landscapes and generally have high agricultural potential, especially for the production of cultivated pastures. A large proportion of the vleis in Natal have already been developed.

Important principles and procedures to be considered in planning wetland development are presented. The urgent need to develop a wetland strategy, initiate appropriate research, apply effective legislation and identify wetlands in need of total protection is stressed.  相似文献   

4.
SUMMARY

The three major wetland types have characteristic fish communities. River-associated wetlands harbour a rich diversity of fishes which can either survive habitat desiccation during the dry-down, or migrate to and fro with the flood. Endorheic wetlands have a lower diversity of species which are typically ‘r’-selected relative to mainstream riverine or lacustrine forms. Marine wetlands have a variety of peripheral or marine forms, but are not discussed in this account. The dynamics of wetland fish communities are determined by periodically changing abiotic factors, especially water temperature and water level, and biotic factors, especially food availability. Water level fluctuations have several important functions and result in pulses of nutrient input and fish abundance. Wetland fish stocks can usually be sustained as long as the pristine flood regime is retained, but disruption of the flooding pattern interferes with fish breeding and nutrient flow. Fishing yields may be directly correlated with the flood history during the previous two years. Wetland fishes play an important role by converting the resource at the base of the food chain, i.e. living plants, detritus or epiphytes, into food for higher trophic levels. The need to identify and conserve key food supplies is emphasized. Wetland fisheries are relatively poorly developed in southern Africa with notable exceptions, e.g. Pongolo floodplain, Okavango swamp, Lake Liambezi, Elephant Marsh on the Shire River, but even in these systems the resource is probably underutilized.

The need to consider the socio-economic implications of upgrading a subsistence fishery are emphasized, and further study on the effect of water level fluctuations on major trophic pathways and on multispecies fisheries is encouraged. Because of the urgent need to manage wetland fisheries, various short-cut methods to obtain first-order estimates of fish production, yields and growth rates should be used until more data are available. The need to manage a floodplain holistically for both the aquatic and terrestrial phases is stressed. In addition, inocula (re-colonizing life history stages) should be conserved to accelerate the recovery of endorheic wetland fish stocks after a drought. As wetlands are of fundamental importance to lake or river metabolism and provide vital breeding and feeding areas for fishes, they should be given the highest conservation priority. Cost-benefit analyses should therefore be performed before any large scale manipulations of wetlands are performed.  相似文献   

5.
6.
Summary

The hydrological and habitat value of wetlands is beginning to be recognised in South Africa, but only in parts of Natal Province has an effort been made to map wetlands and to record their status over large areas. While the most accurate method of mapping wetlands is a combination of photogrammetry and field surveys, this is time-consuming and expensive. An alternative “desktop” method was therefore used to draw up a preliminary distribution of wetlands in the south-western Cape Province, and this approach consisted of summarising the information contained on 1:50 000 topographical survey maps. The summary shows that shallow, vegetated wetlands (vleis) occur mainly in the wetter south and south-west of the region, while the non-perennial wetlands (pans) predominate inland, where the land is dryer and flatter. There are many estuarine wetlands along the coast, resulting from the tendency of river mouths to be blocked by sand-bars. Farming requirements and suitable topography account for the many small artificial wetlands (farm dams) in the central southern parts. Farm dams predominate in the region (15067 were counted), followed by pans (1741), riverine wetlands (261), vleis (216) and estuarine wetlands (15).  相似文献   

7.
湿地退化研究进展   总被引:28,自引:3,他引:25  
韩大勇  杨永兴  杨杨  李珂 《生态学报》2012,32(4):1293-1307
受经济发展、城市扩张、气候变化的影响,湿地退化已经成为全球性现象,是当前国际湿地科学前沿领域的热点。从湿地退化标准、退化特征、退化分级、退化过程、退化机理、退化监测体系、退化评价指标与指标体系、退化监测新技术及其生态恢复理论与技术9个方面系统地介绍了当前湿地退化研究进展。结果表明湿地退化过程、退化机理、退化评价指标体系和退化湿地监测、恢复与重建研究是当前研究的重点,在未来相当长的时间内,全球气候变化、湿地退化的微观过程与机理、湿地生态系统的可持续利用将会是重要的研究方向。最后就我国当前湿地退化研究存在的问题进行了分析,并提出近期湿地退化研究亟待开展的11项研究工作,供我国湿地退化研究工作者参考。  相似文献   

8.
【背景】城市湿地和天然湿地受到人为扰动影响的程度显著不同。【目的】研究2种不同类型湿地底泥微生物多样性及种类的差异。【方法】采集冬夏两季城市湿地(龙凤湿地)和天然湿地(珰奈湿地)的底泥样品,使用16S rRNA基因测序技术测定底泥中细菌和古菌群落结构,分析2种湿地底泥的细菌、古菌差异及环境因素与微生物的相关性。【结果】龙凤湿地底泥中的硫杆菌属(Thiobacillus)、芽孢杆菌属(Bacillus)和鞘氨醇单胞菌属(Sphingomonas)丰度显著高于珰奈湿地(P<0.05);Methanoregula在珰奈湿地底泥中的丰度高于龙凤湿地;冬季厌氧绳菌属(Anaerolinea)和甲烷八叠球菌属(Methanosarcina)在珰奈湿地底泥中的丰度显著高于龙凤湿地(P<0.05)。【结论】龙凤湿地与珰奈湿地的差异主要影响湿地底泥中参与元素循环的细菌和产甲烷古菌的丰度,人为干扰和低温会降低湿地中微生物的多样性,pH、盐分和碱性磷酸酶是显著影响微生物多样性的环境因素。  相似文献   

9.
SUMMARY

Various facets of public health involvement with wetlands in South Africa are considered. Emphasis is however given to the role of these systems in human disease transmission. With the possible exception of bilharzia, too little is known of the biology of either the pathogens or their intermediate vectors (if they have one) in the aquatic environment for transmission to be adequately understood and for the most cost-effective control strategies to be developed. Insufficient liaison between limnologists and the public health authorities is seen as contributing to this difficulty.  相似文献   

10.
SUMMARY

A conceptual approach to planning is outlined. It is a cyclical process in which we start with a goal, examine it and express it more clearly, assemble information, evaluate the information, work out alternative lines of action, choose the one most likely to lead to success and then try it out.

This approach is applied to wetlands. The importance of establishing a “unity of action” and a body to co-ordinate activities is stressed. Planning the conservation of estuaries in Natal is given as a practical example.

A number of research projects is given in relation to the planning process. A comprehensive and methodical means of determining research projects is advocated.

The paper concludes with a call for committment, else planning is an exercise in futility.  相似文献   

11.
A statewide condition assessment of North Dakota wetlands in the summer of 2011 was conducted as part of the U.S. Environmental Protection Agency's National Wetland Condition Assessment (NWCA). Two other wetland condition assessments, the Index of Plant Community Integrity (IPCI) and North Dakota Rapid Assessment Method (NDRAM), were also completed at each wetland. Previous studies have identified how the distinct signatures of stable isotopes can be used to determine different land uses, anthropogenic impacts, nutrient cycling, and biological processes. To evaluate if these relationships existed in northern prairie wetlands, the data collected from the wetland assessments were compared with the natural abundance of soil nitrogen (δ15N) isotopes. Wetland soil δ15N was significantly higher (isotopically heavier) in wetlands surrounded by cropland compared to those surrounded by idle or grazed/hayed grasslands, possibly reflecting anthropogenic impacts and multiple nitrogen sources. Soil δ15N was significantly correlated with floristic quality, IPCI scores, NDRAM scores, and average buffer width, indicating that soil δ15N values may be representative of wetland condition. Soil δ15N exhibited significant differences among wetland types, although limited sample sizes of certain wetland types may have affected this result. Additional studies on the natural abundance of wetland soil isotopes need to be performed in northern prairie wetlands. This study is the first step in exploring the potential applications of wetland soil nitrogen isotopes regarding wetland assessment and surrounding land use and provides important insight for future studies.  相似文献   

12.
《Ecological Engineering》1999,12(1-2):133-147
Despite the critical role of water movement in the nutrient dynamics of wetlands, few wetland studies of nutrient imports, exports and cycling have been based on comprehensive water balance studies. In particular, many investigations have underestimated the importance and role of groundwater movement. Nutrient loads entering and leaving a 2 ha reed swamp in the Kiewa Valley, North-east Victoria showed the swamp to be a nutrient source within the landscape under both base flow and storm flow conditions. During a dry period between February 1994 and January 1995 the wetland itself exported 230 kg of Total Nitrogen (115 kg ha−1 yr−1) and 24 kg of Total Phosphorus (12 kg−1 ha−1 yr−1). Investigations confirmed that the wetland was a significant discharge area, and that groundwater accounted for 97% of the surface water and 50% of the Total Nitrogen and Total Phosphorus load leaving the system. A further 30% of Total Nitrogen and 26% of Total Phosphorus leaving the wetland was not attributable to rain/dust, surface water inputs or groundwater, and most likely resulted from the flushing of previously stored nitrogen and phosphorus. A fire which burnt most of the wetland area in September 1994 had little immediate impact on nutrient loads leaving the system. The study illustrates the complexity of assessing the nutrient dynamics and hydrology of natural wetlands, and raises questions with respect to the use of such systems for the interception of diffuse source nutrient loads within rural catchments.  相似文献   

13.
Accelerated sea-level rise is expected to cause the salinization of freshwater wetlands, but the responses to salinity of the availability of soil phosphorus (P) and of microbial genes involved in the cycling of P remain unexplored. We conducted a field experiment to investigate the effects of salinity on P cycling by soil microbial communities and their regulatory roles on P availability in coastal freshwater and brackish wetlands. Salinity was positively correlated with P availability, with higher concentrations of labile P but lower concentrations of moderately labile P in the brackish wetland. The diversity and richness of microbial communities involved in P cycling were higher in the brackish wetland than the freshwater wetland. Salinity substantially altered the composition of the P-cycling microbial community, in which those of the brackish wetland were separated from those of the freshwater wetland. Metagenomic sequence analysis indicated that functional genes involved in the solubilization of inorganic P and the subsequent transport and regulation of P were more abundant in coastal soils. The relative abundances of most of the target genes differed between the wetlands, with higher abundances of P-solubilization (gcd and ppa) and -mineralization (phoD, phy, and ugpQ) genes and lower abundances of P-transport genes (pstB, ugpA, ugpB, ugpE, and pit) in the brackish wetland. A significant positive correlation between the concentration of labile P and the abundances of the target genes suggested that salinity may, at least in part, improve P availability by regulating the P-cycling microbial community. Our results suggest that the P-cycling microbial community abundance and P availability respond positively to moderate increases in salinity by promoting the microbial solubilization and mineralization of soil P. Changes in microbial communities and microbially mediated P cycling may represent microbial strategies to adapt to moderate salinity levels, which in turn control soil function and nutrient balance.  相似文献   

14.
Coastal eutrophication by nutrient fluxes from agricultural land to marine recipients is presently combated by measures such as the implementation of watershed-scale wetland creation programs aimed at nitrogen removal. Such created agricultural wetlands - termed ‘nitrogen farming wetlands’ (NFWs) - receive nitrogen (N) loads predominantly as nitrate, facilitating N removal by denitrification. However, the conversion of agricultural soils into waterlogged wetland area is likely to increase climate gas emissions, particularly methane (CH4). There is thus a need to evaluate the benefits and risks of wetland creation at a large, watershed-scale.Here we investigate N retention and CH4 emission originating from watershed-scale wetland creation in South Sweden, the relation between both processes, and how CH4 emission depends on individual wetland parameters. We combine data from intensively studied reference wetlands with an extensive wetland survey to predict N retention and CH4 emission with simple models, to estimate the overall process rates (large-scale effects) as well as spatial variation among individual NFWs.We show that watershed-scale wetland creation serves targeted environmental objectives (N retention), and that CH4 emission is comparably low. Environmental benefit and risk of individual wetlands were not correlated, and may thus be managed independently. High cover of aquatic plants was the most important wetland property that suppressed CH4 net production, potentially facilitating N retention simultaneously. Further, differences between wetlands in water temperature and wetland age seemed to contribute to differences in CH4 net production. The nationally planned wetland creation (12,000 ha) could make a significant contribution to the targeted reduction of N fluxes (up to 27% of the Swedish environmental objective), at an environmental risk equaling 0.04% of the national anthropogenic climate gas emission.  相似文献   

15.
湿地氮素传输过程研究进展   总被引:32,自引:3,他引:29  
综述了湿地氮素传输过程的研究进展。湿地氮素传输过程包括物理过程、化学过程和生物过程 ,与土壤、植物的发生、发育紧密联系在一起 ,并形成了空气 -水 -土 -生命系统中物质循环和能量流动的复杂网络。湿地硝态氮的淋失直接威胁着湿地地下水水质安全 ,N2 O源汇转变受土壤和水体等环境因子的制约 ,氨挥发则与水体 p H值密切相关排放。湿地氮素的化学转化过程是矿质养分供给和 N2 O产生的主要机制 ,受环境因子和人类活动干扰的影响 ;动力学模型可用于描述氮素的化学转化过程。湿地植物的吸收和累积以及微生物的分解过程是湿地氮素循环的重要环节。最后分析了当前国内外研究中存在的不足 ,并对未来研究的重点领域进行了展望  相似文献   

16.

Background

Wetlands store a substantial amount of carbon (C) in deep soil organic matter deposits, and play an important role in global fluxes of carbon dioxide and methane. Fine roots (i.e., ephemeral roots that are active in water and nutrient uptake) are recognized as important components of biogeochemical cycles in nutrient-limited wetland ecosystems. However, quantification of fine-root dynamics in wetlands has generally been limited to destructive approaches, possibly because of methodological difficulties associated with the unique environmental, soil, and plant community characteristics of these systems. Non-destructive minirhizotron technology has rarely been used in wetland ecosystems.

Scope

Our goal was to develop a consensus on, and a methodological framework for, the appropriate installation and use of minirhizotron technology in wetland ecosystems. Here, we discuss a number of potential solutions for the challenges associated with the deployment of minirhizotron technology in wetlands, including minirhizotron installation and anchorage, capture and analysis of minirhizotron images, and upscaling of minirhizotron data for analysis of biogeochemical pools and parameterization of land surface models.

Conclusions

The appropriate use of minirhizotron technology to examine relatively understudied fine-root dynamics in wetlands will advance our knowledge of ecosystem C and nutrient cycling in these globally important ecosystems.  相似文献   

17.
18.
Papyrus wetlands around Lake Victoria, East Africa play an important role in the nutrient flows from the catchment to the lake. A dynamic model for nitrogen cycling was constructed to understand the processes contributing to nitrogen retention in the wetland and to evaluate the effects of papyrus harvesting on the nitrogen absorption capacity of the wetlands. The model had four layers: papyrus mat, water, sludge and sediment. Papyrus growth was modelled as the difference between nitrogen uptake and loss. Nitrogen uptake was modelled with a logistic equation combined with a Monod-type nitrogen limitation. Nitrogen compartments were papyrus plants, organic material in the floating mat; and total ammonia, nitrate and organic nitrogen in the water, sludge and sediment. Apart from the uptake and decay rates of the papyrus, the model included sloughing and settling of mat material into the water, mineralization of organic matter, and nitrification and diffusion of dissolved inorganic nitrogen. Literature data and field measurements were used for parameterization. The model was calibrated with data from Kirinya wetland in Jinja, Uganda which receives effluent from a municipal wastewater treatment plant. The model simulated realistic concentrations of dissolved nitrogen with a stable biomass density of papyrus and predicted accumulation of organic sludge in the wetland. Assuming that this sludge is not washed out of the wetland, the overall nitrogen retention of the wetland over a three-year period was 21.5 g N m−2 year−1 or about 25% of input. Harvesting 10, 20 and 30% of the papyrus biomass per year increased nitrogen retention capacity of the wetland to 32.3, 36.8 and 38.1 g m−2 year−1, respectively. Although the nutrient flows estimated by the model are within the ranges found in other papyrus wetlands, the model could be improved with regard to the dynamics of detrital nitrogen. Actual net retention of nitrogen in the sludge is likely to be lower than 21.5 g N m−2 year−1 because of flushing out of the sludge to the lake during the rainy season.  相似文献   

19.
The aquatic macrophytic vegetation constituting the wetlands situated along the coast of Lake Victoria provides valuable services to both local and regional communities as well as an important ecological function through the transition between terrestrial and aquatic ecosystems. The wetland vegetation is typically rooted in the substrate on the landward side of the lake, but forms a floating mat towards the middle of the wetland and at the wetland/lake interface. Cyperus papyrus and Miscanthidium violaceum vegetation typically dominate the permanently inundated wetland areas along most of the shores of Lake Victoria. Due to the prevailing climatic and hydrological catchment conditions, these macrophytic plants (papyrus in particular) tend to exhibit high net productivity and nutrient uptake which strongly influences both wetland status and lake water quality. In addition, these wetlands provide important economic livelihoods for the local populations. The integrity and physical structure of these wetlands strongly influences their associated mass transport mechanisms (water, nutrients and carbon) and ecosystem processes. Wetland degradation in Africa is an increasing problem, as these ecosystems are relied upon to attenuate industrial, urban and agricultural pollution and supply numerous services and resources. In an integrated project focused on the wetlands of Lake Victoria, the ecological and economic aspects of littoral wetlands were examined and new instruments developed for their sustainable management.  相似文献   

20.
滨海湿地受海、陆生态系统的交互影响,是典型的生态脆弱带和敏感区。互花米草是全球海岸带最为成功的外来入侵物种,对滨海湿地生态系统已经产生了重要的影响。本文对已有相关研究进行了系统梳理,揭示了互花米草入侵对滨海湿地生态系统生物地球化学循环(碳循环、氮循环、磷循环及土壤重金属迁移)和入侵地生物群落(微生物、植物和动物)的影响。并在此基础上对今后研究的重点提出了展望: 加强互花米草入侵对滨海湿地生态系统健康影响机制研究;重点关注全球变化背景下互花米草群落与湿地环境互馈耦合;开展长时序定位监测,厘清滨海湿地生态系统对互米草不同入侵阶段的响应差异,以期对互花米草的生态利用和治理提供指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号