首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibitory effect of the anti-arthritic drug D-penicillamine on the formation of hypochlorite (HOCl) by myeloperoxidase from H2O2 and Cl- was investigated. When D-penicillamine was added to myeloperoxidase under turnover conditions, Compound III was formed, the superoxide derivative of the enzyme. Compound III was not formed when D-penicillamine was added in the presence of EDTA or in the absence of oxygen. However, when H2O2 was added to myeloperoxidase, D-penicillamine and EDTA, Compound III was formed. Therefore it is concluded that formation of Compound III is initiated by metal-catalysed oxidation of the thiol group of this anti-arthritic drug, resulting in formation of superoxide anions. Once Compound III is formed, a chain reaction is started via which the thiol groups of other D-penicillamine molecules are oxidized to disulphides. Concomitantly, Compound I of myeloperoxidase would be reduced to Compound II and superoxide anions would be generated from oxygen. This conclusion is supported by experiments which showed that formation of Compound III of myeloperoxidase by D-penicillamine depended on the chloride concentration. Thus, an enzyme intermediate which is active in chlorination (i.e. Compound I) participated in the generation of superoxide anions from the anti-arthritic drug. From the results described in this paper it is proposed that D-penicillamine may exert its therapeutic effect in the treatment of rheumatoid arthritis by scavenging HOCl and by converting myeloperoxidase to Compound III, which is inactive in the formation of HOCl.  相似文献   

2.
Human neutrophilic myeloperoxidase (MPO) is involved in the defence mechanism of the body against micro-organisms. The enzyme catalyses the generation of the strong oxidant hypochlorous acid (HOCl) from hydrogen peroxide and chloride ions. In normal neutrophils MPO is present in the dimeric form (140 kDa). The disulphide-linked protomers each consist of a heavy subunit and a light one. Reductive alkylation converts the dimeric enzyme into two promoters, 'hemi-myeloperoxidase'. We studied the initial activities of human dimeric MPO and hemi-MPO at the physiological pH of 7.2 and found no significant differences in chlorinating activity. These results indicate that, at least at neutral pH, the protomers of MPO function independently. The absorption spectra of MPO compounds II and III, both inactive forms concerning HOCl generation, and the rate constants of their formation were the same for dimeric MPO and hemi-MPO, but hemi-MPO required a slightly larger excess of H2O2 for complete conversion. Hemi-MPO was less stable at a high temperature (80 degrees C) as compared to the dimeric enzyme. Furthermore, the resistance of the chlorinating activity of hemi-MPO against its oxidative product hypochlorous acid was somewhat lower (IC50 = 32 microM HOCl) compared to dimeric MPO (IC50 = 50 microM HOCl). The higher stability of dimeric MPO in the presence of its oxidative product compared to that of monomeric MPO might be the reason for the occurrence of MPO as a dimer.  相似文献   

3.
Stimulated neutrophils discharge large quantities of superoxide (O2.-), which dismutates to form H2O2. In combination with Cl-, H2O2 is converted into the potent oxidant hypochlorous acid (HOCl) by the haem enzyme myeloperoxidase. We have used an H2O2 electrode to monitor H2O2 uptake by myeloperoxidase, and have shown that in the presence of Cl- this accurately represents production of HOCl. Monochlorodimedon, which is routinely used to assay production of HOCl, inhibited H2O2 uptake by 95%. This result confirms that monochlorodimedon inhibits myeloperoxidase, and that the monochlorodimedon assay grossly underestimates the activity of myeloperoxidase. With 10 microM-H2O2 and 100 mM-Cl-, myeloperoxidase had a neutral pH optimum. Increasing the H2O2 concentration to 100 microM lowered the pH optimum to pH 6.5. Above the pH optimum there was a burst of H2O2 uptake that rapidly declined due to accumulation of Compound II. High concentrations of H2O2 inhibited myeloperoxidase and promoted the formation of Compound II. These effects of H2O2 were decreased at higher concentrations of Cl-. We propose that H2O2 competes with Cl- for Compound I and reduces it to Compound II, thereby inhibiting myeloperoxidase. Above pH 6.5, O2.- generated by xanthine oxidase and acetaldehyde prevented H2O2 from inhibiting myeloperoxidase, increasing the initial rate of H2O2 uptake. O2.- allowed myeloperoxidase to function optimally with 100 microM-H2O2 at pH 7.0. This occurred because, as previously demonstrated, O2.- prevents Compound II from accumulating by reducing it to ferric myeloperoxidase. In contrast, at pH 6.0, where Compound II did not accumulate, O2.- retarded the uptake of H2O2. We propose that by generating O2.- neutrophils prevent H2O2 and other one-electron donors from inhibiting myeloperoxidase, and ensure that this enzyme functions optimally at neutral pH.  相似文献   

4.
A key function of neutrophil myeloperoxidase (MPO) is the synthesis of hypochlorous acid (HOCl), a potent oxidizing agent that plays a cytotoxic role against invading bacteria and viruses at inflammatory sites and in phagosomes. MPO displayed a chlorinating activity preferably at acidic pH but at neutral pH MPO catalyzes mainly reactions of the peroxidase cycle. In the present work effects of tyrosine on the chlorinating activity of MPO were studied. At pH 7.4 we detected an increased HOCl production in the presence of tyrosine not only by the MPO-H2O2-Cl- system but also in suspensions of zymosan-activated neutrophils. An excess of H2O2 is known to cause an accumulation of compound II of MPO blocking the generation of HOCl at neutral pH. As evidenced by spectral changes, tyrosine-induced activation of MPO to synthesize HOCl was due to the ability of tyrosine to reduce compound II back to the native state, thus accelerating the enzyme turnover. MPO-induced oxidation of tyrosine is relevant to what can be in vivo; we detected MPO-catalyzed formation of dityrosine in the presence of plasma under experimental conditions when tyrosine concentration was about three magnitudes of order less than the Cl concentration. At acidic pH formation of compound II was impaired in the presence of chloride and dityrosine couldn't be detected in plasma. In conclusion, the ability of tyrosine to increase the chlorinating activity of MPO at neutral pH and enhanced values of H2O2 may be very effective for the specific enhancement of HOCl production under acute inflammation.  相似文献   

5.
The leukocyte enzyme myeloperoxidase (MPO) is capable of catalyzing the oxidation of chloride and bromide ions, at physiological concentrations of these substrates, by hydrogen peroxide, generating hypochlorous acid (HOCl) and hypobromous acid (HOBr), respectively. Our previous results showed that the hypohalous acids formed react with double bonds in phosphatidylcholines (PCs) to produce chloro- and bromohydrins. Lysophosphatidylcholine (lyso-PC) is additionally formed in PCs with two or more double bonds. This study was conducted to determine the effect physiological chloride concentration (140 mM) has on the formation of bromohydrins and lyso-PC from unsaturated PC upon treatment with the myeloperoxidase/hydrogen peroxide/bromide (MPO/H2O2/Br-) system using physiological bromide concentrations (20-100 microM). The composition of reaction products was analyzed by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS). With monounsaturated PC, we demonstrated that the rate and extent of mono-bromohydrin formation were higher in the samples with 140 mM chloride compared to those with no added chloride. Moreover, mono-bromohydrin came to be the major product and no mono-chlorohydrin was observed already at 60 microM bromide. We attributed these effects to the involvement of HOBr arising from the reaction of MPO-derived HOCl with bromide rather than to the exchange of bromide with chlorine atoms of chlorohydrins or direct formation of HOBr by MPO. The presence of chloride shifted the pH optimum for mono-bromohydrin formation (pH 5.0) toward neutral values, and a significant yield of mono-bromohydrin was detected at physiological pH values (7.0-7.4). For polyunsaturated PC, chloride enhanced also lyso-PC production, the effect being pronounced at bromide concentrations below 40 microM. The results indicate that at physiological levels of chloride and bromide, chloride promotes MPO-mediated formation of bromohydrins and lyso-PC in unsaturated phospholipids.  相似文献   

6.
Oxidation of chloride and thiocyanate by isolated leukocytes   总被引:8,自引:0,他引:8  
Peroxidase-catalyzed oxidation of chloride (Cl-) and thiocyanate (SCN-) was studied using neutrophils from human blood and eosinophils and macrophages from rat peritoneal exudates. The aims were to determine whether Cl- or SCN- is preferentially oxidized and whether leukocytes oxidize SCN- to the antimicrobial oxidizing agent hypothiocyanite (OSCN-). Stimulated neutrophils produced H2O2 and secreted myeloperoxidase. Under conditions similar to those in plasma (0.14 M Cl-, 0.02-0.12 mM SCN-), myeloperoxidase catalyzed the oxidation of Cl- to hypochlorous acid (HOCl), which reacted with ammonia and amines to yield chloramines. HOCl and chloramines reacted with SCN- to yield products without oxidizing activity, so that high SCN- blocked accumulation of chloramines in the extracellular medium. Under conditions similar to those in saliva and the surface of the oral mucosa (20 mM Cl-, 0.1-3 mM SCN-), myeloperoxidase catalyzed the oxidation of SCN- to OSCN-, which accumulated in the medium to concentrations of up to 40-70 microM. Sulfonamide compounds increased the yield of stable oxidants to 0.2-0.3 mM by reacting with OSCN- to yield derivatives analogous to chloramines. Stimulated eosinophils produced H2O2 and secreted eosinophil peroxidase, which catalyzed the oxidation of SCN- to OSCN- regardless of Cl- concentration. Stimulated macrophages produced H2O2 but had low peroxidase activity. OSCN- was produced when SCN- was 0.1 mM or higher and myeloperoxidase, eosinophil peroxidase, or lactoperoxidase was added. The results indicate that SCN- rather than Cl- may be the physiologic substrate (electron donor) for eosinophil peroxidase and that OSCN- may contribute to leukocyte antimicrobial activity under conditions that favor oxidation of SCN- rather than Cl-.  相似文献   

7.
The existence of interhalogen compounds was proposed more than a century ago, but no biological roles have been attributed to these highly oxidizing intermediates. In this study, we determined whether the peroxidases of white blood cells can generate the interhalogen gas bromine chloride (BrCl). Myeloperoxidase, the heme enzyme secreted by activated neutrophils and monocytes, uses H2O2 and Cl(-) to produce HOCl, a chlorinating intermediate. In contrast, eosinophil peroxidase preferentially converts Br(-) to HOBr. Remarkably, both myeloperoxidase and eosinophil peroxidase were able to brominate deoxycytidine, a nucleoside, and uracil, a nucleobase, at plasma concentrations of Br(-) (100 microM) and Cl(-) (100 mM). The two enzymes used different reaction pathways, however. When HOCl brominated deoxycytidine, the reaction required Br(-) and was inhibited by taurine. In contrast, bromination by HOBr was independent of Br(-) and unaffected by taurine. Moreover, taurine inhibited 5-bromodeoxycytidine production by the myeloperoxidase-H2O2-Cl(-)- Br(-) system but not by the eosinophil peroxidase-H2O2-Cl(-)-Br(-) system, indicating that bromination by myeloperoxidase involves the initial production of HOCl. Both HOCl-Br(-) and the myeloperoxidase-H2O2-Cl(-)-Br(-) system generated a gas that converted cyclohexene into 1-bromo-2-chlorocyclohexane, implicating BrCl in the reaction. Moreover, human neutrophils used myeloperoxidase, H2O2, and Br(-) to brominate deoxycytidine by a taurine-sensitive pathway, suggesting that transhalogenation reactions may be physiologically relevant. 5-Bromouracil incorporated into nuclear DNA is a well known mutagen. Our observations therefore raise the possibility that transhalogenation reactions initiated by phagocytes provide one pathway for mutagenesis and cytotoxicity at sites of inflammation.  相似文献   

8.
Examination of the spectra of phagocytosing neutrophils and of myeloperoxidase present in the medium of neutrophils stimulated with phorbol myristate acetate has shown that superoxide generated by the cells converts both intravacuolar and exogenous myeloperoxidase into the superoxo-ferric or oxyferrous form (compound III or MPO2). A similar product was observed with myeloperoxidase in the presence of hypoxanthine, xanthine oxidase and Cl-. Both transformations were inhibited by superoxide dismutase. Thus it appears that myeloperoxidase in the neutrophil must function predominantly as this superoxide derivative. MPO2 autoxidized slowly (t 1/2 = 12 min at 25 degrees C) to the ferric enzyme. It did not react directly with H2O2 or Cl-, but did react with compound II (MP2+ X H2O2). MPO2 catalysed hypochlorite formation from H2O2 and Cl- at approximately the same rate as the ferric enzyme, and both reactions showed the same H2O2-dependence. This suggests that MPO2 can enter the main peroxidation pathway, possibly via its reaction with compound II. Both ferric myeloperoxidase and MPO2 showed catalase activity, in the presence or absence of Cl-, which predominated over chlorination at H2O2 concentrations above 200 microM. Thus, although the reaction of neutrophil myeloperoxidase with superoxide does not appear to impair its chlorinating ability, the H2O2 concentration in its environment will determine whether the enzyme acts primarily as a catalase or peroxidase.  相似文献   

9.
The effect of myeloperoxidase, hydrogen peroxide (H2O2) and a halide (Cl) on the opsonizing molecules in immunoglobulin G (IgG) and complement factor C3b was assayed. At concentrations of the enzyme (1 microgram/ml) that can be found in the extracellular fluid during inflammation, the myeloperoxidase-H2O2-Cl system inhibited the opsonizing effect of IgG and C3b measured as phagocytic uptake and superoxide generation. The effect was related to the enzymatic peroxidative activity of the protein. The presence of albumin (10 mg/ml) reduced the effect of myeloperoxidase with 10-20%. Taurine, which in the presence of myeloperoxidase-H2O2-Cl forms hydrophilic chloramines, and D-penicillamine, which scavenges HOCl, neutralize the inhibitory effect of myeloperoxidase. This suggests that either hypochlorous acid or lipophilic chloramines may exert its effect by oxidizing free sulphydryl groups exposed on the opsonizing ligands. Since the myeloperoxidase-H2O2-halide system also affects chemotactic factors, leukotrienes, proteinases and membrane receptors, the system may in several ways affect the development of the inflammatory response.  相似文献   

10.
Chronic inflammation results in increased nitric oxide formation and nitrite (NO-2) accumulation. Activated phagocytes release myeloperoxidase generating the cytotoxic agent hypochlorous acid (HOCl). Reaction of HOCl with NO-2 results in the formation of nitryl chloride (NO2Cl), a potent oxidising, nitrating and chlorinating species. Exposure of DNA to NO-2 alone (up to 250 microM) at pH 7.4 did not induce oxidative DNA base damage. However, incubation of DNA with NO-2 in the presence of HOCl led to increases in thymine glycol, 5-hydroxyhydantoin, 8-hydroxyadenine and 5-chlorouracil to levels higher than those achieved by HOCl alone. No significant increases in 8-hydroxyguanine, xanthine, hypoxanthine, 2-hydroxyadenine, FAPy guanine, FAPy adenine and 8-chloroadenine were observed. HOCl-induced depletion of FAPy guanine and 8-hydroxyguanine was reduced in the presence of NO-2. Modification of DNA by HOCl/NO-2 (presumably generating NO2Cl) produces a pattern of DNA base damage products in isolated DNA that is similar to the pattern produced by HOCl but not other reactive species.  相似文献   

11.
Neutrophils kill bacteria by ingesting them into phagosomes where superoxide and cytoplasmic granule constituents, including myeloperoxidase, are released. Myeloperoxidase converts chloride and hydrogen peroxide to hypochlorous acid (HOCl), which is strongly microbicidal. However, the role of oxidants in killing and the species responsible are poorly understood and the subject of current debate. To assess what oxidative mechanisms are likely to operate in the narrow confines of the phagosome, we have used a kinetic model to examine the fate of superoxide and its interactions with myeloperoxidase. Known rate constants for reactions of myeloperoxidase have been used and substrate concentrations estimated from neutrophil morphology. In the model, superoxide is generated at several mm/s. Most react with myeloperoxidase, which is present at millimolar concentrations, and rapidly convert the enzyme to compound III. Compound III turnover by superoxide is essential to maintain enzyme activity. Superoxide stabilizes at approximately 25 microM and hydrogen peroxide in the low micromolar range. HOCl production is efficient if there is adequate chloride supply, but further knowledge on chloride concentrations and transport mechanisms is needed to assess whether this is the case. Low myeloperoxidase concentrations also limit HOCl production by allowing more hydrogen peroxide to escape from the phagosome. In the absence of myeloperoxidase, superoxide increases to >100 microM but hydrogen peroxide to only approximately 30 microM. Most of the HOCl reacts with released granule proteins before reaching the bacterium, and chloramine products may be effectors of its antimicrobial activity. Hydroxyl radicals should form only after all susceptible protein targets are consumed.  相似文献   

12.
We investigated the activation of three subfamilies of mitogen-activated protein kinases (MAP kinase), the extracellular regulated kinase (ERK1/2), p38, and c-Jun N-terminal kinase (JNK), by the myeloperoxidase-derived oxidant HOCl, in human umbilical vein endothelial cells (HUVEC) and human skin fibroblasts. Treatment of fibroblasts with 10-30 microM HOCl induced a dose-dependent increase in the tyrosine phosphorylation of several proteins. ERK1/2 was activated by exposure to sublethal concentrations of reagent HOCl or by HOCl generated by myeloperoxidase as shown by immune complex kinase assays. Maximum activation was seen at 20 microM and peak activation occurred within 10 min. Western blot analysis demonstrated activation of p38 with 30 microM HOCl, occurring at 15-30 min. No activation of JNK was detected in the concentration range investigated. These results show that HOCl is able to activate MAP kinases. Effective doses were considerably lower than with H2O2 and the lack of JNK activation contrasts with the activation frequently seen with H2O2. Exposure to HOCl caused a loss of viability in HUVEC that was markedly enhanced when ERK1/2 activation was inhibited by U0126. This suggests that the activation of ERK promotes cell survival in response to the oxidative challenge.  相似文献   

13.
This study investigated the functional and structural effects of bovine Cu,Zn-superoxide dismutase (Cu,Zn-SOD) oxidation by the myeloperoxidase (MPO)/hydrogen peroxide (H 2 O 2 )/chloride system and reagent hypochlorous acid (HOCl). Exposure to HOCl led to a fast inactivation accompanied by structural alterations. The residual SOD activity depended on the reactants concentration ratio and on the exposure time. The concomitant high consumption of HOCl indicated the presence of multiple targets on the protein. As assessed by SDS/PAGE, HOCl caused the dissociation of the protein into protomers at 16 kDa stable to both SDS and reducing conditions. Results from isoelectric focusing gels showed that exposure to HOCl induced the formation of modified protein derivatives, with a more acidic net electric charge than the parent molecule, consistent with the presence of additional ions observed in the electrospray ionization mass spectra. The reaction of protein with HOCl resulted in changes in protein conformation as assessed by the UV fluorescence and oxidation of the unique methionine and tyrosine, chlorination of several lysines with formation of chloramines. There was no significant formation of dityrosine and carbonyl groups. Exposure to high levels of HOCl resulted in complete enzyme inactivation, loss of additional lysine, histidine and arginine residues and coincident detection of weakly bound zinc and copper using 4-pyridylazaresorcinol. Collectively, the results suggest that the decrease of the dismutase activity is probably related to both dissociation into protomers and unfolding due to extensive oxidative modifications of amino acids.  相似文献   

14.
Inhibition of myeloperoxidase by salicylhydroxamic acid.   总被引:2,自引:0,他引:2       下载免费PDF全文
Salicylhydroxamic acid inhibited the luminol-dependent chemiluminescence of human neutrophils stimulated by phorbol 12-myristate 13-acetate or the chemotactic peptide N-formylmethionyl-leucyl-phenylalanine (fMet-Leu-Phe). This compound had no inhibitory effect on the kinetics of O2.- generation or O2 uptake during the respiratory burst, but inhibited both the peroxidative activity of purified myeloperoxidase and the chemiluminescence generated by a cell-free myeloperoxidase/H2O2 system. The concentration of salicylhydroxamic acid necessary for complete inhibition of myeloperoxidase activity was 30-50 microM (I50 values of 3-5 microM) compared with the non-specific inhibitor NaN3, which exhibited maximal inhibition at 100-200 microM (I50 values of 30-50 microM). Whereas taurine inhibited the luminol chemiluminescence of an H2O2/HOC1 system by HOC1 scavenging, this compound had little effect on myeloperoxidase/H2O2-dependent luminol chemiluminescence; in contrast, 10 microM-salicylhydroxamic acid did not quench HOC1 significantly but greatly diminished myeloperoxidase/H2O2-dependent luminol chemiluminescence, indicating that its effects on myeloperoxidase chemiluminescence were largely due to peroxidase inhibition rather than non-specific HOC1 scavenging. Salicylhydroxamic acid prevented the formation of myeloperoxidase Compound II, but only at low H2O2 concentrations, suggesting that it may compete for the H2O2-binding site on the enzyme. These data suggest that salicylhydroxamic acid may be used as a potent inhibitor to delineate the function of myeloperoxidase in neutrophil-mediated inflammatory events.  相似文献   

15.
This study investigated the functional and structural effects of bovine Cu,Zn-superoxide dismutase (Cu,Zn-SOD) oxidation by the myeloperoxidase (MPO)/hydrogen peroxide (H 2 O 2 )/chloride system and reagent hypochlorous acid (HOCl). Exposure to HOCl led to a fast inactivation accompanied by structural alterations. The residual SOD activity depended on the reactants concentration ratio and on the exposure time. The concomitant high consumption of HOCl indicated the presence of multiple targets on the protein. As assessed by SDS/PAGE, HOCl caused the dissociation of the protein into protomers at 16 kDa stable to both SDS and reducing conditions. Results from isoelectric focusing gels showed that exposure to HOCl induced the formation of modified protein derivatives, with a more acidic net electric charge than the parent molecule, consistent with the presence of additional ions observed in the electrospray ionization mass spectra. The reaction of protein with HOCl resulted in changes in protein conformation as assessed by the UV fluorescence and oxidation of the unique methionine and tyrosine, chlorination of several lysines with formation of chloramines. There was no significant formation of dityrosine and carbonyl groups. Exposure to high levels of HOCl resulted in complete enzyme inactivation, loss of additional lysine, histidine and arginine residues and coincident detection of weakly bound zinc and copper using 4-pyridylazaresorcinol. Collectively, the results suggest that the decrease of the dismutase activity is probably related to both dissociation into protomers and unfolding due to extensive oxidative modifications of amino acids.  相似文献   

16.
The reaction of myeloperoxidase compound I (MPO-I) with chloride ion is widely assumed to produce the bacterial killing agent after phagocytosis. Two values of the rate constant for this important reaction have been published previously: 4.7 x 106 M-1.s-1 measured at 25 degrees C [Marquez, L.A. and Dunford, H.B. (1995) J. Biol. Chem. 270, 30434-30440], and 2.5 x 104 M-1.s-1 at 15 degrees C [Furtmüller, P.G., Burner, U. & Obinger, C. (1998) Biochemistry 37, 17923-17930]. The present paper is the result of a collaboration of the two groups to resolve the discrepancy in the rate constants. It was found that the rate constant for the reaction of compound I, generated from myeloperoxidase (MPO) and excess hydrogen peroxide with chloride, decreased with increasing chloride concentration. The rate constant published in 1995 was measured over a lower chloride concentration range; the 1998 rate constant at a higher range. Therefore the observed conversion of compound I to native enzyme in the presence of hydrogen peroxide and chloride ion cannot be attributed solely to the single elementary reaction MPO-I + Cl- --> MPO + HOCl. The simplest mechanism for the overall reaction which fit the experimental data is the following: MPO+H2O2 ⇄k-1k1 MPO-I+H2O MPO-I+Cl- ⇄k-2k2 MPO-I-Cl- MPO-I-Cl- -->k3 MPO+HOCl where MPO-I-Cl- is a chlorinating intermediate. We can now say that the 1995 rate constant is k2 and the corresponding reaction is rate-controlling at low [Cl-]. At high [Cl-], the reaction with rate constant k3 is rate controlling. The 1998 rate constant for high [Cl-] is a composite rate constant, approximated by k2k3/k-2. Values of k1 and k-1 are known from the literature. Results of this study yielded k2 = 2.2 x 106 M-1.s-1, k-2 = 1.9 x 105 s-1 and k3 = 5.2 x 104 s-1. Essentially identical results were obtained using human myeloperoxidase and beef spleen myeloperoxidase.  相似文献   

17.
N-acetyl-L-tyrosine (N-acTyr), with the alpha amine residue blocked by acetylation, can mimic the reactivity of exposed tyrosyl residues incorporated into polypeptides. In this study chlorination of N-acTyr residue at positions 3 and 5 in reactions with NaOCl, chloramines and the myeloperoxidase (MPO)-H2O2-Cl- chlorinating system were invesigated. The reaction of N-acTyr with HOCl/OCl- depends on the reactant concentration ratio employed. At the OCl-/N-acTyr (molar) ratio 1:4 and pH 5.0 the chlorination reaction yield is about 96% and 3-chlorotyrosine is the predominant reaction product. At the OCl-/N-acTyr molar ratio 1:1.1 both 3-chlorotyrosine and 3,5-dichlorotyrosine are formed. The yield of tyrosine chlorination depends also on pH, amounting to 100% at pH 5.5, 91% at pH 4.5 and 66% at pH 3.0. Replacing HOCl/OCl- by leucine/chloramine or alanine/chloramine in the reaction system, at pH 4.5 and 7.4, produces trace amount of 3-chlorotyrosine with the reaction yield of about 2% only. Employing the MPO-H2O2-Cl- chlorinating system at pH 5.4, production of a small amount of N-acTyr 3-chloroderivative was observed, but the reaction yield was low due to the rapid inactivation of MPO in the reaction system. The study results indicate that direct chlorination of tyrosyl residues which are not incorporated into the polypeptide structure occurs with excess HOCl/OCl- in acidic media. Due to the inability of the myeloperoxidase-H2O2-Cl- system to produce high enough HOCl concentrations, the MPO-mediated tyrosyl residue chlorination is not effective. Semistable amino-acid chloramines also appeared not effective as chlorine donors in direct tyrosyl chlorination.  相似文献   

18.
Phagocytes generate superoxide (O2-.) and hydrogen peroxide (H2O2) and their interaction in an iron-catalyzed reaction to form hydroxyl radicals (OH.) (Haber-Weiss reaction) has been proposed. Deferoxamine chelates iron in a catalytically inactive form, and thus inhibition by deferoxamine has been employed as evidence for the involvement of OH. generated by the Haber-Weiss reaction. We report here that deferoxamine also inhibits reactions catalyzed by the peroxidases of phagocytes, i.e., myeloperoxidase (MPO) and eosinophil peroxidase (EPO). The reactions inhibited include iodination in the presence and absence of chloride and the oxidation of guaiacol. Iodination by MPO and H2O2 is stimulated by chloride due to the intermediate formation of hypochlorous acid (HOCl). Iodination by reagent HOCl also is inhibited by deferoxamine with the associated consumption of HOCl. Iron saturation of deferoxamine significantly decreased but did not abolish its inhibitory effect on iodination by MPO + H2O2 or HOCl. Deferoxamine did not affect the absorption spectrum of MPO, suggesting that it does not react with or remove the heme iron. The conversion of MPO to Compound II by H2O2 was not seen when H2O2 was added to MPO in the presence of deferoxamine, suggesting either that deferoxamine inhibited the formation of Compound II by acting as an electron donor for MPO Compound I or that deferoxamine immediately reduced the Compound II formed. Iodination by stimulated neutrophils also was inhibited by deferoxamine, suggesting an effect on peroxidase-catalyzed reactions in intact cells. Thus deferoxamine has multiple effects on the formation and activity of phagocyte-derived oxidants and therefore its inhibitory effect on oxidant-dependent damage needs to be interpreted with caution.  相似文献   

19.
1,3-Butadiene was oxidized by human myeloperoxidase in the absence of KCl to yield butadiene monoxide (BM) and crotonaldehyde (CA), but at KCl concentrations higher than 50 mM, 1-chloro-2-hydroxy-3-butene (CHB) was the major metabolite detected; metabolite formation was dependent on incubation time, pH, KCl, 1,3-butadiene, and H2O2 concentrations. The data are best explained by 1,3-butadiene being oxidized by myeloperoxidase by two different mechanisms. First, oxygen transfer from the hemoprotein would occur to either C-1 or C-4 of 1,3-butadiene to form an intermediate which may cyclize to form BM or undergo a hydrogen shift to form 3-butenal, an unstable precursor of CA. Further evidence for this mechanism was provided by the inability to detect methyl vinyl ketone, a possible product of an oxygen transfer reaction to C-2 or C-3 of 1,3-butadiene, and by the finding that CA was not simply a decomposition product of BM under assay conditions. In the second mechanism, however, chloride ion is oxidized by myeloperoxidase to HOCl which reacts with 1,3-butadiene to yield CHB. Further evidence for this mechanism was provided by the finding that CHB was readily formed when 1,3-butadiene was added to the filtrate of a myeloperoxidase/H2O2/KCl incubation and when 1,3-butadiene was allowed to react with authentic HOCl. In addition, CHB was not detected when BM or CA was incubated with myeloperoxidase, H2O2, and KCl for up to 60 min, or when 1,3-butadiene and KCl were incubated with chloroperoxidase and H2O2 or with mouse liver microsomes and NADPH, enzyme systems which catalyze 1,3-butadiene oxidation to BM and CA, but unlike myeloperoxidase, do not catalyze chloride ion oxidation to HOCl. These results provide clear evidence for novel olefinic oxidation reactions by myeloperoxidase.  相似文献   

20.
Myeloperoxidase, a heme enzyme secreted by activated phagocytes, uses H(2)O(2) and Cl(-) to generate the chlorinating intermediate hypochlorous acid (HOCl). This potent cytotoxic oxidant plays a critical role in host defenses against invading pathogens. In this study, we explore the possibility that myeloperoxidase-derived HOCl might oxidize nucleic acids. When we exposed 2'-deoxycytidine to the myeloperoxidase-H(2)O(2)-Cl(-) system, we obtained a single major product that was identified as 5-chloro-2'-deoxycytidine using mass spectrometry, high performance liquid chromatography, UV-visible spectroscopy, and NMR spectroscopy. 5-Chloro-2'-deoxycytidine production by myeloperoxidase required H(2)O(2) and Cl(-), suggesting that HOCl is an intermediate in the reaction. However, reagent HOCl failed to generate 5-chloro-2'-deoxycytidine in the absence of Cl(-). Moreover, chlorination of 2'-deoxycytidine was optimal under acidic conditions in the presence of Cl(-). These results implicate molecular chlorine (Cl(2)), which is in equilibrium with HOCl through a reaction requiring Cl(-) and H(+), in the generation of 5-chloro-2'-deoxycytidine. Activated human neutrophils were able to generate 5-chloro-2'-deoxycytidine. Cellular chlorination was blocked by catalase and heme poisons, consistent with a myeloperoxidase-catalyzed reaction. The myeloperoxidase-H(2)O(2)-Cl(-) system generated similar levels of 5-chlorocytosine in RNA and DNA in vitro. In striking contrast, only cell-associated RNA acquired detectable levels of 5-chlorocytosine when intact Escherichia coli was exposed to the myeloperoxidase system. This observation suggests that oxidizing intermediates generated by myeloperoxidase selectively target intracellular RNA for chlorination. Collectively, these results indicate that Cl(2) derived from HOCl generates 5-chloro-2'-deoxycytidine during the myeloperoxidase-catalyzed oxidation of 2'-deoxycytidine. Phagocytic generation of Cl(2) therefore may constitute one mechanism for oxidizing nucleic acids at sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号