共查询到20条相似文献,搜索用时 0 毫秒
1.
Busschots K Voet A De Maeyer M Rain JC Emiliani S Benarous R Desender L Debyser Z Christ F 《Journal of molecular biology》2007,365(5):1480-1492
Lens epithelium-derived growth factor (LEDGF)/p75 is an important cellular co-factor for human immunodeficiency virus (HIV) replication. We originally identified LEDGF/p75 as a binding partner of integrase (IN) in human cells. The interaction has been mapped to the integrase-binding domain (IBD) of LEDGF/p75 located in the C-terminal part. We have subsequently shown that IN carrying the Q168A mutation remains enzymatically active but is impaired for interaction with LEDGF/p75. To map the integrase/LEDGF interface in more detail, we have now identified and characterized two regions within the enzyme involved in the interaction with LEDGF/p75. The first region centers around residues W131 and W132 while the second extends from I161 up to E170. For the different IN mutants the interaction with LEDGF/p75 and the enzymatic activities were determined. IN(W131A), IN(I161A), IN(R166A), IN(Q168A) and IN(E170A) are impaired for interaction with LEDGF/p75, but retain 3' processing and strand transfer activities. Due to impaired integration, an HIV-1 strain containing the W131A mutation in IN displays reduced replication capacity, whereas virus carrying IN(Q168A) is replication defective. Comparison of the wild-type IN-LEDGF/p75 co-crystal structure with that of the modelled structure of the IN(Q168A) and IN(W131A) mutant integrases corroborated our experimental data. 相似文献
2.
3.
Hayouka Z Hurevich M Levin A Benyamini H Iosub A Maes M Shalev DE Loyter A Gilon C Friedler A 《Bioorganic & medicinal chemistry》2010,18(23):8388-8395
Restricting linear peptides to their bioactive conformation is an attractive way of improving their stability and activity. We used a cyclic peptide library with conformational diversity for selecting an active and stable peptide that mimics the structure and activity of the HIV-1 integrase (IN) binding loop from its cellular cofactor LEDGF/p75 (residues 361-370). All peptides in the library had the same primary sequence, and differed only in their conformation. Library screening revealed that the ring size and linker structure had a huge effect on the conformation, binding and activity of the peptides. One of the cyclic peptides, c(MZ 4-1), was a potent and stable inhibitor of IN activity in vitro and in cells even after 8 days. The NMR structure of c(MZ 4-1) showed that it obtains a bioactive conformation that is similar to the parent site in LEDGF/p75. 相似文献
4.
5.
6.
HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells 总被引:22,自引:0,他引:22
Cherepanov P Maertens G Proost P Devreese B Van Beeumen J Engelborghs Y De Clercq E Debyser Z 《The Journal of biological chemistry》2003,278(1):372-381
We studied human immunodeficiency virus, type 1 (HIV-1) integrase (IN) complexes derived from nuclei of human cells stably expressing the viral protein from a synthetic gene. We show that in the nuclear extracts IN exists as part of a large distinct complex with an apparent Stokes radius of 61 A, which dissociates upon dilution yielding a core molecule of 41 A. We isolated the IN complexes from cells expressing FLAG-tagged IN and demonstrated that the 41 A core is a tetramer of IN, whereas 61 A molecules are composed of IN tetramers associated with a cellular protein with an apparent molecular mass of 76 kDa. This novel integrase interacting protein was found to be identical to lens epithelium-derived growth factor (LEDGF/p75), a protein implicated in regulation of gene expression and cellular stress response. HIV-1 IN and LEDGF co-localized in the nuclei of human cells stably expressing IN. Furthermore, recombinant LEDGF robustly enhanced strand transfer activity of HIV-1 IN in vitro. Our findings indicate that the minimal IN molecule in human cells is a homotetramer, suggesting that at least an octamer of IN is required to accomplish coordinated integration of both retroviral long terminal repeats and that LEDGF is a cellular factor involved in this process. 相似文献
7.
8.
9.
Melissa McNeely Jelle Hendrix Katrien Busschots Angélique Deleersnijder Frauke Christ 《Journal of molecular biology》2011,410(5):811-41825
Although LEDGF/p75 is believed to act as a cellular cofactor of lentiviral integration by tethering integrase (IN) to chromatin, there is no good in vitro model to analyze this functionality. We designed an AlphaScreen assay to study how LEDGF/p75 modulates the interaction of human immunodeficiency virus type 1 IN with DNA. IN bound with similar affinity to DNA mimicking the long terminal repeat or to random DNA. While LEDGF/p75 bound DNA strongly, a mutant of LEDGF/p75 with compromised nuclear localization signal (NLS)/AT hook interacted weakly, and the LEDGF/p75 PWWP domain did not interact, corroborating previous reports on the role of NLS and AT hooks in charge-dependent DNA binding. LEDGF/p75 stimulated IN binding to DNA 10-fold to 30-fold. Stimulation of IN-DNA binding required a direct interaction between IN and the C-terminus of LEDGF/p75. Addition of either the C-terminus of LEDGF/p75 (amino acids 325-530) or LEDGF/p75 mutated in the NLS/AT hooks interfered with IN binding to DNA. Our results are consistent with an in vitro model of LEDGF/p75-mediated tethering of IN to DNA. The inhibition of IN-DNA interaction by the LEDGF/p75 C-terminus may provide a novel strategy for the inhibition of HIV IN activity and may explain the potent inhibition of HIV replication observed after the overexpression of C-terminal fragments in cell culture. 相似文献
10.
Hao Wang Kellie A. Jurado Xiaolin Wu Ming-Chieh Shun Xiang Li Andrea L. Ferris Steven J. Smith Pratiq A. Patel James R. Fuchs Peter Cherepanov Mamuka Kvaratskhelia Stephen H. Hughes Alan Engelman 《Nucleic acids research》2012,40(22):11518-11530
The binding of integrase (IN) to lens epithelium-derived growth factor (LEDGF)/p75 in large part determines the efficiency and specificity of HIV-1 integration. However, a significant residual preference for integration into active genes persists in Psip1 (the gene that encodes for LEDGF/p75) knockout (KO) cells. One other cellular protein, HRP2, harbors both the PWWP and IN-binding domains that are important for LEDGF/p75 co-factor function. To assess the role of HRP2 in HIV-1 integration, cells generated from Hdgfrp2 (the gene that encodes for HRP2) and Psip1/Hdgfrp2 KO mice were infected alongside matched control cells. HRP2 depleted cells supported normal infection, while disruption of Hdgfrp2 in Psip1 KO cells yielded additional defects in the efficiency and specificity of integration. These deficits were largely restored by ectopic expression of either LEDGF/p75 or HRP2. The double-KO cells nevertheless supported residual integration into genes, indicating that IN and/or other host factors contribute to integration specificity in the absence of LEDGF/p75 and HRP2. Psip1 KO significantly increased the potency of an allosteric inhibitor that binds the LEDGF/p75 binding site on IN, a result that was not significantly altered by Hdgfrp2 disruption. These findings help to rule out the host factor-IN interactions as the primary antiviral targets of LEDGF/p75-binding site IN inhibitors. 相似文献
11.
Maertens G Cherepanov P Debyser Z Engelborghs Y Engelman A 《The Journal of biological chemistry》2004,279(32):33421-33429
Human lens epithelium-derived growth factor (LEDGF)/p75 protein forms a specific nuclear complex with human immunodeficiency virus type 1 (HIV-1) integrase and is essential for nuclear localization and chromosomal association of the viral protein. We now studied nuclear import of LEDGF/p75 in live and semipermeabilized cells. We show that nuclear import of LEDGF/p75 is GTP-, Ran-, importin-alpha/beta-, and energy-dependent and that the protein competes with the canonical SV40 large T antigen nuclear localization signal (NLS) for nuclear import receptors. We identified the NLS of LEDGF/p75 through deletion analysis and site-directed mutagenesis. The LEDGF/p75 NLS, 148GRKRKAEKQ156, belongs to the canonical SV40-like family. Fusion of this short peptide to the amino terminus of Escherichia coli beta-galactosidase rendered the fusion protein nuclear, confirming that the LEDGF/p75 NLS is transferable. Moreover, a single amino acid change in the NLS was sufficient to exclude the mutant LEDGF/p75 protein from the nucleus and abolish nuclear import of HIV-1 integrase. 相似文献
12.
Cherepanov P Sun ZY Rahman S Maertens G Wagner G Engelman A 《Nature structural & molecular biology》2005,12(6):526-532
Lens epithelium-derived growth factor (LEDGF)/p75 is the dominant binding partner of HIV-1 integrase (IN) in human cells. We have determined the NMR structure of the integrase-binding domain (IBD) in LEDGF and identified amino acid residues essential for the interaction. The IBD is a compact right-handed bundle composed of five alpha-helices. Based on folding topology, the IBD is structurally related to a diverse family of alpha-helical proteins that includes eukaryotic translation initiation factor eIF4G and karyopherin-beta. LEDGF residues essential for the interaction with IN were localized to interhelical loop regions of the bundle structure. Interaction-defective IN mutants were previously shown to cripple replication although they retained catalytic function. The initial structure determination of a host cell factor that tightly binds to a retroviral enzyme lays the groundwork for understanding enzyme-host interactions important for viral replication. 相似文献
13.
14.
A lens epithelium-derived growth factor (LEDGF)/p75 peptide was evaluated for human immunodeficiency virus type 1 integrase (IN) inhibitory activity. The LEDGF/p75 peptide modestly inhibited IN catalysis and was dependent on IN-DNA assembly. The peptide was also effective at disrupting LEDGF/p75-IN complex formation. We next investigated the activity of the LEDGF/p75 peptide on IN mutant proteins that are unable to catalyze the DNA strand transfer reaction. The LEDGF/p75 peptide displayed an increased potency on these IN proteins, from 5-fold to greater than 10-fold, indicating the IN multimeric state greatly influences the peptide inhibitory effects. These results shed light on IN-DNA multimeric formation, and how this process influences the LEDGF/p75-IN interaction. 相似文献
15.
Anne M. Meehan Dyana T. Saenz James H. Morrison Jose A. Garcia-Rivera Mary Peretz Manuel Llano Eric M. Poeschla 《PLoS pathogens》2009,5(7)
LEDGF/p75 can tether over-expressed lentiviral integrase proteins to chromatin but how this underlies its integration cofactor role for these retroviruses is unclear. While a single integrase binding domain (IBD) binds integrase, a complex N-terminal domain ensemble (NDE) interacts with unknown chromatin ligands. Whether integration requires chromatin tethering per se, specific NDE-chromatin ligand interactions or other emergent properties of LEDGF/p75 has been elusive. Here we replaced the NDE with strongly divergent chromatin-binding modules. The chimeras rescued integrase tethering and HIV-1 integration in LEDGF/p75-deficient cells. Furthermore, chromatin ligands could reside inside or outside the nucleosome core, and could be protein or DNA. Remarkably, a short Kaposi''s sarcoma virus peptide that binds the histone 2A/B dimer converted GFP-IBD from an integration blocker to an integration cofactor that rescues over two logs of infectivity. NDE mutants were corroborative. Chromatin tethering per se is a basic HIV-1 requirement and this rather than engagement of particular chromatin ligands is important for the LEDGF/p75 cofactor mechanism. 相似文献
16.
Rik Schrijvers Sofie Vets Jan De Rijck Nirav Malani Frederic D Bushman Zeger Debyser Rik Gijsbers 《Retrovirology》2012,9(1):1-7
Background
The cellular activity of many factors and pathways is required to execute the complex replication cycle of the human immunodeficiency virus type 1 (HIV-1). To reveal these cellular components, several extensive RNAi screens have been performed, listing numerous 'HIV-dependency factors'. However, only a small overlap between these lists exists, calling for further evaluation of the relevance of specific factors to HIV-1 replication and for the identification of additional cellular candidates. TBC1D20, the GTPase-activating protein (GAP) of Rab1, regulates endoplasmic reticulum (ER) to Golgi trafficking, was not identified in any of these screens, and its involvement in HIV-1 replication cycle is tested here.Findings
Excessive TBC1D20 activity perturbs the early trafficking of HIV-1 envelope protein through the secretory pathway. Overexpression of TBC1D20 hampered envelope processing and reduced its association with detergent-resistant membranes, entailing a reduction in infectivity of HIV-1 virion like particles (VLPs).Conclusions
These findings add TBC1D20 to the network of host factors regulating HIV replication cycle. 相似文献17.
18.
19.
Rik Schrijvers Jan De Rijck Jonas Demeulemeester Noritaka Adachi Sofie Vets Keshet Ronen Frauke Christ Frederic D. Bushman Zeger Debyser Rik Gijsbers 《PLoS pathogens》2012,8(3)
Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2), the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs) remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors. 相似文献
20.
To replicate, a retrovirus must integrate a DNA copy of its RNA genome into a chromosome of the host cell. Integration is not random in the host genome but favors particular regions, and preferences differ among retroviruses. Several mechanisms might play a part in this favored integration targeting: (i) open chromatin might be preferentially accessible for viral DNA integration; (ii) DNA replication during cell division might facilitate access of integration complexes to favored sites; and (iii) cellular proteins bound to the host chromosome might tether integration complexes to favored regions. This review summarizes recent advances in understanding the mechanisms of retroviral integration, focusing on LEDGF/p75--the first cellular protein shown to have a role in directing HIV DNA integration. Studies on LEDGF/p75 indicate that it directs HIV integration site selection by a tethering interaction, whereas the chromatin accessibility or cell cycle models are less well supported. Understanding viral integration will help improve the safety of retrovirus-based vectors used in gene therapy. 相似文献