首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Ether Lipids of Planktonic Archaea in the Marine Water Column   总被引:5,自引:3,他引:2       下载免费PDF全文
Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize an isotopically heavy carbon source such as algal carbohydrates and proteins or dissolved bicarbonate. Due to their high preservation potential, these lipids provide a fossil record of planktonic archaea and suggest that they have thrived in marine environments for more than 50 million years.  相似文献   

2.
Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth’s oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011. In this review, we detail what is known to date about the genetic basis of the stony coral biomineralization process, with a focus on advances in the last several years as well as ways that physical and chemical tools can be combined with genetics, and then propose next steps forward for the coming decade.  相似文献   

3.
The viviparous sea snakes (Hydrophiinae) comprise ~90% of living marine reptiles and display many physical and behavioral adaptations for breathing, diving, and achieving osmotic balance in marine habitats. Among the most important innovations found in marine snakes are their paddle-shaped (dorsoventrally expanded) tails, which provide propulsive thrust in the dense aquatic medium. Here, we reconstruct the evolution of caudal paddles in viviparous sea snakes using a dated molecular phylogeny for all major lineages and computed tomography of internal osteological structures. Bayesian ancestral state reconstructions show that extremely large caudal paddles supported by elongated vertebral processes are unlikely to have been present in the most recent common ancestor of extant sea snakes. Instead, these characters appear to have been acquired independently in two highly marine lineages of relatively recent origin. Both the Aipysurus and Hydrophis lineages have elongated neural spines that support the dorsal edge of their large paddles. However, whereas in the Aipysurus lineage the ventral edge of the paddle is supported by elongated haemapophyses, this support is provided by elongated and ventrally directed pleurapophyses in the Hydrophis lineage. Three semi-marine lineages (Hydrelaps, Ephalophis, and Parahydrophis) form the sister group to the Hydrophis clade and have small paddles with poorly developed dorsal and ventral supports, consistent with their amphibious lifestyle. Overall, our results suggest that not only are the viviparous hydrophiines the only lineage of marine snakes to have acquired extremely large, skeletally supported caudal paddles but also that this innovation has occurred twice in the group in the past ~2-6 million years.  相似文献   

4.
Electron microscopy and electron diffraction were used to investigate mineral crystallites dissociated from the skeletal walls of six species belonging to the Bryozoa, a phylum of predominantly marine colony-forming invertebrate animals. Four cheilostome bryozoans (Flustra foliacea, Membranipora membranacea, Thalamoporella novaehollandiae and Cellarinella foveolata) and two cyclostomes (Fasciculipora ramosa and Hornera robusta) were analysed. In each case, an attempt was made to relate the crystal morphology imaged in situ by scanning electron microscopy with the crystallographic orientation of isolated crystals determined by electron diffraction analysis in the transmission electron microscope. The results showed that the calcitic cheilostome and cyclostome skeletons consisted of closely packed arrays of plate-like Mg-containing calcite crystallites, and that the crystallographic a-axis was preferentially aligned perpendicular to the top and bottom surfaces of the flattened particles. The results suggest that calcite biomineralization occurs under similar crystallographic constraints in the five species studied even though the origins of cheilostomes and cyclostomes are separated by over 300 million years in the fossil record of the bryozoans. Similar studies for the aragonite crystallites in skeletons of M. membranacea indicated that the crystallographic b-axis was preferentially oriented perpendicular to the basal surfaces of irregular plate-like particles.  相似文献   

5.
The Natufian population of Israel was first described by Garrod in 1932, and since then hundreds of skeletons have been discovered in archaeological excavations. Their culture is amply discussed in the literature as designating the transitional stage between extractive and productive subsistence economics in the period ca. 13,000-10,000 years BP. The Natufians represent a local population with strong biologic ties to the more ancient Upper Paleolithic inhabitants of the area. The scope of the present study is to review, on the basis of new skeletal material and new age-assessing methods, the age and sex tables attributed to this group, which usually indicate a mean age of death around 32 years.  相似文献   

6.
It is a well-known phenomenon that islands can support populations of gigantic or dwarf forms of mainland conspecifics, but the variety of explanatory hypotheses for this phenomenon have been difficult to disentangle. The highly venomous Australian tiger snakes (genus Notechis) represent a well-known and extreme example of insular body size variation. They are of special interest because there are multiple populations of dwarfs and giants and the age of the islands and thus the age of the tiger snake populations are known from detailed sea level studies. Most are 5000-7000 years old and all are less than 10,000 years old. Here we discriminate between two competing hypotheses with a molecular phylogeography dataset comprising approximately 4800 bp of mtDNA and demonstrate that populations of island dwarfs and giants have evolved five times independently. In each case the closest relatives of the giant or dwarf populations are mainland tiger snakes, and in four of the five cases, the closest relatives are also the most geographically proximate mainland tiger snakes. Moreover, these body size shifts have evolved extremely rapidly and this is reflected in the genetic divergence between island body size variants and mainland snakes. Within south eastern Australia, where populations of island giants, populations of island dwarfs, and mainland tiger snakes all occur, the maximum genetic divergence is only 0.38%. Dwarf tiger snakes are restricted to prey items that are much smaller than the prey items of mainland tiger snakes and giant tiger snakes are restricted to seasonally available prey items that are up three times larger than the prey items of mainland tiger snakes. We support the hypotheses that these body size shifts are due to strong selection imposed by the size of available prey items, rather than shared evolutionary history, and our results are consistent with the notion that adaptive plasticity also has played an important role in body size shifts. We suggest that plasticity displayed early on in the occupation of these new islands provided the flexibility necessary as the island's available prey items became more depauperate, but once the size range of available prey items was reduced, strong natural selection followed by genetic assimilation worked to optimize snake body size. The rate of body size divergence in haldanes is similar for dwarfs (h(g) = 0.0010) and giants (h(g) = 0.0020-0.0025) and is in line with other studies of rapid evolution. Our data provide strong evidence for rapid and repeated morphological divergence in the wild due to similar selective pressures acting in different directions.  相似文献   

7.
8.
Although snakes traditionally have been regarded as asocial animals, recent studies have revealed complex interactions among neonatal snakes and their mothers. We noticed frequent aggregation by captive neonatal Australian elapids (tiger snakes, Notechis scutatus), and conducted simple experiments to clarify the proximate causation of, and potential consequences of, aggregative behaviour. Litters of neonates exhibited statistically significant aggregation (clustering) in empty containers, especially if the test area was subjected to rapid cooling. Aggregation was most pronounced inside shelter‐sites, and familiar shelters (i.e. containing scent cues from the litter) attracted snakes more than did novel (unscented) shelters. Snakes in larger aggregations cooled more slowly (reflecting their higher combined mass and thus, thermal inertia) and higher body temperatures facilitated neonatal locomotor performance, retreat‐site location and anti‐predator tactics. Plausibly, aggregation in neonatal tiger snakes (and other reptiles) functions to retard cooling rates, with the result that the young snakes are better able to evade or repel attacks by predators.  相似文献   

9.
Fully adult partial skeletons attributed to Australopithecus afarensis (AL 288-1, “Lucy”) and to Homo habilis (OH 62, “Lucy's child”), respectively, both include remains from upper and lower limbs. Relationships between various limb bone dimensions of these skeletons are compared to those of modern African apes and humans. Surprisingly, it emerges that OH 62 displays closer similarities to African apes than does AL 288-1. Yet A. afarensis, whose skeleton is dated more than 1 million years earlier, is commonly supposed to be the ancestor of Homo habilis. If OH 62, classified as Homo habilis by its discoverers, does indeed represent a stage intermediate between A. afarensis and later Homo, a revised interpretation of the course of human evolution would be necessary.  相似文献   

10.
Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism's venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step involved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on approximately 1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, >1,200 fishes in 12 clades should be presumed venomous. This assertion was corroborated by a detailed anatomical study examining potentially venomous structures in >100 species. The results of these studies not only alter our view of the diversity of venomous fishes, now representing >50% of venomous vertebrates, but also provide the predictive phylogeny or "road map" for the efficient search for potential pharmacological agents or physiological tools from the unexplored fish venoms.  相似文献   

11.
A survey designed to estimate the number of snake enclosures available for Species Survival Plan (SSP) programs was distributed to all North American zoos containing 100 or more reptile and amphibian specimens. Of the 52 zoos surveyed, 44 (84.6%) responded, indicating that 790 (26.3%) of the 3,012 snake enclosures were available for SSP programs. Available enclosures were classified by size and existing themes to help define limitations of the potential SSP space. This spatial information was then used in conjunction with existing population genetics models to estimate that up to 16 snake species can be accommodated by SSP programs in these zoos collectively. Values used in the models were estimates of those for an average snake species with a generation time of 15 years, lambda of 1.15, with 26 effective founders, and an ne/n ratio of 0.3. It was further assumed that 90% of the genetic variation would be maintained in each species for a period of 100 years. Tactics to increase the number of species that SSP programs can accommodate include: increase reserve space, devote more space for SSP snakes, lengthen generation time, promote gene exchange with wild populations, goal SSP programs for less than 200 years, invest in short-term programs, involve the private sector, build new enclosures, increase the number of snakes per enclosure, and encourage participation of non-North American institutions. To maximize biological diversity in relation to captive carrying capacity, it is recommended that SSP programs represent both infraorders of living snakes and as many families within those infraorders as possible. Although not all 16 families of snakes are likely to be represented due to exhibit value, obtainability, and husbandry success, it may be possible to represent as many as nine families in 16 SSP programs. © 1993 Wiley-Liss, Inc.  相似文献   

12.
By using a microarray screen to compare gene responses after sterile laser wounding of wild-type and 'macrophageless' serpent mutant Drosophila embryos, we show the wound-induced programmes that are independent of a pathogenic response and distinguish which of the genes are macrophage dependent. The evolutionarily conserved nature of this response is highlighted by our finding that one such new inflammation-associated gene, growth arrest and DNA damage-inducible gene 45 (GADD45), is upregulated in both Drosophila and murine repair models. Comparison of unwounded wild-type and serpent mutant embryos also shows a portfolio of 'macrophage-specific' genes, which suggest analogous functions with vertebrate inflammatory cells. Besides identifying the various classes of wound- and macrophage-related genes, our data indicate that sterile injury per se, in the absence of pathogens, triggers induction of a 'pathogen response', which might prime the organism for what is likely to be an increased risk of infection.  相似文献   

13.
Sex chromosomes are believed to be stable in endotherms, but young and evolutionary unstable in most ectothermic vertebrates. Within lacertids, the widely radiated lizard group , sex chromosomes have been reported to vary in morphology and heterochromatinization, which may suggest turnovers during the evolution of the group. We compared the partial gene content of the Z‐specific part of sex chromosomes across major lineages of lacertids and discovered a strong evolutionary stability of sex chromosomes. We can conclude that the common ancestor of lacertids, living around 70 million years ago (Mya), already had the same highly differentiated sex chromosomes. Molecular data demonstrating an evolutionary conservation of sex chromosomes have also been documented for iguanas and caenophidian snakes. It seems that differences in the evolutionary conservation of sex chromosomes in vertebrates do not reflect the distinction between endotherms and ectotherms, but rather between amniotes and anamniotes, or generally, the differences in the life history of particular lineages.  相似文献   

14.
Re-evolution of lost complex morphological characters has been proposed for several characters, including insect wings, limbs, eyes in snakes, and digits in lizards, among others. There has also been much interest in whether the transition from oviparity to viviparity is reversible, particularly in squamate reptiles where the transition to viviparity has occurred more times than in any other lineage. Here, we present a phylogenetic analysis of boid snakes based on a concatenated multigene study of all genera of erycines, New and Old World boines, plus other groups thought to be closely related with boines such as monotypic species Calabaria and Casarea . We reconstruct ancestral parity mode on this phylogeny and present statistical evidence that oviparity reevolved in a species of Old World sand boa in the genus Eryx nearly 60 million years after the initial boid transition to viviparity. Remarkably, like other viviparous boas hatchlings of oviparous Eryx lack an egg-tooth providing independent evidence that oviparity is a derived state in these species.  相似文献   

15.
Aortic valve morphology was examined in 32 species of snakes representing 28 genera and 11 families and a diversity of habitat preferences. The results largely agree with previous studies but include some previously undescribed features, such as the cranial displacement of the cusps in the left aorta in some species and the structure of the opposing cusps of the interaortic foramen. Few features of the aortic valves are uniform among species. The pattern of morphological variation does not correlate with simple habitat preference (e.g., terrestrial, arboreal); however, some of the variation, particularly in the valves themselves, correlates with taxonomic relationships. We suggest that the presence of an interaortic foramen, with its associated valve, could result in an interaortic shunt of blood that potentially alters hemodynamics and flow patterns in the systemic circulation of snakes. © 1993 Wiley-Liss, Inc.  相似文献   

16.
17.
Lansing man: a half century later   总被引:1,自引:0,他引:1  
One of the major fossil man finds from the Plains Area of the United States and one of the few from Kansas are the “Lansing Man” skeletons. The discovery was in February 1902 on the west bank of the Missouri River, south of Leavenworth near the town of Lansing, Kansas. Much was written about this skeleton following its discovery and Ale? Hrdli?ka's only trip to Kansas in October 1902 was to observe the skeletons and the site of its discovery. Numerous articles were written suggesting that “Lansing Man” was many thousands of years old. Geologists could not agree on an age of the skeletons, an adult male and a six to seven year old child, because they were discovered in deposits of slumped loess, confusing the geological picture. Hrdli?ka states that the skeletons were physically identical to Indians of that region at the period of historical contact. William Holmes had the skull sent to the U. S. National Museum and the remaining bones were placed in the Museum of Natural History at the University of Kansas. While on the staff of the University of Kansas, I had Carbon-14 tests conducted on bones from the lower limbs by three separate laboratories. These dates range from 2660 to 5020 B.C. with an average date of four samples (1 each from Geochron Laboratories and the University of Michigan and two from the Smithsonian Institution) of 3579 B.C. This suggests that the “Lansing Man” skeletons are Early Middle Archaic and not Paleoindian. They do, however, represent the oldest known human skeletons from Kansas.  相似文献   

18.
In the first published paper "Stillfried-Arch?ologie-Anthropologie" (Felgenhauer, Szilvássy, Kritscher & Hauser 1988) emphasis of study was laid on morphological, metric and radiological analyses of the 7 skeletons from the late Bronze age (urn-field-culture) found at a storage pit in Stillfried/March in Lower Austria. The present publication deals with the methods of reconstruction of this spectacular discovery. When the skeletal material was disinterred in 1976 it was decided to make appropriate arrangements for an in-situ-presentation at a later stage. After the preparatory work and the scientific investigations were concluded, an in-situ presentation of the 7 skeletons was placed as a key-exhibit in the anthropological displays in the Natural History Museum in Vienna. The 7 skeletons represent three grown-ups and four children i.e. a man about thirty years of age, a woman of forty and one of forty five years of age, as well as a girl of nine and three boys eight, six and three years of age. The reconstruction of this outstanding discovery demanded not only an answer to the genealogical question but also an interpretation of the circumstances of death making use of forensic evidence. Additionally, the personal state of the seven individuals, their physical shape, state of health, and their racial attachment were discussed.  相似文献   

19.
Animals vary widely in their abilities to tolerate extended periods of food limitation. Although some snakes are known for their unique ability to survive periods of inanition that last up to 2 years, very little is known about the biological mechanisms that allow them to do this. Consequently, the present study examined physiological, compositional, and morphological responses to 168 days of starvation among three distantly related snake species (i.e., ball python, Python regius; ratsnake, Elaphe obsoleta; and western diamondback rattlesnake, Crotalus atrox). Results revealed that each of these species was able to successfully tolerate starvation by adaptively utilizing supply- and demand-side regulatory strategies. Effective demand-side strategies included the ability of snakes to depress their resting metabolic demands by up to 72%. Moreover, supply-side regulation of resources was evidenced by the ability of snakes to spare their structurally critical protein stores at the expense of lipid catabolism. Such physiological strategies for minimizing endogenous mass and energy flux during periods of resource limitation might help explain the evolutionary persistence of snakes over the past 100 million years, as well as the repeated radiation of snake lineages into relatively low-energy environments. The final section of this study outlines a novel modeling approach developed to characterize material and chemical flux through animals during complete inanition. This approach was used to make comparisons about the efficacy of various supply- and demand-side starvation strategies among the three species examined, but could also be used to make similar comparisons among other types of animals.  相似文献   

20.
Ecological patterns of relative clutch mass in snakes   总被引:6,自引:0,他引:6  
Summary Data on the relative clutch mass of snakes are summarized for over 100 populations. RCM was significantly lower in live bearing versus egg laying forms. We suggest that the longer reproductive season of viviparous snakes results in higher overall mortality compared to oviparous species; by reducing RCM, viviparous snakes may reduce this risk of mortality. Unlike lizards, no differences in RCM were found between categories of either escape behavior or foraging mode, possibly because detailed information on these behaviors are lacking for most snakes. In four populations examined, RCM did not vary among years. When compared to lizards, snakes demonstrate significantly higher RCM, perhaps owing to a more energetically efficient means of locomotion. Our data support the contention that RCM should be considered a separate and distinctive life-history characteristic of reptiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号