首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tyrosine hydroxylase and tryptophan hydroxylase are widely held to be rate-limiting for the synthesis of the catecholamines and serotonin, respectively. Both enzymes are oxygen-requiring and kinetic properties suggest that oxygen availability may limit synthesis of these neurotransmitters in the brain. Using pheochromocytoma cells as a cell culture model for catecholamine synthesis, and neuroblastoma cells as a model for serotonin synthesis, enzyme activity was measured under control and hypoxic conditions. Both tyrosine hydroxylase and tryptophan hydroxylase activity increased substantially with chronic exposure but not with acute exposure. In the case of tyrosine hydroxylase, increased enzyme content with hypoxia accounts for increased activity. This suggests a mechanism for the maintenance of neurotransmitter synthesis with chronic hypoxia. Measurement of intracellular metabolites revealed no change in dopamine or norepinephrine in hypoxic pheochromocytoma cells, consistent with a simple adaptive mechanism. However, in neuroblastoma cells, hypoxia was associated with an increase in serotonin concentration. The reasons for this are still unclear.  相似文献   

2.
The effect of clozapine on the intracellular concentration of calcium ([Ca2+](i)) in rat submandibular acinar cells was tested. By itself clozapine had no effect on the mobilization of intracellular pools of calcium or on the uptake of extracellular calcium. It inhibited the increase of the [Ca2+](i) in response to carbachol (half-maximal inhibitory concentrations, IC(50)=100nM) and to norepinephrine and epinephrine (IC(50)=10nM) without affecting the response to substance P, extracellular ATP or thapsigargin. Clozapine inhibited the uptake of extracellular calcium in response to epinephrine but not to substance P, ATP or thapsigargin. It also decreased the production of inositol phosphates elicited by epinephrine but not by substance P or fluoride. It is concluded that, by itself, clozapine has no effect on the [Ca2+](i) in rat salivary acinar cells. It selectively inhibits muscarinic and adrenergic receptors in the acinar plasma membrane.  相似文献   

3.
The kinetic parameters of monoamine oxidase (MAO; E.C 1.4.3.4) and catechol-O-methyltransferase (COMT; EC 2.1.1.6) were evaluated in extracts of adrenergic and non-adrenergic mouse neuroblastoma cells and in rat glioma cells. Using the naturally-occurring substrates tyramine, tryptamine, serotonin and norepinephrine, the affinity of MAO for a given substrate was independent of the presence of the catecholaminergic pathway or cell type used, with apparent Km values ranging from 8-14 microM for tryptamine to 510-580 microM for norepinephrine. The MAO activity in glioma cells was substantially greater than in either neuroblastoma clone, but Vmax values varied little with substrate among cell lines. Both the neuronal and glial COMT had a similar Km for 1-norepinephrine (200 microM); the corresponding Vmax values were also similar among the different cell lines, but represented only 2-10% of the maximal MAO activity. Neuroblastoma and glioma cells, when grown from early logarithmic to stationary phase, showed no significant changes in specific activity of either MAO or COMT. Growth of cells for 3 days with 1 mM-N6,O2'-dibutyryl adenosine-3',5'-cyclic monophosphate resulted in no marked change in either MAO or COMT activity. These results suggest that in neurons neither MAO nor COMT plays a major role in the type of transmitter inactivation that is analogous to that of acetylcholinesterase in cholinergic synapses. The occurrence of considerable MAO and acetylcholinesterase activities in glioma cells may indicate a role for these cells in neurotransmitter inactivation.  相似文献   

4.
Murine neuroblastoma cells in culture are able to synthesize the putative neurotransmitters--acetylcholine, dopamine, norepinephrine, tyramine, octopamine, histamine, serotonin and γ-aminobutyric acid (GABA). They possess not only synthetic, but also degradative enzymes involved in metabolism of these transmitters, and many of these enzymes increase in activity as the cells “differentiate”. Catecholamines, and perhaps other transmitters, appears to be stored within membrane-limited vesicles which accumulate within the process endings of these cells. Uptake of some transmitters, GABA, glycine, dopamine and norepinephrine, shows characteristics of the high affinity transport systems observed in other neuronal populations; uptake of choline and other amino acids is similar to that in non-neuronal populations. Cells show receptor sensitivities to acetyl-choline, dopamine, norepinephrine, prostaglandins E1 and morphine, as demonstrated by electrophysiologic, toxin binding and cyclic nucleotide studies.  相似文献   

5.
When chick pineal glands were explanted into organ culture at midlight phase of a diurnal cycle of illumination and incubated in the dark, they developed marked increases in serotonin acetyltransferase (acetyl coA:arylamine N-acetyltransferase; EC 2.3.1.5) activity. Either this increase in activity was inhibited or its onset was retarded in glands incubated under constant illumination. Supplements of theophylline, isobutylmethylxanthine, quinidine, and compound Ro 20-1724 (4-(3-butoxyl-4-methoxybenzyl)-2-imidazolidinone) elicited very marked increases in serotonin acetyltransferase activity in glands cultured in the dark. Levels of activity attained after 6 h in culture approached or exceeded the maximum levels attained at middark phase of the diurnal cycle in vivo. Effects of theophylline and compound Ro 20-1724 were additive. Supplements of dibutryl cAMP had little or no effect upon levels of serotonin acetyltransferase activity when tested alone or in combination with theophylline but further enhanced the increase in the level of enzyme activity elicited by Ro 20-1724. Adenosine and cAMP had little or no effect upon levels of serotonin acetyltransferase activity. It is concluded that levels of serotonin acetyltransferase activity in the chick pineal gland are regulated by a repressive, negative-control mechanism, which probably involves a membranous adenosine receptor.  相似文献   

6.
Serotonin, a putative neurotransmitter in insects, was found to cause consistent phase shifts of the circadian rhythm of locomotor activity of the cockroach Leucophaea maderae when administered during the early subjective night as a series of 4-microliters pulses (one every 15 min) for either 3 or 6 hr. Six-hour treatments with dopamine also caused significant phase shifts during the early subjective night, but 3-hr treatments with dopamine had no phase-shifting effect. Other substances tested in early subjective night (norepinephrine, octopamine, gamma-aminobutyric acid, glutamate, carbachol, histamine, tryptophan, tryptamine, N-acetyl serotonin, or 5-hydroxyindole-3-acetic acid) did not consistently cause phase shifts. The phase-shifting effect of serotonin was found to be phase-dependent. The phase response curve (PRC) for serotonin treatments was different from the PRC for light. Like light, serotonin caused phase delays in the late subjective day and early subjective night, but serotonin did not phase-shift rhythms when tested at phases where light causes phase advances.  相似文献   

7.
Before this study, the human norepinephrine transporter (hNET) was the only member of the biogenic amine neurotransmitter transporter family that had not been demonstrated to be a functional homo-oligomer. Here, using two forms of the transporter, I155C and hNET-myc, with distinct antigenicity and inhibitor sensitivity, we demonstrated that hNET exists as a homo-oligomer. hNET I155C is a functional mutant and is sensitive to inactivation by the sulfhydryl reagent [2-(trimethylammonium)ethyl]methanethiosulfonate, while hNET-myc is resistant to inactivation by this reagent. Coimmunoprecipitation of these two forms demonstrated that a physical interaction exists between norepinephrine transporter monomers. Further characterization of this physical interaction has revealed that the activity of norepinephrine transporters depends on interactions between monomers. Because norepinephrine transporters and serotonin transporters are the only two members of the neurotransmitter transporter family endogenously expressed in the cell membrane of the same cells, placental syncytiotrophoblasts, we tested the ability of norepinephrine transporters and serotonin transporters to associate and function in a hetero-oligomeric form. Similarly, coexpression of hNET-myc with serotonin transporter-FLAG showed a physical interaction in coimmunoprecipitation assays. However, coexpression of serotonin and norepinephrine transporters did not sensitize norepinephrine transporter activity to inhibition by citalopram, a selective serotonin transport inhibitor. Thus, the norepinephrine transporter-serotonin transporter physical association did not produce functional consequences. Based on this, we propose that the transporters for biogenic amine neurotransmitters interact functionally in homo- but not hetero-oligomeric forms.  相似文献   

8.
Dopamine inhibits and serotonin stimulates adenylate cyclase activity in a neuroblastoma X Chinese hamster brain explant cell line (NCB-20). The inhibition of cyclic AMP accumulation by dopamine was blocked by pretreatment of the cells with pertussis toxin. Carbachol and bradykinin stimulated the accumulation of water-soluble inositol phosphates whereas thyrotropin-releasing hormone, vasopressin, neurotensin, and phenylephrine were without effect. Dopamine and serotonin had no significant effect on carbachol-induced phosphoinositide hydrolysis or the levels of the parent lipids within the membrane. Forskolin induced a much larger stimulation of cyclic AMP than did serotonin, and caused an increase in the levels of phosphatidylinositol-4-phosphate and phosphatidyl inositol-4,5-bisphosphate in the cell membrane.  相似文献   

9.
Abstract: Transmitter release was elicited in two ways from cultured cells filled with acetylcholine: (a) in a biochemical assay by successive addition of a calcium ionophore and calcium and (b) electrophysiologically, by electrical stimulation of individual cells and real-time recording with an embryonic Xenopus myocyte. Glioma C6-Bu-1 cells were found to be competent for Ca2+-dependent and quantal release. In contrast, no release could be elicited from mouse neuroblastoma N18TG-2 cells. However, acetylcholine release could be restored when N18TG-2 cells were transfected with a plasmid coding for mediatophore. Mediatophore is a protein of nerve terminal membranes purified from the Torpedo electric organ on the basis of its acetylcholine-releasing capacity. The transfected N18TG-2 cells expressed Torpedo mediatophore in their plasma membrane. In response to an electrical stimulus, they generated in the myocyte evoked currents that were curare sensitive and calcium dependent and displayed discrete amplitude levels, like in naturally occurring synapses.  相似文献   

10.
Biogenic amines in cultured neuroblastoma and astrocytoma cells   总被引:2,自引:0,他引:2       下载免费PDF全文
The presence of biogenic amines in cultured cells of mouse neuroblastoma C-1300 (clone NB-2a) was suggested by fluorescence-microscope histochemistry. Incubation in media containing L-[14C]tyrosine and L-[14C]tryptophan for 24 h, followed by high-voltage electrophoresis, radiochromatogram scanning, and scintillation counting, confirmed the presence of [14C]dopamine, [14C]norepinephrine, [14C]epinephrine, [14C]serotonin, [14C]tyramine, and [14C]octopamine. Dopamine, norepinephrine, epinephrine, and serotonin were demonstrated spectrophotofluorometrically in concentrations, expressed as micrograms amine per milligram protein, of 1.19, 0.027, 0.038, and 0.148, respectively, for cells in a stationary growth phase. Fluorescence-microscope histochemistry also suggested the presence of biogenic amines in cultured astrocytoma cells (cell line C6). Spectrophotofluorometric assay of cells in a stationary growth phase demonstrated intracellular dopamine, norepinephrine, epinephrine, and serotonin in concentrations significantly lower than those of neuroblastoma cells.  相似文献   

11.
Summary Cultured epithelial cells (Intestine 407) derived from fetal human small intestine exhibited spontaneous oscillations of membrane potential between the resting level of about –20 mV and the activated level of about –75mV. The cells were hyperpolarized to the latter level in response to mechanical or electrical stimuli. The hyperpolarizing responses were also elicited by the application of intestinal secretagogues: acetylcholine, histamine, serotonin and vasoactive intestinal polypeptide (VIP). The spontaneous oscillation of membrane potential became prominent and long-lasting in the presence of acetylcholine, histamine, serotonin or VIP. These secretagogue-induced responses were mediated by individual independent receptors on the cell membrane. Muscarinic receptors were responsible for the acetylcholine response, and H1-receptors for the histamine response. The cells also responded with a slow hyperpolarization to calcium ionophore A23187, which is known to induce intestinal secretion. The spontaneously occurring hyperpolarizing responses and those induced by stimuli were both due to an increase in the K+ conductance of the cell membrane. Since acetylcholine, histamine, serotonin and A23187 are known to promote mobilization of cellular Ca2+ ions in intestinal secretory cells, it is hypothesized that these electrical activities of the cell are closely related to the receptor stimulation which leads to the Ca2+-mediated intestinal secretion.  相似文献   

12.
A number of investigations utilizing hypothalami from adrenalectomized animals have provided conflicting results regarding the role of serotonin (5HT) and norepinephrine (NE) in CRF regulation. In order to further investigate these neurotransmitters, we performed three sets of experiments with hypothalami obtained from intact rats. In experiment I, freshly obtained rat hypothalami were randomly grouped and incubated in control medium and medium in the presence of 10(-11) M, 10(-10) M, and 10(-9) M serotonin. Aliquots of 200 microliters of these incubates were bioassayed for CRF activity using a dispersed anterior pituitary cell system, and ACTH secretion from the cells was determined by radioimmunoassay. A preliminary experiment had determined that a 200 microliters aliquot from hypothalami incubated in control medium resulted in a significantly (p less than 0.0001) greater ACTH release than obtained from cells alone. No significant effect of serotonin on hypothalamic CRF release was obtained. In experiment III, individual hypothalami were bisected longitudinally, and one half served as control. The contralateral half was incubated in medium containing 10(-11) M, 10(-10) M, and 10(-9) M serotonin. CRF release in this experiment again revealed no significant effect of serotonin. In experiment II, hypothalami were again randomly grouped and incubated with control medium and in the presence of 10(-8) M and 10(-6) M norepinephrine. This experiment resulted in no significant effect of norepinephrine on CRF release. These results suggest that serotonin and norepinephrine at the concentrations studied have no effect on CRF release from hypothalami obtained from intact rats.  相似文献   

13.
The effect of an indole-alkaloid mitragynine isolated from the Thai medicinal herb kratom (Mitragyna speciosa) on neurogenic contraction of smooth muscle was studied in guinea-pig vas deferens. Mitragynine inhibited the contraction of the vas deferens produced by electrical transmural stimulation. On the other hand, mitragynine failed to affect the responses to norepinephrine and ATP. Mitragynine did not reduce KCl-induced contraction in the presence of tetrodotoxin, prazosin and alpha,beta-methylene ATP. Mitragynine inhibited nicotine- or tyramine-induced contraction. By using the patch-clamp technique, mitragynine was found to block T- and L-type Ca2+ channel currents in N1E-115 neuroblastoma cells. In the Ca2+ measurement by a fluorescent dye method, mitragynine reduced KCl-induced Ca2+ influx in neuroblastoma cells. The present results suggest that mitragynine inhibits the vas deferens contraction elicited by nerve stimulation, probably through its blockade of neuronal Ca2+ channels.  相似文献   

14.
H Y Wang  E Friedman 《Life sciences》1990,47(16):1419-1425
Protein kinase C (PKC) activity and translocation in response to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA), serotonin (5-HT) and thrombin was assessed in human platelets. Stimulation with PMA and 5-HT for 10 minutes or thrombin for 1 minute elicited platelet PKC translocation from cytosol to membrane. The catecholamines, norepinephrine or epinephrine at 10 microM concentrations did not induce redistribution of platelet PKC. Serotonin (0.5-100 microM) and the specific 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10-100 microM) but not the 5-HT1A or 5-HT1B agonists, (+/-) 8-hydroxy-dipropylamino-tetralin (8-OH-DPAT) or 5-methoxy-3-3-(1,2,3,6-tetrahydro-4-pyridin) 1H-indole succinate (RU 24969) induced dose-dependent PKC translocations. Serotonin-evoked PKC translocation was blocked by selective 5-HT2 receptor antagonists, ketanserin and spiroperidol. These results suggest that, in human platelets, PMA, thrombin and 5-HT can elicit PKC translocation from cytosol to membrane. Serotonin-induced PKC translocation in platelets is mediated via 5-HT2 receptors.  相似文献   

15.
A series of 2beta-alkynyl and 2beta-(1,2,3-triazol)substituted 3beta-(substituted phenyl)tropanes were synthesized and evaluated for affinities at dopamine, serotonin, and norepinephrine membrane transporters using competitive radioligand binding assays. All tested compounds were found to exhibit nanomolar or subnanomolar affinity for the dopamine transporter (DAT). One of the most potent and selective compounds in the series was 3beta-(4-chlorophenyl)-2beta-(4-nitrophenylethynyl)tropane (10c) that possessed an IC(50) value of 0.9nM at the DAT and K(i) values of 230nM and 620nM at the norepinephrine transporter (NET) and serotonin transporter (5-HTT), respectively.  相似文献   

16.
M Paulmichl  E W?ll  F Lang 《FEBS letters》1988,234(2):263-266
The present study has been performed to test for the involvement of pertussis toxin-sensitive GTP-binding proteins (G-proteins) in the cellular transduction of hormone-induced activation of potassium channels. In Madin Darby canine kidney (MDCK) cells, a permanent cell line from dog kidney, epinephrine, acetylcholine, bradykinin, serotonin and ATP hyperpolarize the cell membrane by activation of potassium channels. In cells pretreated with pertussis toxin the hyperpolarizations elicited by either acetylcholine or serotonin are completely abolished; that following epinephrine is blunted and only transient. The hyperpolarizing effects of ATP or bradykinin are not affected by pertussis toxin. Thus, in MDCK cells both pertussis toxin-dependent and -independent mechanisms operate in parallel to enhance the potassium conductance of the cell membrane.  相似文献   

17.
18.
Yan X  Orentas RJ  Johnson BD 《Cytokine》2006,33(4):188-198
Macrophage migration inhibitory factor (MIF) is a multi-functional cytokine that is considered a pro-inflammatory cytokine. However, our studies show that MIF, when produced in super-physiological levels by a murine neuroblastoma cell line (Neuro-2a) exceeding those normally seen during an immune response, inhibits cytokine-, CD3-, and allo-induced T-cell activation. MIF is also able to inhibit T cells that have already received an activation signal. The T-cell inhibitory effects of culture supernatants from neuroblastoma cells were reversed when the cells were transfected with dicer-generated si-RNA to MIF. When T cells were activated in vitro by co-culture with interleukin (IL)-2 and IL-15 and analyzed for cytokine production in the presence or absence of MIF-containing culture supernatant, inhibition of T-cell proliferation and induced cell death were observed even as the treated T cells produced high levels of interferon-gamma (IFN-gamma). The inhibitory effects of MIF were partially reversed when lymphocytes from IFN-gamma knockout mice were tested. We propose that the high levels of MIF produced by neuroblastoma cause activation induced T-cell death through an IFN-gamma pathway and may eliminate activated T cells from the tumor microenvironment and thus contribute to escape from immune surveillance.  相似文献   

19.
The contractile response of ring segments of large, medium, and small pulmonary arteries and veins of the dog to histamine, norepinephrine, and serotonin have been studied. The maximum contractile response to these drugs was normalized with respect to the maximal response obtained in stimulation with 127 mM K+. The small pulmonary artery was more reactive to histamine, norepinephrine, and serotonin when compared with large and medium pulmonary arteries. The medium and large pulmonary artery showed no difference in reactivity to histamine. However, the mean effective dose (ED50) values for these agonists among the different segments of pulmonary arteries showed no significant difference. The small and medium pulmonary veins demonstrated increased reactivity to histamine, but not norepinephrine and serotonin. The ED50 values also indicated that both small and medium veins were more sensitive to histamine when compared with the large pulmonary vein. The log concentration percent response curves for both small and medium pulmonary veins were displaced leftward (increased sensitivity) with respect to that for the large pulmonary vein. However, the reactivity and sensitivity to histamine between medium and small pulmonary veins were no different. The reactivity and sensitivity of different segments of pulmonary veins to norepinephrine and serotonin showed no significant differences among them. We conclude that histamine and other vasoactive substances, which are directly or indirectly related to mast cell degranulation, exert pharmacological effects on the pulmonary vasculature which possesses differential responsiveness at various levels of the vascular tree.  相似文献   

20.
Cholinergic neuroblastoma NS20Y cells were differentiated by the chicken gizzard extract. They were first inoculated into a glass culture bottle and the aggregated cells which grew in the suspension culture were collected. The aggregated cells (round and immature neuroblastoma cells) were seeded on a polyornithinecoated plastic dish, and the effect of various agents on the differentiation of the neuroblastoma was investigated. When gizzard extract from chicken was added to the culture, many flat cells with neurites emerged around the cell aggregates within 24 h. The flat cells could evoke action potentials with high frequency (in 70% cells). Cyclic GMP levels in the treated cultures were much lower than that in the control culture, and remained continuously lower during 2 days culture. The factor responsible for the differentiation of neuroblastoma cells was rich in the chick gizzard among extracts or conditioned media from various tissues tested. A similar effect was observed by the addition of dibutyryl cyclic AMP or prostaglandin E1 plus theophylline over a slower time course. The factor in gizzard extract was trypsin-sensitive and heat-labile. The molecular size was estimated to be about 12 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号