首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical rearrangement and repair pathways of 1,N6-ethenoadenine   总被引:1,自引:0,他引:1  
Speina E  Kierzek AM  Tudek B 《Mutation research》2003,531(1-2):205-217
1,N(6)-Ethenoadenine (epsilonA) is an exocyclic DNA adduct introduced to DNA by vinyl chloride and related compounds as well as in the consequence of oxidative stress and lipid peroxidation (LPO). This highly genotoxic DNA damage is chemically unstable and either depurinates or converts into pyrimidine ring-opened secondary lesions. We have studied the structures of derivatives formed during epsilonA chemical rearrangement and identified enzymes repairing one of the rearrangement products. Rearrangement involves a water molecule addition to the C(2)-N(3) bond of epsilonA, resulting in formation of pyrimidine ring-closed B1 product, which is in equilibrium with pyrimidine ring-opened B2 compound. B2 further deformylates to yield compound C. N-Glycosidic bond of compound C is unstable and C depurinates, yielding compound D. These secondary lesions are not repaired by alkylpurine DNA N-glycosylase, which excises the parental epsilon A. Compound B, when paired with thymine and cytosine is efficiently excised by Escherichia coli formamidopirymidine DNA N-glycosylase (Fpg), and thymine glycol DNA N-glycosylases from E. coli (Nth) and Saccharomyces cerevisiae (Ntg2). B is eliminated from B:G pair only by Nth and Ntg2 glycosylases, however none of the enzymes studied is excising B from B:A pair. This enables finishing of rearrangement, formation of AP sites and subsequently DNA strand breaks. During in vitro translesion synthesis, C is much easier bypassed by DNA polymerases, than compound B, and also than the parental epsilonA as well as than the AP site. This bypass beyond C proceeds mainly by misinsertion of adenine and guanine, or by insertion of thymine, the latter restoring the parental A:T pair. Alternatively, looping out of adducted nucleotide alone or with adjacent one generates one- or two-nucleotide deletions. This may explain the previously reported 20-fold higher mutagenic potency of product C in comparison to epsilon A in E. coli [Biochemistry 32 (1993) 12793].  相似文献   

2.
It was previously shown that 1,N(6)-ethenoadenine (epsilonA) in DNA rearranges into a pyrimidine ring-opened derivative of 20-fold higher mutagenic potency in Escherichia coli (AB1157 lacDeltaU169) than the parental epsilonA (Basu, A. K., Wood, M. L., Niedernhofer, L. J., Ramos, L. A., and Essigmann, J. M. (1993) Biochemistry 32, 12793-12801). We have found that at pH 7.0, the stability of the N-glycosidic bond in epsilondA is 20-fold lower than in dA. In alkaline conditions, but also at neutrality, epsilondA depurinates or converts into products: epsilondA --> B --> C --> D. Compound B is a product of water molecule addition to the C(2)-N(3) bond, which is in equilibrium with a product of N(1)-C(2) bond rupture in epsilondA. Compound C is a deformylated derivative of ring-opened compound B, which further depurinates yielding compound D. Ethenoadenine degradation products are not recognized by human N-alkylpurine-DNA glycosylase, which repairs epsilonA. Product B is excised from oligodeoxynucleotides by E. coli formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease III (Nth). Repair by the Fpg protein is as efficient as that of 7,8-dihydro-8-oxoguanine when the excised base is paired with dT and dC but is less favorable when paired with dG and dA. Ethenoadenine rearrangement products are formed in oligodeoxynucleotides also at neutral pH at the rate of about 2-3% per week at 37 degrees C, and therefore they may contribute to epsilonA mutations.  相似文献   

3.
Various forms of oxidative stress lead to the formation of damaged bases including N-(2-deoxy-beta-D-erythro-pentofuranosyl)-N-3-(2R-hydroxyisobutyric acid)-urea or alphaRT, the fragmentation product of thymine formed from 5R-thymidine C5-hydrate upon hydrolysis. It was shown that alphaRT is excised by Escherichia coli Fpg and Nth proteins. Here we report that when present in DNA, alphaRT is, in addition, a substrate for the E. coli AlkA protein with an apparent K(m) value of congruent with170 nM. alphaRT positioned opposite T, dG, dC, and dA were efficiently excised by AlkA protein from duplex oligodeoxynucleotides in the following order: dA approximately T > dC approximately dG. This is the first example of the excision of a ring opened form of a pyrimidine by AlkA protein and also the first example where the same DNA base lesion is excised by three different DNA glycosylases of the base excision repair pathway. The present results suggest possible structural similarity of the active site between E. coli AlkA, Fpg, and Nth proteins.  相似文献   

4.
DNA base analogs, 2,4,5,6-substituted pyrimidines and 2,6-substituted purines were tested as potential inhibitors of E. coli Fpg protein (formamidopyrimidine -DNA glycosylase). Three of the seventeen compounds tested revealed inhibitory properties. 2-Thioxanthine was the most efficient, inhibiting 50% of 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7MeG) excision activity at 17.1 microM concentration. The measured K(i) was 4.44 +/- 0.15 microM. Inhibition was observed only when the Fpg protein was first challenged to its substrate followed by the addition of the base analog, suggesting uncompetitive (catalytic) inhibition. For two other compounds, 2-thio- or 2-oxo-4,5,6-substituted pyrimidines, IC(50) was only 343.3 +/- 58.6 and 350 +/- 24.4 microM, respectively. No change of the Fpg glycosylase activity was detected in the presence of Fapy-7MeG, up to 5 microM. We also investigated the effect of DNA structure modified by tryptophan pyrolysate (Trp-P-1) on the activity of base excision repair enzymes: Escherichia coli and human DNA glycosylases of oxidized (Fpg, Nth) and alkylated bases (TagA, AlkA, and ANPG), and for bacterial AP endonuclease (Xth protein). Trp-P-1, which changes the secondary DNA structure into non-B, non-Z most efficiently inhibited excision of alkylated bases by the AlkA glycosylase (IC(50) = 1 microM). The ANPG, TagA, and Fpg proteins were also inhibited although to a lesser extent (IC(50) = 76.5 microM, 96 microM, and 187.5 microM, respectively). Trp-P-1 also inhibited incision of DNA at abasic sites by the beta-lyase activity of the Fpg and Nth proteins, and to a lesser extent by the Xth AP endonuclease. Thus, DNA conformation is critical for excision of damaged bases and incision of abasic sites by DNA repair enzymes.  相似文献   

5.
Ionizing radiation and radiomimetic anticancer agents induce clustered DNA damages that are thought to lead to deleterious biological consequences, due to the challenge that clustered damage may present to the repair machinery of the cell. Specific oligonucleotides, containing either dihydrothymine (DHT) or 7,8-dihydro-8-oxoguanine (8-oxoG) opposite to specific lesions at defined positions on the complementary strand, have been used to determine the kinetic constants, K(M), k(cat), and specificity constants, for excision of DHT and 8-oxoG by the Escherichia coli base excision repair proteins, endonuclease III (Nth) and formamidopyrimidine glycosylase (Fpg), respectively. For excision of DHT opposite to 8-oxoadenine by Nth or Fpg proteins, or 8-oxoG opposite to 8-oxoG by Fpg, the major change in the specificity constant occurs when the second lesion on the complementary strand is one base to the site opposite to DHT or 8-oxoG. The specificity constants for excision of DHT or 8-oxoG by both proteins are reduced by up to 2 orders of magnitude when an abasic site or a strand break is opposite on the complementary strand. Whereas the values of K(M) are only slightly affected by the presence of a second lesion, the major change is seen as a reduction in the values of k(cat). The binding of Fpg protein to oligonucleotides containing 8-oxoG is inhibited, particularly when a single strand break is near to 8-oxoG on the complementary strand. It is inferred that not only the binding affinity of Fpg protein to the base lesion but also the rate of excision of the damaged base is reduced by the presence of another lesion, particularly a single strand break or an AP site on the complementary strand.  相似文献   

6.
A human cDNA coding sequence for a 3-methyladenine-DNA glycosylase was expressed in Escherichia coli. In addition to the full-length 3-methyladenine-DNA glycosylase coding sequence, two other sequences (resulting from differential RNA splicing and the truncated anpg cDNA) derived from that sequence were also expressed. All three proteins were purified to physical homogeneity and their N-terminal amino acid sequences are identical to those predicted by the nucleic acid sequences. The full-length protein has 293 amino acids coding for a protein with a molecular mass of 32 kDa. Polyclonal antibodies against one of the proteins react with the other two proteins, and a murine 3-methyladenine-DNA glycosylase, but not with several other E. coli DNA repair proteins. All three proteins excise 3-methyl-adenine, 7-methylguanine, and 3-methylguanine as well as ethylated bases from DNA. The activities of the proteins with respect to ionic strength (optimum 100 mM KCl), pH (optimum 7.6), and kinetics for 3-methyladenine and 7-methylguanine excision (average values: 3-methyladenine: Km 9 nM and kcat 10 min-1, 7-methylguanine: Km 29 nM and kcat 0.38 min-1) are comparable. In contrast to these results, however, the thermal stability of the full-length and splicing variant proteins at 50 degrees C is less than that of the truncated protein.  相似文献   

7.
X-ray diffraction studies of human thrombin revealed that compared with trypsin, two insertions (B and C) potentially limit access to the active site groove. When amino acids Glu146, Thr147, and Trp148, adjacent to the C-insertion (autolysis loop), are deleted the resulting thrombin (des-ETW) has dramatically altered interaction with serine protease inhibitors. Whereas des-ETW resists antithrombin III inactivation with a rate constant (Kon) approximately 350-fold slower than for thrombin, des-ETW is remarkably sensitive to the Kunitz inhibitors, with inhibition constants (Ki) decreased from 2.6 microM to 34 nM for the soybean trypsin inhibitor and from 52 microM to 1.8 microM for the bovine pancreatic trypsin inhibitor. The affinity for hirudin (Ki = 5.6 pM) is weakened at least 30-fold compared with recombinant thrombin. The mutation affects the charge stabilizing system and the primary binding pocket of thrombin as depicted by a decrease in Kon for diisopropylfluorophosphate (9.5-fold) and for N alpha-p-tosyl-L-lysine-chloromethyl ketone (51-fold) and a 39-fold increase in the Ki for benzamidine. With peptidyl p-nitroanilide substrates, the des-ETW deletion results in changes in the Michaelis (Km) and/or catalytic (kcat) constants, worsened as much as 85-fold (Km) or 100-fold (kcat). The specific clotting activity of des-ETW is less than 5% that of thrombin and the kcat/Km for protein C activation in the absence of cofactor less than 2%. Thrombomodulin binds to des-ETW with a dissociation constant of approximately 2.5 nM and partially restores its ability to activate protein C since, in the presence of the cofactor, kcat/Km rises to 6.5% that of thrombin. This study suggests that the ETW motif of thrombin prevents (directly or indirectly) its interaction with the two Kunitz inhibitors and is not essential for the thrombomodulin-mediated enhancement of protein C activation.  相似文献   

8.
Kinetic analyses were done to determine what effect factor Xa and protein S had on the activated protein C (APC)-catalyzed inactivation of factor Va bound to phospholipid vesicles or human platelets. In the presence of optimal concentrations of phospholipid vesicles and Ca2+, a Km of 19.7 +/- 0.6 nM factor Va and a kcat of 23.7 +/- 10 mol of factor Va inactivated/mol of APC/min were obtained. Added purified plasma protein S increased the maximal rate of factor Va inactivation only 2-fold without effect on the Km. Protein S effect was unaltered when the phospholipid concentration was varied by 2 orders of magnitude. The reaction on unactivated human platelets yielded a Km = 12.5 +/- 2.6 nM and kcat = 6.2 +/- 0.6 mol of factor Va inactivated/mol of APC/min. Added purified plasma protein S or release of platelet protein S by platelet activation doubled the kcat value without affecting the Km. Addition of a neutralizing anti-protein S antibody abrogated the effect of plasma protein S or platelet-released protein S, but was without effect in the absence of plasma protein S or platelet activation. Studies with factor Xa indicated that factor Xa protects factor Va from APC-catalyzed inactivation by lowering the effective concentration of factor Va available to interact with APC. From these data a dissociation constant of less than 0.5 nM was calculated for the interaction of factor Xa with membrane-bound factor Va. Protein S abrogated the ability of factor Xa to protect factor Va from inactivation by APC without affecting the interaction of factor Xa with factor Va. These combined data suggest that one physiological function of protein S is to allow the APC-catalyzed inactivation of factor Va in the presence of factor Xa.  相似文献   

9.
Recombinant full-length human procathepsin F, produced in the baculovirus expression system, was partially processed during the purification procedure to a form lacking the N-terminal cystatin-like domain and activated with pepsin. Active cathepsin F efficiently hydrolyzed Z-FR-MCA (kcat/Km=106 mM(-1) s(-1)) and Bz-FVR-MCA (kcat/Km=8 mM(-1) s(-1)), whereas hydrolysis of Z-RR-MCA was very slow (kcat/Km<0.2 mM(-1) s(-1)). Cathepsin F was rapidly and tightly inhibited by cystatin C, chicken cystatin and equistatin with Ki values in the subnanomolar range (0.03-0.47 nM), whereas L-kininogen was a less strong inhibitor of the enzyme (Ki=4.7 nM). Stefin A inhibited cathepsin F slowly (kass=1.6 x 10(5) M(-1) s(-1)) and with a lower affinity (Ki=25 nM). These data suggest that cathepsin F differs from other related endopeptidases by considerably weaker inhibition by stefins.  相似文献   

10.
Production of thrombin by phospholipid-bound prothrombinase complexes has been described as being regulated by the prothrombin concentration in the buffer (free-substrate model) as well as by the concentration of prothrombin adsorbed to the phospholipid surface (bound-substrate model). We studied simultaneous adsorption and conversion of prothrombin on planar bilayers consisting of 20% dioleoylphosphatidylserine and 80% dioleoylphosphatidylcholine. A transport limitation in the conversion of prothrombin was prevented by using a very low (0.3 fmol cm-2) amount of prothrombinase on the bilayer. The Michaelis and catalytic constants thus found were Km = 5.8 +/- 0.7 nM and kcat = 33 +/- 1 s-1 (mean +/- S.D.). The apparent bimolecular rate constant Kcat/Km = 5.7 x 10(9) M-1 s-1 exceeds the theoretically maximal value for the free-substrate model. In contrast, kcat/Km is within the range expected for a diffusion-controlled bound-substrate model. A similar mechanism for prothrombin conversion in suspensions of phospholipid vesicles would imply increasing kcat/Km values for increasing vesicle diameter. This prediction was tested and a 3-fold increase in kcat/Km values was indeed found for vesicles 60-80 nm in diameter compared to vesicles of 20-30 nm diameter. It is concluded that thrombin production is dependent on protein fluxes rather than on protein concentrations.  相似文献   

11.
Intrinsic versus extrinsic coagulation. Kinetic considerations.   总被引:3,自引:1,他引:2       下载免费PDF全文
A study to compare the kinetics of activation of factor IX by Factor XIa/Ca2+ and by Factor VIIa/tissue factor/Ca2+ has been undertaken. When purified human proteins, detergent-extracted brain tissue factor and tritiated-activation-peptide-release assays were utilized, the kinetic constants obtained were: Km = 310 nM, kcat. = 25 min-1 for Factor XIa and Km = 210 nM, kcat. = 15 min-1 for Factor VIIa. The kinetic constants for the activation of Factor X by Factor VIIa/brain tissue factor were: Km = 205 nM, kcat. = 70 min-1. Predicted rates for the generation of Factor IXa and Factor Xa were obtained when human monocytic tumour U937 cells (source of tissue factor) and Factor VIIa were used to form the activator. In other experiments, inclusion of high-Mr kininogen did not increase the activation rates of Factor IX by Factor XIa in the presence or absence of platelets and/or denuded rabbit aorta. These kinetic data strongly indicate that both Factor XIa and Factor VIIa play physiologically significant roles in the activation of Factor IX.  相似文献   

12.
Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases   总被引:4,自引:0,他引:4  
Under conditions of oxidative stress, the formamidopyrimidine lesions (FapyG and FapyA) are formed in competition with the corresponding 8-oxopurines (OG and OA) from a common intermediate. In order to reveal features of the repair of these lesions, and the potential contribution of repair in mitigating or exacerbating the mutagenic properties of Fapy lesions, their excision by three glycosylases, Fpg, hOGG1 and Ntg1, was examined in various base pair contexts under single-turnover conditions. FapyG was removed at least as efficiently as OG by all three glycosylases. In addition, the rates of removal of FapyG by Fpg and hOGG1 were influenced by their base pair partner, with preference for removal when base paired with the correct Watson-Crick partner C. With the FapyA lesion, Fpg and Ntg1 catalyze its removal more readily than OG opposite all four natural bases. In contrast, the removal of FapyA by hOGG1 was not as robust as FapyG or OG, and was only significant when the lesion was paired with C. The discrimination by the various glycosylases with respect to the opposing base was highly dependent on the identity of the lesion. OG induced the greatest selectivity against its removal when part of a promutagenic base pair. The superb activity of the various OG glycosylases toward removal of FapyG and FapyA in vitro suggests that these enzymes may act upon these oxidized lesions in vivo. The differences in the activity of the various glycosylases for removal of FapyG and FapyA compared to OG in nonmutagenic versus promutagenic base pair contexts may serve to alter the mutagenic profiles of these lesions in vivo.  相似文献   

13.
Fapy.dA is produced in DNA as a result of oxidative stress. Recently, this lesion and its C-nucleoside analogues were incorporated in chemically synthesized oligonucleotides at defined sites. The interaction of DNA containing Fapy.dA or nonhydrolyzable analogues with Fpg and MutY is described. Fpg efficiently excises Fapy.dA (K(m) = 1.2 nM, k(cat) = 0.12 min(-1)) opposite T. The lesion is removed as efficiently from duplexes containing Fapy.dA:dA or Fapy.dA:dG base pairs. Multiple turnovers are observed for the repair of Fapy.dA mispairs in a short period of time, indicating that the enzyme does not remain bound to the product duplex. MutY does not incise dA from a duplex containing this nucleotide opposite Fapy.dA, nor does it exhibit an increased level of binding compared to DNA composed solely of native base pairs. MutY also does not incise Fapy.dA when the lesion is opposite dG. These data suggest that Fapy.dA could be deleterious to the genome. Fpg strongly binds duplexes containing the beta-C-nucleoside analogue of Fapy.dA (beta-C-Fapy.dA) opposite all native nucleotides (K(D) < 27 nM), as well as the alpha-C-nucleoside (alpha-C-Fapy.dA) opposite dC (K(D) = 7.1 +/- 1.5 nM). A duplex containing a beta-C-Fapy.dA:T base pair is an effective inhibitor (K(I) = 3.5 +/- 0.3 nM) of repair of Fapy.dA by Fpg, suggesting the C-nucleoside may have useful therapeutic properties.  相似文献   

14.
The TaqI restriction endonuclease recognizes and cleaves the duplex DNA sequence T decreases CGA. Steady state kinetic analysis with a small oligodeoxyribonucleotide substrate showed that the enzyme obeyed Michaelis-Menten kinetics (Km = 53 nM, kcat = 1.3 min-1 at 50 degrees C and Km = 0.5 nM, kcat = 2.9 min-1 at 60 degrees C). At 0 degree C, the enzyme was completely inactive, while at 15 degrees C, turnover produced nicked substrate as the major product in excess of enzyme indicating dissociation between nicking events. Above 37 degrees C, both strands in the duplex were cleaved prior to dissociation. In contrast to the tight, temperature-dependent binding of substrate, binding of the Mg2+ cofactor was weak (Kd = 2.5 mM) and the same at either 50 degrees C or 60 degrees C. Single-turnover experiments using oligonucleotide substrate showed that hydrolysis of duplex DNA occurred via two independent nicking events, each with a first order rate constant (kst) of 5.8 min-1 at 60 degrees C and 3.5 min-1 at 50 degrees C. The pH dependence of Km (pKa = 9) and kst (pKa = 7) suggests Lys/Arg and His, respectively, as possible amino acids influencing these constants. Moreover, although kst increased significantly with pH, kcat did not, indicating that at least two steps can be rate-controlling in the reaction pathway. Binding of protein to canonical DNA in the presence of Mg2+ at 0 degree C or in the absence of Mg2+ at 50 degrees C was weak (Kd = 2.5 microM or 5,000-fold weaker than the optimal measured Km) and equal to the binding of noncanonical DNA as judged by retention on nitrocellulose. Similar results were seen in gel retardation assays. These results suggest that both Mg2+ and high temperature are required to attain the correct protein conformation to form the tight complex seen in the steady state analysis. In the accompanying paper (Zebala, J. A., Choi, J., Trainor, G. L., and Barany, F. (1992) J. Biol. Chem. 267, 8106-8116), we report how these kinetic constants are altered using substrate analogues and propose a model of functional groups involved in TaqI endonuclease recognition.  相似文献   

15.
Fragmentation of purine imidazole ring and production of formamidopyrimidines in deoxynucleosides (Fapy lesions) occurs upon DNA oxidation as well as upon spontaneous or alkali-triggered rearrangement of certain alkylated bases. Many chemotherapeutic agents such as cyclophosphamide or thiotepa produce such lesions in DNA. Unsubstituted FapyA and FapyG, formed upon DNA oxidation cause moderate inhibition of DNA synthesis, which is DNA polymerase and sequence dependent. Fapy-7MeG, a methylated counterpart of FapyG-, a efficiently inhibits DNA replication in vitro and in E.coli, however its mutagenic potency is low. This is probably due to preferential incorporation of cytosine opposite Fapy-7MeG and preferential extension of Fapy-7MeG:C pair. In contrast, FapyA and Fapy-7MeA possess miscoding potential. Both lesions in SOS induced E.coli preferentially mispair with cytosine giving rise to A-->G transitions. Fapy lesions substituted with longer chain alkyl groups also show simult aneous lethal and mutagenic properties. Fapy lesions are actively eliminated from DNA by repair glycosylases specific for oxidized purines and pyrimidines both in bacteria and eukaryotic cells. Bacterial enzymes include E.coli formamidopyrimidine-DNA-glycosylase (Fpg protein), endonuclease III (Nth protein) and endonuclease VIII (Nei protein).  相似文献   

16.
Leipold MD  Muller JG  Burrows CJ  David SS 《Biochemistry》2000,39(48):14984-14992
An intriguing feature of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) is that it is highly reactive toward further oxidation. Indeed, OG has been shown to be a "hot spot" for oxidative damage and susceptible to oxidation by a variety of cellular oxidants. Recent work has identified two new DNA lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), resulting from one-electron oxidation of OG. The presence of Gh and Sp lesions in DNA templates has been shown to result in misinsertion of G and A by DNA polymerases, and therefore, both are potentially mutagenic DNA lesions. The base excision repair (BER) glycosylases Fpg and MutY serve to prevent mutations associated with OG in Escherichia coli, and therefore, we have investigated the ability of these two enzymes to process DNA duplex substrates containing the further oxidized OG lesions, Gh and Sp. The Fpg protein, which removes OG and a variety of other oxidized purine base lesions, was found to remove Gh and Sp efficiently opposite all four of the natural DNA bases. The intrinsic rate of damaged base excision by Fpg was measured under single-turnover conditions and was found to be highly dependent upon the identity of the base opposite the OG, Gh, or Sp lesion; as expected, OG is removed more readily from an OG:C- than an OG:A-containing substrate. However, when adenine is paired with Gh or Sp, the rate of removal of these damaged lesions by Fpg was significantly increased relative to the rate of removal of OG from an OG:A mismatch. The adenine glycosylase MutY, which removes misincorporated A residues from OG:A mismatches, is unable to remove A paired with Gh or Sp. Thus, the activity of Fpg on Gh and Sp lesions may dramatically influence their mutagenic potential. This work suggests that, in addition to OG, oxidative products resulting from further oxidation of OG should be considered when evaluating oxidative DNA damage and its associated effects on DNA mutagenesis.  相似文献   

17.
1. The pH-dependence is considered of a reaction between E and S that proceeds through an intermediate ES under "Briggs-Haldane' conditions, i.e. there is a steady state in ES and [S]o greater than [E]T, where [S]o is the initial concentration of S and [E]T is the total concentration of all forms of E. Reactants and intermediates are assumed to interconvert in three protonic states (E equilibrium ES; EH equilibrium EHS; EH2 equilibrium EH2S), but only EHS provides products by an irreversible reaction whose rate constant is kcat. Protonations are assumed to be so fast that they are all at equilibrium. 2. The rate equation for this model is shown to be v = d[P]/dt = (kcat.[E]T[S]o/A)/[(KmBC/DA) + [S]o], where Km is the usual assembly of rate constants around EHS and A-D are functions of the form (1 + [H]/K1 + K2/[H]), in which K1 and K2 are: in A, the molecular ionization constants of ES; in B, the analogous constants of E; in C and D, apparent ionization constants composed of molecular ionization constants (of E or ES) and assemblies of rate constants. 3. As in earlier treatments of this type of reaction which involve either the assumption that the reactants and intermediate are in equilibrium or the assumption of Peller & Alberty [(1959) J. Am. Chem. Soc. 81, 5907-5914] that only EH and EHS interconvert directly, the pH-dependence of kcat. is determined only by A. 4. The pH-dependence of Km is determined in general by B-C/A-D, but when reactants and intermediate are in equilibrium, C identical to D and this expression simplifies to B/A. 5. The pH-dependence of kcat./Km, i.e. of the rate when [S]o less than Km, is not necessarily a simple bell-shaped curve characterized only by the ionization constants of B, but is a complex curve characterized by D/B-C. 6. Various situations are discussed in which the pH-dependence of kcat./Km is determined by assemblies simpler than D/B-C. The special situation in which a kcat./Km-pH profile provides the molecular pKa values of the intermediate ES complex is delineated.  相似文献   

18.
The kinetics of excision of damaged purine bases from oxidatively damaged DNA by Escherichia coli Fpg protein were investigated. DNA substrates, prepared by treatment with H2O2/Fe(III)-EDTA or by gamma-irradiation under N2O or air, were incubated with Fpg protein, followed by precipitation of DNA. Precipitated DNA and supernatant fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. Kinetic studies revealed efficient excision of 8-hydroxyguanine (8-OH-Gua), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua) and 4, 6-diamino-5-formamidopyrimidine (FapyAde). Thirteen other modified bases in the oxidized DNA substrates, including 5-hydroxycytosine and 5-hydroxyuracil, were not excised. Excision was measured as a function of enzyme concentration, substrate concentration, time and temperature. The rate of release of modified purine bases from the three damaged DNA substrates varied significantly even though each DNA substrate contained similar levels of oxidative damage. Specificity constants (kcat/KM) for the excision reaction indicated similar preferences of Fpg protein for excision of 8-OH-Gua, FapyGua and FapyAde from each DNA substrate. These findings suggest that, in addition to 8-OH-Gua, FapyGua and FapyAde may be primary substrates for this enzyme in cells.  相似文献   

19.
1. N-Acetyl-L-phenylalanylglycine 4-nitroanilide and its D-enantiomer were synthesized and characterized and used as substrates with which to evaluate stereochemical selectivity in papain (EC 3.4.22.2)-catalysed hydrolysis. 2. Kinetic analysis at pH 6.0, I 0.1, 8.3% (v/v) NN-dimethylformamide and 25 degrees C by using initial-rate data with [S] much less than Km and weighted non-linear regression provided values of kcat./Km for the catalysed hydrolysis of both enantiomers as (kcat./Km)L = 2040 +/- 48 M-1.S-1 and (kcat./Km)D = 5.9 +/- 0.07 M-1.S-1. These data, taken together with individual values of kcat. and Km for the hydrolysis of the L-enantiomer (a) estimated in the present work as kcat. = 3.2 +/- 1.2 S-1 and Km = 1.5 +/- 0.6 mM and (b) reported by Lowe & Yuthavong [(1971) Biochem. J. 124, 107-115] for the reaction at pH 6.0 in 10% (v/v) NN-dimethylformamide and 35 degrees C, as kcat. = 1.3 +/- 0.2 S-1 and Km = 0.88 +/- 0.1 mM, suggest that (kcat./Km)L congruent to 2000 M-1.S-1 and thus that (kcat./Km)L/(kcat./Km)D congruent to 330.3. Model building indicates that both enantiomeric 4-nitroanilides can bind to papain such that the phenyl ring of the N-acetylphenylalanyl group makes hydrophobic contacts in the S2 subsite with preservation of mechanistically relevant hydrogen-bonding interactions and that the main difference is in the positioning of the beta-methylene group. 4. The dependence of P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry for reactions involving derivatives of N-acetylphenylalanine is discussed. The variation in the index of stereochemical selectivity (ratio of the appropriate kinetic or thermodynamic parameter for a given pair of enantiomeric ligands), from 330 for the overall acylation process of the catalytic act, through 40 and 31 for the reaction at electrophilic sulphur in 2-pyridyl disulphides respectively without and with assistance by (His-159)-Im(+)-H, to 5 for the formation of thiohemiacetal adducts by reaction at aldehydic carbon, is interpreted in terms of the extent to which conformational variation of the bound ligand in the catalytic-site region permits the binding mode of the -CH2-Ph group of the D-enantiomer to approach that of the L-enantiomer.  相似文献   

20.
Fpg protein (formamidopyrimidine or 8-oxoguanine DNA glycosylase) from E. coli catalyzes excision of several damaged purine bases, including 8-oxoguanine and 2,6-diamino-4-hydroxy-5-N-methylformamidopyrimidine from DNA. In this study the interaction of E. coli Fpg with various specific and nonspecific oligodeoxynucleotides was analyzed. Fpg was shown to remove 8-oxoguanine efficiently, not only from double-stranded, but also from single-stranded oligodeoxynucleotides. The Michaelis constants (KM) of a range of single-stranded oligodeoxynucleotides (0.55-1.3 microM) were shown to be 12-170 times higher that those for corresponding double-stranded oligodeoxynucleotides (KM = 6-60 nM). Depending on the position of the 8-oxoguanine within the oligodeoxynucleotides, relative initial rates of conversion of single-stranded substrates were found to be lower than, comparable to, or higher than those for double-stranded oligodeoxynucleotides. The enzyme can interact effectively not only with specific, but also with nonspecific single-stranded and double-stranded oligodeoxynucleotides, which are competitive inhibitors of the enzyme towards substrate. Fpg became irreversibly labeled after UV-irradiation in the presence of photoreactive analogs of single-stranded and double-stranded oligodeoxynucleotides. Specific and nonspecific single-stranded and double-stranded oligodeoxynucleotides essentially completely prevented the covalent binding of Fpg by the photoreactive analog. All these data argue for similar interactions occurring in the DNA binding cleft of the enzyme with both specific and nonspecific oligodeoxynucleotides. The relative affinities of Fpg for specific and nonspecific oligodeoxynucleotides differ by no more than 2 orders of magnitude. Addition of the second complementary chain increases the affinity of the first single-stranded chain by a factor of approximately 10. It is concluded that Michaelis complex formation of Fpg with DNA containing 8-oxoG cannot alone provide the major part of the enzyme specificity, which is found to lie in the kcat term for catalysis; the reaction rate being increased by 6-7 orders of magnitude by the transition from nonspecific to specific oligodeoxynucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号