首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The clearances of twelve amino acids from the ventricles during ventriculocisternal perfusion in the rabbit have been measured; uptake by the brain was also measured and this permitted the separate computation of loss to brain and loss to blood during the perfusion. Clearance under carrier-free conditions was greater than when a concentration of 5mM unlabeled amino acid was present in the perfusion fluid. Brain uptake was also usually reduced by the presence of unlabeled amino acid due presumably to suppression of accumulation by brain cells. Reduction of transport across the blood-brain barrier would tend to increase brain uptake, and there was some evidence for a balance between the two opposing tendencies. Inhibition of clearance of a given labeled amino acid could be brought about by unlabeled amino acids of different molecular species. In general, the amino acids fell into three categories: neutral, acidic, and basic, and there was some overlap between them; of the neutral amino acids the A- and L-classification of Christensen was valid, although once again there was some overlap. If, during ventriculo-cisternal perfusion of a labeled amino acid, the activity of this labeled amino acid in the blood was raised well above that in the inflowing perfusion fluid, the labeled amino acid continued to be cleared from the perfusion fluid, suggesting uphill transport. On this basis it was suggested that the normally low concentrations of amino acids in the cerebrospinal fluid (CSF), by comparison with those in plasma, were due to an active transport from the CSF to the blood. Substrate-facilitated transport, whereby the penetration of labeled amino acid into the perfusion fluid from blood could be accelerated by adding unlabeled amino acid to the perfusion fluid, or vice versa, was demonstrated.  相似文献   

2.
Abstract— The relationship between isotopic sodium entry into cerebrospinal fluid (CSF) from blood and cisternal potassium concentration was studied using ventriculo-cisternal perfusion in the rabbit. The entry of sodium into CSF was separated into 2 components. The fast component was significantly correlated with cisternal potassium concentration during perfusions with a potassium-free artificial CSF. ATPase activity in the homogenised choroid plexus was shown to be sensitive to potassium over a range of concentrations similar to that in the perfusion studies. The results are interpreted as showing a potassium-sensitive entry of 24Na across the choroid plexus due to a sodium-pump situated in the apical membrane of the choroid plexus. The effects of low concentrations of lithium (0.6–1.2 mm) on 24Na entry into CSF and brain and on CSF secretion were studied. When applied via the ventricles lithium caused a 30–39% stimulation of the fast component of sodium entry and a 28% stimulation of CSF secretion. When given via the blood lithium inhibited the fast component of sodium entry and CSF secretion by 43% and 40% respectively. No effects of lithium were found on the slow component of sodium entry into CSF or sodium entry into brain. The results suggest that lithium at low (0.6–1.2 mM) concentrations can stimulate the choroid plexus sodium-pump at the potassium-sensitive side and inhibit it at the sodium-sensitive side.  相似文献   

3.
Transport of GABA from the perfused ventricular system of the cat   总被引:2,自引:1,他引:1  
Abstract— The transport of GABA was studied in anaesthetized cats undergoing ventriculo-cisternal perfusion with radioactive GABA. Steady-state clearance of GABA from the CSF was greater than that of other amino acids previously studied, and was saturated at lower substrate concentrations, with an apparent Kt of 5·4 × 10-5 M, after correcting for non-saturable transport. GABA clearance was inhibited by the inclusion of taurine or β-alanine in the perfusion fluid, but not by a number of the common neutral and acidic amino acids. Study of punch biopsies of brain tissue taken adjacent to the venticular system, at the completion of perfusions, showed accumulation of radioactive GABA in the tissue to values four times higher than those found in the perfusion fluid. Of the radioactivity which had been removed from the ventricular system, only 11 per cent remained in the brain at the completion of the perfusion. Excised cat choroid plexus showed a saturable uptake of GABA which was inhibited by inclusion of taurine, β-alanine, or β-guanidino propionic acid in the incubation medium.  相似文献   

4.
Unidirectional flux of 125I-labeled DSIP at the blood-tissue interface of the blood-cerebrospinal fluid (CSF) barrier was studied in the perfused in situ choroid plexuses of the lateral ventricles of the sheep. Arterio-venous loss of 125I-radioactivity suggested a low-to-moderate permeability of the choroid epithelium to the intact peptide from the blood side. A saturable mechanism with Michaelis-Menten type kinetics with high affinity and very low capacity (approximate values: Kt = 5.0 +/- 0.4 nM; Vmax = 272 +/- 10 fmol.min-1) was demonstrated at the blood-tissue interface of the choroid plexus. The clearance of DSIP from the ventricles during ventriculo-cisternal perfusion in the rabbit indicated no significant flux of the intact peptide out of the CSF. The results suggest that DSIP crosses the blood-CSF barrier, while the system lacks the specific mechanisms for removal from the CSF found with most, if not all, amino acids and several peptides.  相似文献   

5.
1. The fetal brain develops within its own environment, which is protected from free exchange of most molecules among its extracellular fluid, blood plasma, and cerebrospinal fluid (CSF) by a set of mechanisms described collectively as brain barriers.2. There are high concentrations of proteins in fetal CSF, which are due not to immaturity of the blood–CSF barrier (tight junctions between the epithelial cells of the choroid plexus), but to a specialized transcellular mechanism that specifically transfers some proteins across choroid plexus epithelial cells in the immature brain.3. The proteins in CSF are excluded from the extracellular fluid of the immature brain by the presence of barriers at the CSF–brain interfaces on the inner and outer surfaces of the immature brain. These barriers are not present in the adult.4. Some plasma proteins are present within the cells of the developing brain. Their presence may be explained by a combination of specific uptake from the CSF and synthesis in situ. 5. Information about the composition of the CSF (electrolytes as well as proteins) in the developing brain is of importance for the culture conditions used for experiments with fetal brain tissue in vitro, as neurons in the developing brain are exposed to relatively high concentrations of proteins only when they have cell surface membrane contact with CSF.6. The developmental importance of high protein concentrations in CSF of the immature brain is not understood but may be involved in providing the physical force (colloid osmotic pressure) for expansion of the cerebral ventricles during brain development, as well as possibly having nutritive and specific cell development functions.  相似文献   

6.
An UPLC-MS/MS method was developed for the determination of serotonin (5-HT), dopamine (DA), their phase I metabolites 5-HIAA, DOPAC and HVA, and their sulfate and glucuronide conjugates in human brain microdialysis samples obtained from two patients with acute brain injuries, ventricular cerebrospinal fluid (CSF) samples obtained from four patients with obstructive hydrocephalus, and a lumbar CSF sample pooled mainly from patients undergoing spinal anesthesia in preparation for orthopedic surgery. The method was validated by determining the limits of detection and quantification, linearity, repeatability and specificity. The direct method enabled the analysis of the intact phase II metabolites of 5-HT and DA, without hydrolysis of the conjugates. The method also enabled the analysis of the regioisomers of the conjugates, and several intact glucuronide and sulfate conjugates were identified and quantified for the first time in the human brain microdialysis and CSF samples. We were able to show the presence of 5-HIAA sulfate, and that dopamine-3-O-sulfate predominates over dopamine-4-O-sulfate in the human brain. The quantitative results suggest that sulfonation is a more important phase II metabolism pathway than glucuronidation in the human brain.  相似文献   

7.
Extracellular solutes in the central nervous system are exchanged between the interstitial fluid, the perivascular compartment, and the cerebrospinal fluid (CSF). The “glymphatic” mechanism proposes that the astrocyte water channel aquaporin-4 (AQP4) is a major determinant of solute transport between the CSF and the interstitial space; however, this is controversial in part because of wide variance in experimental data on interstitial uptake of cisternally injected solutes. Here, we investigated the determinants of solute uptake in brain parenchyma following cisternal injection and reexamined the role of AQP4 using a novel constant-pressure method. In mice, increased cisternal injection rate, which modestly increased intracranial pressure, remarkably increased solute dispersion in the subarachnoid space and uptake in the cortical perivascular compartment. To investigate the role of AQP4 in the absence of confounding variations in pressure and CSF solute concentration over time and space, solutes were applied directly onto the brain surface after durotomy under constant external pressure. Pressure elevation increased solute penetration into the perivascular compartment but had little effect on parenchymal solute uptake. Solute penetration and uptake did not differ significantly between wild-type and AQP4 knockout mice. Our results offer an explanation for the variability in cisternal injection studies and indicate AQP4-independent solute transfer from the CSF to the interstitial space in mouse brain.  相似文献   

8.
Chemical distribution measurements of radioactive sodium-thiosulfate (35S) and of the brain water indicate that infusion of 2.4-dinitrophenol into a carotid artery of rats caused a water uptake and fluid shifts from the extra- into the intracellular compartments in the central nervous system. The extracellular marker compound was administered to the brain via ventriculo-cisternal perfusion and intravenous injection yielding almost equal concentrations in plasma-water and perfusate. In order to prevent an active efflux of the label from the tissue, high concentrations were utilized in the perfusate to saturate potential outward transport mechanisms. The indicator space (based on total brain water) was 16% in controls and 12% in experimental animals when marker equilibrium had been attained, which is equivalent in reduction of the extracellular space of about 1/4. Intracellular water and Na+ rose after DNP, while K+ remained all but unchanged. The fluid shift into the intracellular compartment was found to relate closely with a cellular uptake of Na+. The Na+ concentration both in plasma and in the perfusion fluid leaving the ventricular system was consistently reduced in experimental animals. The K+ concentration was significantly elevated in the plasma of experimental animals but virtually unchanged in the cisternal effluate.  相似文献   

9.
The transport of 125I-labeled thyroxine (T4) from the cerebrospinal fluid (CSF) into brain and choroid plexus (CP) was measured in anesthetized rabbit [0.5 mg/kg medetomidine (Domitor) and 10 mg/kg pentobarbitonal sodium (Sagatal) iv] using the ventriculocisternal (V-C) perfusion technique. 125I-labeled T4 contained in artificial CSF was continually perfused into the lateral ventricles for up to 4 h and recovered from the cisterna magna. The %recovery of 125I-labeled T4 from the aCSF was 47.2+/-5.6% (n=10), indicating removal of 125I-labeled T4 from the CSF. The recovery increased to 53.2+/-6.3% (n=4) and 57.8+/-14.8% (n=3), in the presence of 100 and 200 microM unlabeled-T4, respectively (P<0.05), indicating a saturable component to T4 removal from CSF. There was a large accumulation of 125I-labeled T4 in the CP, and this was reduced by 80% in the presence of 200 microM unlabeled T4, showing saturation. In the presence of the thyroid-binding protein transthyretin (TTR), more 125I-labeled T4 was recovered from CSF, indicating that the binding protein acted to retain T4 in CSF. However, 125I-labeled T4 uptake into the ependymal region (ER) of the frontal cortex also increased by 13 times compared with control conditions. Elevation was also seen in the hippocampus (HC) and brain stem. Uptake was significantly inhibited by the presence of endocytosis inhibitors nocodazole and monensin by >50%. These data suggest that the distribution of T4 from CSF into brain and CP is carrier mediated, TTR dependent, and via RME. These results support a role for TTR in the distribution of T4 from CSF into brain sites around the ventricular system, indicating those areas involved in neurogenesis (ER and HC).  相似文献   

10.
Chemical distribution measurements of radioactive sodium-thiosulfate (35S) and of the brain water indicate that infusion of 2.4-dinitrophenol into a carotid artery of rats caused a water uptake and fluid shifts from the extra- into the intracellular compartments in the central nervous system. The extracellular marker compound was administered to the brain via ventriculo-cisternal perfusion and intravenous injection yielding almost equal concentrations in plasma- water and perfusate. In order to prevent an active efflux of the label from the tissue, high concentrations were utilized in the perfusate to saturate potential outward transport mechanisms. The indicator space (based on total brain water) was 16% in controls and 12% in experimental animals when marker equilibrium had been attained, which is equivalent in reduction of the extracellular space of about 1/4. Intracellular water and Na+ rose after DNP, while K+ remained all but unchanged. The fluid shift into the intracellular compartment was found to relate closely with a cellular uptake of Na+. The Na+ concentration both in plasma and in the perfusion fluid leaving the ventricular system was consistently reduced in experimental animals. The K+ concentration was significantly elevated in the plasma of experimental animals but virtually unchanged in the cisternal effluate.  相似文献   

11.
Brain ribosomes in intracranial hypertension   总被引:3,自引:3,他引:0  
Abstract— Increased intracranial pressure was produced by perfusion of cerebrospinal fluid (CSF) at various pressures into the lateral ventricles of adult Sprague-Dawley rats with bilateral chronic intraventricular cannulas. When CSF perfusion was carried out at pressures of 150, 300 or 600 mm of water, brain polysomal profiles were similar to controls. Rats perfused under a pressure of 1500 mm water for 30 min were comatose, had slow electroencephalograms and showed a fall in brain polysomes from 66 to 24 per cent of the total ribosomes (P < 0.01) while ribosomal monomers and dimers increased. These monomers and dimers were completely and reversibly dissociated into subunits in 500 niM KC1 buffers, unless prefixed in formaldehyde. [3H]leucine incorporation into brain ribosomes in vivo was decreased by severe intracranial hypertension. In cell-free systems in vitro, pathological ribosomes were less active in protein synthesis than controls (P < 0.01) but were at least as readily stimulated by poly U. After intracranial pressure was returned to normal, there was a progressive reassociation of ribosomes into polysomes, even in the presence of Actinomycin D. These findings suggest that during severe intracranial hypertension cerebral protein synthesis is inhibited, perhaps through reversible inactivation of the translation of messenger RNA.  相似文献   

12.
Abstract: Transport and permeability properties of the blood-brain and blood-CSF barriers were determined by kinetic analysis of radioisotope uptake from the plasma into the CNS of the adult rat. Cerebral cortex and cerebellum uptake curves for 36Cl and 22Na were resolved into two components. The fast component (t½ 0.02–0.05 h, fractional volume 0.04–0.08) is comprised of the vascular compartment and a small perivascular space whereas the slow component (t½ 1.06–1.69 h, fractional volume 0.92–0.96) represents isotope movement across the blood-brain barrier into the brain extracellular and cellular compartments. Uptake curves of both 36Cl and 22Na into the CSF were also resolved into two components, a fast component (t½ 0.18 h, fractional volume 0.24) and a slow component (t½ 1.2 h, fractional volume 0.76). Evidence suggests that the fast component represents isotope movement across the blood-CSF barrier, i.e., the choroid plexuses, whereas the CSF slow component probably reflects isotope penetration primarily from the brain extracellular fluid into the CSF. The extracellular fluid volume of the cerebral cortex and cerebellum was estimated as ?13% from the initial slope of the curve of brain space versus CSF space curve for both 36Cl and 22Na. Like the choroid plexuses, the glial cell compartment of the brain appears to accumulate Cl from 2 to 6 times that predicted for passive distribution. The relative permeability of the blood-CSF and blood-brain barriers to 36Cl, 22Na, and [3H]mannitol was determined by calculating permeability surface-area products (PA). Analysis of the PA values for all three isotopes indicates that the effective permeability of the choroidal epithelium (blood/CSF barrier) is significantly greater than that of the capillary endothelium in the cerebral cortex and cerebellum (blood-brain barrier).  相似文献   

13.
Summary Protein uptake from cerebral ventricles into the epithelium of the choroid plexus, and transport across the epithelium were studied ultrastructurally in rats. Horseradish peroxidase (HRP, MW 40,000) was used as protein tracer. Steady-state ventriculo-cisternal perfusion with subatmospheric pressure (-10cm of water) in the ventricular system was applied. HRP dissolved in artificial CSF was perfused from the lateral ventricles to cisterna magna for various times, and ventriculo-cisternal perfusion, vascular perfusion or immersion fixation with a formaldehyde-glutaraldehyde solution was performed.Coated micropinocytic vesicles containing HRP were seen both connected with the apical, lateral and basal epithelial surface and within the cells. Heavily HRP-labeled vesicles were often fused with the lining membrane of slightly labeled or unlabeled intercellular spaces. Since the apical tight junctions of the epithelium never appeared open or never contained HRP in the spaces between the fusion points, and since the intercellular spaces between adjacent epithelial cells below the junctions only infrequently contained tracer after 5 min, by increasing amounts after 15–60 min of HRP perfusion, a vesicular transport of HRP from the apical epithelial surface to the intercellular spaces, bypassing the tight junctions, is suggested.In addition to the transepithelial transport, micropinocytic vesicles also transported HRP to the lysosomal apparatus of the epithelial cells. With increasing length of exposure to HRP, a sequence of HRP-labeled structures could be evaluated, from slightly labeled apical vacuoles and multivesicular bodies to very heavily labeled dense bodies.  相似文献   

14.
Infusion of 125I-(Tyr A14)-insulin at tracer doses into the cerebrospinal fluid (CSF) resulted in a slow rate of increase in the CSF-labeled insulin during the first 2 hours with a plateau thereafter. Labeled insulin was cleared from the CSF at a higher rate than 3H-inulin, a marker of CSF bulk flow. The labeled insulin was mainly distributed in all the ventricular and periventricular brain regions. Small amounts of degraded insulin appeared in the CSF. Coinfusion with an excess of unlabeled insulin impaired the clearance and degradation of labeled insulin. It also inhibited the labeling in medial hypothalamus, olfactory bulbs and brain stem. In contrast, coinfusion of ribonuclease B (used to test the specificity of uptake) was without any effect. It was concluded that there is an active insulin intake from CSF into brain specific compartments that is presumably essential for the effects of insulin on brain function.  相似文献   

15.
Formation of amyloid plaques is the hallmark of Alzheimer’s disease. Our early studies show that lead (Pb) exposure in PDAPP transgenic mice increases β-amyloid (Aβ) levels in the cerebrospinal fluid (CSF) and hippocampus, leading to the formation of amyloid plaques in mouse brain. Aβ in the CSF is regulated by the blood-CSF barrier (BCB) in the choroid plexus. However, the questions as to whether and how Pb exposure affected the influx and efflux of Aβ in BCB remained unknown. This study was conducted to investigate whether Pb exposure altered the Aβ efflux in the choroid plexus from the CSF to blood, and how Pb may affect the expression and subcellular translocation of two major Aβ transporters, i.e., the receptor for advanced glycation end-products (RAGE) and the low density lipoprotein receptor protein-1 (LRP1) in the choroid plexus. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aβ40 (2.5 μg/mL) was infused to rat brain via a cannulated internal carotid artery. Subchronic Pb exposure at both dose levels significantly increased Aβ levels in the CSF and choroid plexus (p < 0.05) by ELISA. Confocal data showed that 4-wk Pb exposures prompted subcellular translocation of RAGE from the choroidal cytoplasm toward apical microvilli. Furthermore, it increased the RAGE expression in the choroid plexus by 34.1 % and 25.1 % over the controls (p < 0.05) in the low- and high- dose groups, respectfully. Subchronic Pb exposure did not significantly affect the expression of LRP1; yet the high-dose group showed LRP1 concentrated along the basal lamina. The data from the ventriculo-cisternal perfusion revealed a significantly decreased efflux of Aβ40 from the CSF to blood via the blood-CSF barrier. Incubation of freshly dissected plexus tissues with Pb in artificial CSF supported a Pb effect on increased RAGE expression. Taken together, these data suggest that Pb accumulation in the choroid plexus after subchronic exposure reduces the clearance of Aβ from the CSF to blood by the choroid plexus, which, in turn, leads to an increase of Aβ in the CSF. Interaction of Pb with RAGE and LRP1 in choroidal epithelial cells may contribute to the altered Aβ transport by the blood-CSF barrier in brain ventricles.  相似文献   

16.
Hydroxyurea is used in the treatment of HIV infection in combination with nucleoside analogues, 2'3'-didehydro-3'deoxythymidine (D4T), 2'3'-dideoxyinosine or abacavir. It is distributed into human CSF and is transported from the CSF to sub-ependymal brain sites, but its movement into the brain directly from the blood has not been studied. This study addressed this by a brain perfusion technique in anaesthetized guinea-pigs. The carotid arteries were perfused with an artificial plasma containing [14C]hydroxyurea (1.6 microm) and a vascular marker, [3H]mannitol (4.6 nm). Brain uptake of [14C]hydroxyurea (8.0 +/- 0.9%) was greater than [3H]mannitol (2.4 +/- 0.2%; 20-min perfusion, n = 8). CSF uptake of [14C]hydroxyurea (5.6 +/- 1.5%) was also greater than [3H]mannitol (0.9 +/- 0.3%; n = 4). Brain uptake of [14C]hydroxyurea was increased by 200 microm hydroxyurea, 90 microm D4T, 350 microm probenecid, 25 microm digoxin, but not by 120 microm hydroxyurea, 16.5-50 microm D4T, 90 microm 2'3'-dideoxyinosine or 90 microm abacavir. [14C]Hydroxyurea distribution to the CSF, choroid plexus and pituitary gland remained unaffected by all these drugs. The metabolic half-life of hydroxyurea was > 15 h in brain and plasma. Results indicate that intact hydroxyurea can cross the brain barriers, but is removed from the brain by probenecid- and digoxin-sensitive transport mechanisms at the blood-brain barrier, which are also affected by D4T. These sensitivities implicate an organic anion transporter (probably organic anion transporting polypeptide 2) and possibly p-glycoprotein in the brain distribution of hydroxyurea and D4T.  相似文献   

17.
It is unknown which factors determine the changes in cerebrospinal fluid (CSF) pressure inside the craniospinal system during the changes of the body position. To test this, we have developed a new model of the CSF system, which by its biophysical characteristics and dimensions imitates the CSF system in cats. The results obtained on a model were compared to those in animals observed during changes of body position. A new model was constructed from two parts with different physical characteristics. The "cranial" part is developed from a plastic tube with unchangeable volume, while the "spinal" part is made of a rubber baloon, with modulus of elasticity similar to that of animal spinal dura. In upright position, in the "cranial" part of the model the negative pressure appears without any measurable changes in the fluid volume, while in "spinal" part the fluid pressure is positive. All of the observed changes are in accordance to the law of the fluid mechanics. Alterations of the CSF pressure in cats during the changes of the body position are not significantly different compared to those observed on our new model. This suggests that the CSF pressure changes are related to the fluid mechanics, and do not depend on CSF secretion and circulation. It seems that in all body positions the cranial volume of blood and CSF remains constant, which enables a good blood brain perfusion.  相似文献   

18.
We studied possible mechanisms of magnesium sulfate (MgSO4)-induced diarrhea. In vivo perfusion of hamster small intestine with an isotonic electrolyte solution containing 50 mM MgSO4 produced nearly three times as much fluid secretion as did a solution containing an equiosmotic amount of mannitol. We found that magnesium was absorbed at a faster rate than mannitol under these conditions, suggesting that differences in solute permeability do not explain the differences in secretory rates. Magnesium ion rather than sulfate appeared largely responsible for the effect as replacement of sulfate with chloride did not diminish the response. MgSO4 perfusion of a proximal intestinal segment did not affect water transport in an isolated distal segment suggesting that release of cholecystokinin or alterations in serum levels of other hormones were not responsible. Intestinal permeability, morphology, and cyclic nucleotide levels were normal after MgSO4 perfusion. Thus, MgSO4-induced diarrhea cannot be explained by the usual mechanisms, and additional processes responsible for intestinal secretion must exist.  相似文献   

19.
Stahle L  Borg N 《Life sciences》2000,66(19):1805-1816
Extracellular unbound concentrations of alovudine were sampled by microdialysis in order to study the transport of alovudine between the blood and the brain and the cerebrospinal fluid (CSF) in the rat. The AUC (area under the curve) ratio CSF/blood was higher than the brain/blood ratio after i.v. infusion of alovudine 25mg/kg/hr after a loading dose of 25 mg/kg in 5 minutes (n=4). Neither i.v. infusion of thymidine (25 mg/kg/hr, n=5; 100 mg/kg/hr, n=2) nor acetazolamide (50 mg/kg i.p. bolus followed by 25 mg/kg i.p. every second hour, n=3) influenced the brain/blood AUC ratio after alovudine 25 mg/kg s.c. injection compared to controls (n=5). Finally, perfusion through the microdialysis probe with thymidine (1000 microM, n=3) had also no effect on the brain/blood AUC ratio after alovudine 25 mg/kg s.c. Because neither thymidine nor acetazolamide has significant influence on the ability of alovudine to penetrate the blood-brain barrier in the rat, neither thymidine transport nor carboanhydrase dependent CSF production appear to be major determinants of the blood-brain concentration gradient. Thus, it is concluded that alovudine reaches the extracellular fluid of the brain not by cerebrospinal fluid, but via the cerebral capillaries and that the existence of a concentration gradient over both blood-brain and CSF-brain barrier can probably be explained by the presence of an active process pumping alovudine out from the brain.  相似文献   

20.
Iron transport into the CNS is still not completely understood. Using a brain perfusion technique in rats, we have shown a significant brain capillary uptake of circulating transferrin (Tf)-bound and free 59Fe (1 nm) at rates of 136 +/- 26 and 182 +/- 23 microL/g/min, respectively, while their respective transport rates into brain parenchyma were 1.68 +/- 0.56 and 1.52 +/- 0.48 microL/g/min. Regional Tf receptor density (Bmax) in brain endothelium determined with 125I-holo-Tf correlated well with 59Fe-Tf regional brain uptake rates reflecting significant vascular association of iron. Tf-bound and free circulating 59Fe were sequestered by the choroid plexus and transported into the CSF at low rates of 0.17 +/- 0.01 and 0.09 +/- 0.02 microL/min/g, respectively, consistent with a 10-fold brain-CSF concentration gradient for 59Fe, Tf-bound or free. We conclude that transport of circulating Tf-bound and free iron could be equally important for its delivery to the CNS. Moreover, data suggest that entry of Tf-bound and free iron into the CNS is determined by (i) its initial sequestration by brain capillaries and choroid plexus, and (ii) subsequent controlled and slow release from vascular structures into brain interstitial fluid and CSF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号