首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of four wild rices evaluated, Oryza perennis and O. punctata showed resistance to rice leaffolder, Cnaphalocrocis medinalis (Guenée), whereas O. australiensis and O. nivara were moderately resistant. C. medinalis larvae showed a strong nonpreference for settling and feeding on Oryza australiensis, O. perennis and O. nivara as compared to susceptible IR36 rice variety. Among wild rices tested, however, only O. australiensis, was more preferred for larval settling and feeding than resistant TKM6 plants. The growth index of C. medinalis on all wild rices, except O. punctata was significantly lower than on IR36 and TKM6 plants. First-instar larvae caged on O. perennis showed significantly lower larval and pupal weights than those on other wild rices. Incorporation of dry leaf powder of O. punctata and O. perennis wild rices in an artificial diet caused high larval mortality. Ovipositing gravid females showed less preference for wild rices than for IR36 and TKM6 plants.Based at the International Rice Research Institute (IRRI), P.O. Box 933, Manila, Philippines  相似文献   

2.
The flight activity of yellow stem borer Scirpophaga incertulas (Walker) (Lepidoptera: Pyralidae) peaked in the months of April-May, May-June, August-September and October. The number of egg masses and the number of adults attracted to light sources were the indicators of S. incertulas flight activity. The rice varieties TKM6, IR22, IR60, IR66 and IR74 were infested at 7, 10, 12 and 16 wk after planting with 5, 10, 20 and 40 neonates of S. incertulas. All varieties except IR66 were susceptible to dead heart damage by S. incertulas. When the rice varieties TKM6, BPIRi2, BPIRi4, IR22, IR36, IR60, IR66 and IR74 were treated with carbofuran insecticide at the time of peak oviposition by S. incertulas in the field, the dead heart damage on all the varieties was significantly reduced in comparison with the untreated plots. Indiscriminate routine insecticidal treatments (fixed schedule) can be replaced by a treat-when-necessary schedule based on the population dynamics of S. incertulas.  相似文献   

3.
Leaf age and larval performance of the leaf beetle Paropsis atomaria   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 Larval performance of the leaf beetle Paropsis atomaria Oliver was determined for larvae raised on both new and mature leaves of Eucalyptus blakelyi Maiden. Larvae were transferred to mature leaves at different ages; control larvae stayed on new leaves through all instars.
  • 2 Only larvae reared on new leaves through the third instar survived to pupate on mature leaves; developmental time was prolonged by 20% and pupal weight was reduced by 50% in these larvae compared with larvae reared entirely on new leaves. Almost all larvae died when transferred to mature leaves as first, second or third instars.
  • 3 Low survival and slow development on mature leaves was mainly due to failure by larvae to feed. Larvae palpated leaves and could discriminate among leaf ages immediately, without biting into the leaf tissue.
  • 4 New leaves had higher concentrations of oil and tannins than old leaves, while there were no significant differences in nitrogen concentrations in the two types of leaves. Mature leaves were more than 3 times tougher than new leaves, in terms of g mm?2 of penetrometer force.
  • 5 In drought years E. blakelyi may not produce sufficient new leaves to supply specialist herbivores with their preferred food resource. We infer that drought years reduce P. atomaria larval performance significantly, and influence the population dynamics of the insect.
  相似文献   

4.
To determine how nutritional indices for insects fed leaves are affected by the experimental conditions and the physiology of the plant material, we used larvae of the buckmoth, Hemileuca lucina Hy. Ed. (Saturniidae) and their hostplant Spiraea latifolia Ait. Bork (Rosaceae). Under experimental conditions identical to those used to determine larval nutritional indices, we found that the age of leaves (new versus mature) significantly affected their metabolism and water loss, but simulated herbivory did not directly affect leaf metabolism. Over a 6-day test, nitrogen concentration showed an initial increase followed by a gradual decline, and was higher in new leaves compared to mature leaves. New leaves increased in protein concentration and then gradually returned to the initial level, whereas mature leaves changed little over the 6-day test. These changes in percent nitrogen and protein may largely reflect the disproportional changes in non-nitrogenous materials. Solitary and grouped larvae had similar growth rates on new leaves, but they differed on mature leaves. Deliberate manipulation of larvae during the course of an experiment significantly reduced relative growth rates by increasing duration of the stadium rather than by decreasing biomass gained. Two methods of estimating larval gut contents at mid-stadium were compared: weight of frass produced and weight of digestive tract and contents. After the end of the 4-day test period used to determine nutritional indices, the digestive tracts with food accounted for 10.8% of the larval dry weight. Larval frass produced in 24 h after the end of the test period comprised 9.3% of the larval dry weight. Correction factors for plant metabolism changed nutritional indices by 1 to 8%, while those for larval gut contents altered indices by 2 to 15%.  相似文献   

5.
Strains of fluorescent and nonfluorescent bacteria that were isolated from rice rhizospheres of Southern India and showed antagonism towardsRhizoctonia solani were evaluated for biological control of rice sheath-blight (ShB). Efficient strains of bacteria inhibited mycelial growth ofR. solani, affected sclerotial viabilityin vitro and protected IR 20 and TKM 9 rice seedlings from infection byR. solani in greenhouse tests. Pretreatment of sclerotia in bacterial suspensions resulted in reductions in ShB lesion sizes up to 31 to 44% in IR20 and 58 to 74% in TKM 9 rice. In field plots, IR 50 and TKM 9 rice plants raised from bacterized seeds had 65 to 72% less ShB than those plants from untreated seeds.  相似文献   

6.
We evaluated eight Napier grass [Pennisetum purpureum Schumach (Poaceae)] varieties, used in various parts of eastern Africa as fodder, for their potential role as trap plants in the management of the African stemborer, Busseola fusca Füller (Lepidoptera: Noctuidae) through a push–pull strategy. Oviposition preference, larval orientation, settling, arrest and dispersal, feeding, mortality and survival, and development were determined for each of these varieties under laboratory and screen house conditions. Two‐choice tests showed that only two of the varieties tested (cv. Bana and cv. Uganda Hairless) were preferentially chosen by gravid female moths for oviposition over a susceptible maize variety, cv. Western Hybrid 502. Larval preference was, however, highly variable. Larval feeding by first instars on the maize leaves was more intense and significantly more than on leaves of all the Napier grass varieties evaluated. Food consumed and amounts assimilated by the third instars over a 24‐h period were not different among larvae fed on stems of maize and those fed on stems of the various Napier grass varieties. Larval survival was significantly lower on all the Napier grass varieties (below 3%) than on maize (about 44%). Similarly, larval development was about 2–3 weeks longer on majority of the Napier grass varieties. It was concluded that cv. Bana had potential for use as a trap plant in the management of B. fusca because it was more preferred by the moths for oviposition, equally preferred as maize by the larvae for orientation, settling, and arrest, and allowed minimal survival of the larvae. It can thus be used with such ‘push’ plants as Desmodium spp. (Fabaceae) in a ‘push–pull’ strategy, but the effectiveness of such a strategy would strictly depend on proper establishment and management of these companion plants.  相似文献   

7.
This study examines the nature of intraspecific interactions among Nilaparvata lugens (Stål) (Hemiptera: Delphacidae) planthoppers feeding on resistant and susceptible rice varieties. Planthopper nymphs produced less honeydew and gained less weight when feeding on rice variety IR62 (resistant) compared to susceptible rice varieties. A series of bioassays was conducted that varied N. lugens nymph densities on IR62 and IR22 (susceptible). Increasing nymph density facilitated feeding by conspecifics; however, intraspecific competition increased mortality of nymphs on IR62 (but rarely on IR22). Furthermore, nymph weights declined with increasing conspecific density on IR22, and the effects were weak on IR62. More female nymphs than males survived on IR62 but this was not affected by density. Nitrogenous fertilizer increased competition among N. lugens on young plants of IR22, but not on IR62. Results indicate that nymphs have a low efficiency in accessing resources when feeding on IR62, even where the plants have received fertilizer. Female‐biased survival and biomass compensation for mortality may promote population recovery after development on the resistant plant and accelerate adaptation to the resistant variety.  相似文献   

8.
Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is the major pest of tomato plant. Since using relatively resistant cultivars may reduce the number of sprayings as well as postpone the development of the resistance to pesticides, the present study focused on evaluating the damage of T. absoluta on eleven 45-day-old tomato cultivars under greenhouse condition. Larval mines on the leaves as well as the terminal bud damage were considered. Damaged leaves, active mines and damaged terminal buds were significantly different among the cultivars. Cluster analysis using SPSS software resulted in grouping the cultivars into four categories as relatively resistant, partially resistant, partially susceptible and susceptible. The host plant’s growing characteristics (height and leaflet number) were assessed and likewise the weight of the resulted pupae. Differences in vulnerability of the cultivars showed that tomato cultivars possess resistant traits and the identification and utilisation of these traits can give rise to resistant varieties.  相似文献   

9.
水稻品种抗褐飞虱不同生物型的稳定性   总被引:2,自引:0,他引:2  
采用Tai氏方法分析估测12个水稻品种抗褐飞虱不同生物型的稳定性,以期为选育抗虫稳定性好的水稻品种提供较为有效的分析和监测方法.结果表明:光照强度、苗龄、施氮量对不同水稻品种对褐飞虱不同生物型的抗性表现及抗性稳定性有明显影响.抗褐飞虱生物型Ⅱ的品种中,RHT、RP1976-18-6-4-2、Ptb33的抗性较稳定,IR56的抗性不稳定,IR36、ASD7的抗性极不稳定;感褐飞虱生物型Ⅱ的品种中,TN1的感虫性稳定,桂华占、佛山油占、IR26的感虫性较稳定,国粳4号、Mudgo的感虫性不稳定.抗褐飞虱孟加拉型的品种中,RP1976-18-6-4-2、RHT、Ptb33的抗性不稳定,IR56的抗性极不稳定;感褐飞虱孟加拉型的品种中,桂华占、佛山油占、IR26的感虫性稳定;TN1、IR36的感虫性不稳定;国粳4号、Mudgo、ASD7的感虫性极不稳定.  相似文献   

10.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) larvae occasionally have been reported to survive at management threshold levels in fields of Bollgard II® cotton, Gossypium hirsutum L. (Malvaceae). The pattern and degree of larval survival is not easily predicted but depends on the ability of first instars to establish on host plants. Experiments were conducted with Bacillus thuringiensis Berliner (Bt)‐susceptible and Bt‐resistant larvae of H. armigera to understand how physiologically Bt‐susceptible H. armigera survive on Bt cotton plants, and examine how their first meal influences survival rates. In assays using cotton plant parts, both strains of larvae displayed similar tendencies to drop‐off specific plant parts of Bt and non‐Bt cotton. However, significantly more Bt‐susceptible larvae dropped off young leaves, mature leaves, and squares of Bt cotton compared to non‐Bt cotton plants. Egg cannibalism significantly improved the survival of Bt‐susceptible H. armigera larvae on Bt cotton plants. Larvae were more likely to eat live aged eggs, than newly laid or dead eggs. Survival significantly improved when larvae cannibalized eggs before feeding on Bt leaves. The behavior of Bt‐susceptible larvae with respect to drop‐off and egg cannibalism may help enhance their survival on Bt cotton plants.  相似文献   

11.
Abstract 1 Larval survival and development of Dipel‐susceptible and ‐resistant strains of European corn borer, Ostrinia nubilalis (Hübner), were assayed using diets incorporating low doses of a commercial formulation of Bacillus thuringiensis var. kurstaki Berliner (Dipel ES). 2 Larval mortality, growth and development, pupation rate and pupal weight were not significantly different between Dipel‐susceptible and ‐resistant strains when larvae were reared on a nontoxic control diet. 3 Larval mortality of Dipel‐resistant larvae did not significantly change as Dipel concentration increased at the tested concentrations, whereas mortality of Dipel‐susceptible larvae increased dramatically as Dipel concentration increased. 4 Larval development was significantly delayed when larvae were fed diets containing low doses of Dipel. 5 Pupation rate and pupal body weight declined as Dipel concentration increased but it decreased faster for the susceptible strain than for the resistant strain.  相似文献   

12.
13.
建立抗呲虫啉褐飞虱Nilaparvata lugens(St(a)l)种群和敏感呲虫啉褐飞虱种群在不同抗虫水稻品种(TN1、IR36)上的实验种群生命表,比较了抗感吡虫啉种群在感虫品种TN1上以及在抗虫品种IR36上饲养4代的种群趋势指数(Ⅰ)和适合度的差异.结果表明,在TN1上,抗呲虫啉和敏感吡虫啉褐飞虱种群的种群数...  相似文献   

14.
通过比较棉花(Gossypium hirsutum)幼叶和完全展开叶气体交换参数及叶绿素荧光特性的差异, 探讨高光强下幼叶的光抑制程度及明确光保护机制间的协调机理。在田间自然条件下, 以棉花刚展平的幼嫩叶片(幼叶)和面积已达到最大的完全展开叶片为研究对象, 通过测定不同发育阶段叶片气体交换参数及叶绿素a荧光参数的变化, 并运用Dual-PAM100对不同发育阶段的叶片进行快速光响应曲线的拟合。结果表明: 幼叶和完全展开叶片在光合、荧光特性方面表现出明显的差异。与完全展开叶相比, 较低的叶绿素(Chl)含量和气孔导度(Gs)是幼叶较低净光合速率(Pn)的限制因素, 从而直接导致其光系统II (PSII)实际光化学效率(ΦPSII)和光化学猝灭系数(qP)的降低。在1800 μmol·m-2·s-1光强以下, 完全展开叶具有较强的围绕PSI循环的电子流(CEF), 有利于合成ATP, 是其具有较高光合能力的原因之一。相同光强下, 幼叶较低的光饱和点(LSP)更易受光抑制, 但其PSII原初光化学效率(Fv/Fm)的日变化幅度显著小于完全展开叶, 说明强光下幼叶通过类胡萝卜素(Car)猝灭单线态氧、光呼吸(Pr)、热耗散(NPQ)以及PSI-CEF等光保护机制能有效地耗散过剩的光能, 从而避免其光合机构发生光抑制。  相似文献   

15.
Stable performance of insect‐resistant transgenic plants across field seasons and between plant organs damaged by the insect pest is critical for management of this resistance in the field. To evaluate this, potato (Solanum tuberosum) lines transgenic for a cry1Ac9 gene with resistance to potato tuber moth (Phthorimaea operculella) were established in the field during the southern hemisphere summers of 1997/98, 1998/99 and 1999/00 as small field plots, each of 10 plants. Replicate plots of the non‐transgenic parent cultivars (at least one for every three independently derived transgenic lines) were planted randomly throughout the trials. Field‐grown foliage was challenged with larvae in the laboratory and a growth index (GI) was calculated for recovered larvae from each transgenic and non‐transgenic potato line. Larval growth on young and mature leaves, and on newly harvested or stored tubers was also measured in the laboratory. Foliage from the transgenic lines inhibited larval growth in all seasons tested. For both control and transgenic lines, larvae had slightly lower GIs when reared on mature leaves compared with young leaves, although the correlation between mean GI for young and mature transgenic leaves was high (r = 0.97). The correlation between the mean GIs of larvae on newly harvested tubers and on those stored for 5 months was also high (r = 1.0). However, the GIs of larvae on newly harvested transgenic tubers were larger than on transgenic tubers stored for 5 months. The relative growth indices (RGI = mean GI/number days before final weighing) of larvae reared on newly harvested tubers from transgenic lines were generally higher than those from young transgenic foliage, while the RGIs of larvae reared on non‐transgenic tubers were slightly lower than those fed non‐transgenic foliage. The correlation between mean RGIs of larvae fed tubers or foliage was 0.62. The transgenic potato lines exhibited stable resistance to larvae across field seasons, between affected plant organs, and between plant organs of different ages.  相似文献   

16.
17.
The efficient aquisition of nutrients from leaves by insect herbivores increases their nutrient assimilation rates and overall fitness. Caterpillars of the gypsy moth (Lymantria dispar L.) have high protein assimilation efficiencies (PAE) from the immature leaves of trees such as red oak (Quercus rubra) and sugar maple (Acer saccharum) (71–81%) but significantly lower PAE from their mature leaves (45–52%). By contrast to this pattern, both PAE and carbohydrate assimilation efficiencies (CAE) remain high for L. dispar larvae on the mature leaves of poplar (Populus alba × Populus tremula) grown in greenhouse conditions. The present study tests two alternative hypotheses: (i) outdoor environmental stresses cause decreased nutrient assimilation efficiencies from mature poplar leaves and (ii) nutrients in the mature leaves of trees in the poplar family (Salicaceae) remain readily available for L. dispar larvae. When poplar trees are grown in ambient outdoor conditions, PAE and CAE remain high (approximately 75% and 78%, respectively) in L. dispar larvae, in contrast to the first hypothesis. When larvae feed on the mature leaves of species in the Salicaceae [aspen (Populus tremuloides), cottonwood (Populus deltoides), willow (Salix nigra) and poplar], PAE and CAE also remain high (68–76% and 72–92%, respectively), consistent with the second hypothesis. Larval growth rates are strongly associated with protein assimilation rates, and more strongly associated with protein assimilation rates than with carbohydrate assimilation rates. It is concluded that tree species in the Salicaceae are relatively high‐quality host plants for L. dispar larvae, in part, because nutrients in their mature leaves remain readily available.  相似文献   

18.
Spikelet sterility induced by low temperature at the reproductive stage of rice increased further with the increase of nitrogen supply. Spikelet sterility in Fujisaka-5 did not increase due to low temperature when nitrogen supply was increased from 10 to 40 ppm and at 80 ppm nitrogen supply it was less affected than IR36. Total nitrogen content in the leaves increased with the increase of nitrogen supply and was forced to be associated with the spikelet sterility induced by low temperature. Based on auricle distance between the last two leaves, the most sensitive stage to low temperature damage differed in Fujisaka-5 and IR36. Spikelet sterility induced by low temperature for 10 days was very high in both the varieties and the effect of nitrogen was not clear.The effect of phosphorus on the spikelet sterility induced by low temperature at reproductive stage was not clear except that at the highest phosphorus (P) level (10 ppm) the spikelet sterility increased both in Fujisaka-5 and IR36.Spikelet sterility induced by low temperature at the reproductive stage of rice decreased with the increase of Potassium (K) supply in both Fujisaka-5 and IR36. With an increase of potassium supply, nitrogen (N) content decreased in the leaves and panicles and spikelet sterility induced by low temperature decreased with an increase of the K to N ratio in the leaves and panicles. The results suggest that potassium might play a major role to counteract the low temperature damage at the reproductive stage of rice.  相似文献   

19.
Folivorous insect responses to elevated CO2-grown tree species may be complicated by phytochemical changes as leaves age. For example, young expanding leaves in tree species may be less affected by enriched CO2-alterations in leaf phytochemistry than older mature leaves due to shorter exposure times to elevated CO2 atmospheres. This, in turn, could result in different effects on early vs. late instar larvae of herbivorous insects. To address this, seedlings of white oak (Quercus alba L.), grown in open-top chambers under ambient and elevated CO2, were fed to two important early spring feeding herbivores; gypsy moth (Lymantria dispar L.), and forest tent caterpillar (Malacosoma disstria Hübner). Young, expanding leaves were presented to early instar larvae, and older fully expanded or mature leaves to late instar larvae. Young leaves had significantly lower leaf nitrogen content and significantly higher total nonstructural carbohydrate:nitrogen ratio as plant CO2 concentration rose, while nonstructural carbohydrates and total carbon-based phenolics were unaffected by plant CO2 treatment. These phytochemical changes contributed to a significant reduction in the growth rate of early instar gypsy moth larvae, while growth rates of forest tent caterpillar were unaffected. The differences in insect responses were attributed to an increase in the nitrogen utilization efficiency (NUE) of early instar forest tent caterpillar larvae feeding on elevated CO2-grown leaves, while early instar gypsy moth larval NUE remained unchanged among the treatments. Later instar larvae of both insect species experienced larger reductions in foliage quality on elevated CO2-grown leaves than earlier instars, as the carbohydrate:nitrogen ratio of leaves substantially increased. Despite this, neither insect species exhibited changes in growth or consumption rates between CO2 treatments in the later instar. An increase in NUE was apparently responsible for offsetting reduced foliar nitrogen for the late instar larvae of both species.  相似文献   

20.
Imported willow leaf beetles Plagiodera versicolora oviposit on willow leaves, and both larvae and adults feed on the leaves. In the field, eggs were found on leaves near the center of branchlets, and the number of eggs per cluster was independent of the leaf area and position. However, in the laboratory, females chose young leaves over old leaves, for both oviposition and feeding and choice did not rely on information on relative position or size of leaves. Developing on young versus old leaves may provide both advantages and disadvantages. In the laboratory, larvae developed more quickly and attained a greater adult weight when fed young versus old leaves, perhaps because of increased mandibular wear of larvae fed old leaves. However, in the field, survival of eggs was lower on young versus old leaves. In the laboratory, rates of cannibalism and survivorship to adulthood did not differ on young versus old leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号